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ABSTRACT 

This paper proposes a fast noise estimation algorithm for speech 
enhancement using a perceptual Wiener filter.  The noisy speech 
is decomposed using a critical-band-rate filterbank so that a 
perceptual modification of Wiener filtering can be applied in 
speech denoising.  The subband noise estimate is updated by 
adaptively smoothing the noisy signal power.  The smoothing 
parameter is chosen as a function of the estimated signal-to-noise 
ratio.  This noise estimation technique gives accurate results even 
at very low signal-to-noise ratios, and works continuously, even 
in the presence of speech.  It is effective for both non-stationary 
and coloured noise.  Enhanced speech of good quality is obtained 
by the perceptual Wiener filter. 

1. INTRODUCTION 

Traditional speech denoising techniques are predominantly based 
on either Wiener filtering or spectral subtraction [5, 10].  
Although these methods improve the signal-to-noise ratio, they 
distort the signal and also tend to introduce a perceptually 
annoying residual noise, often referred to as musical noise.  
Recent noise reduction techniques [4, 11] have exploited the 
masking properties of the human auditory system and have 
resulted in good quality speech with reduced levels of musical 
noise. 

In most situations we have only the noisy speech signal 
available.  T he noise may be non-stationary and coloured, and its 
power is unknown.  Its properties must be extracted from the 
noisy speech signal alone.  Noise power estimation is crucial to 
effective speech enhancement.  Inaccurate noise power used in 
the suppression rule can result in musical noise and speech 
distortion.  Work has been carried out in recent years to find 
appropriate noise estimation techniques.  Doblinger [3] proposed 
a simple algorithm for tracking the minima of the noise power.  
However, his algorithm cannot distinguish between a rise in 
noise power and a rise in speech power, so that during voiced 
speech intervals the noise estimates are higher than the true noise 
power.  The minimum spectral tracking algorithm proposed by 
Martin [9] requires a long segment of speech to work effectively 
and has a large latency . 

In this paper, we propose a fast and reliable noise estimation 
technique.  The noise estimate is updated adaptively and 
continuously, with a smoothing parameter that depends on the 
estimated subband SNR.  This noise estimation technique is then 
applied to speech denoising using the perceptually modified 
Wiener filter first proposed in [7, 8].  Enhanced speech of good 
perceptual quality is obtained. 

 

 
 
The paper is organised as follows:  Section 2 introduces the 

perceptually modified Wiener filter.  Section 3 presents the new 
noise estimation technique, and section 4 gives some 
experimental results. 

2. PERCEPTUALLY MODIFIED WIENER FILTERING 
FOR SPEECH DENOISING 

The noisy speech x(n), consisting of the clean speech s(n) with 
the additive noise w(n), is first decomposed into M bandpass 
signals xi(n) using a filterbank.  In the implementation reported 
here we use the auditory filters proposed in Lin [6] to split the 
signal into critical band signals , although other bandpass 
filterbanks could be used (including the common Fourier 
decomposition).  The auditory filters we use are approximately 
distortionless; that is, they satisfy  Eq. 1, where hi(n) is the 
impulse response of the critical band filters, C is a constant and L 
is the number of FIR filter coefficients: 

 )()(1 nLCnhM
i i −≈∑ = δ . (1) 

Each noisy sub-band signal xi(n) is multiplied by the denoising 
gain Ki to obtain the denoised sub-band signal )(ˆ ns i .  These 

signals are summed to yield the denoised speech )(ˆ ns . 
The output of the ith critical band filter (i.e. the ith noisy sub-

band signal) is given by  

 )()()(*)()( nwnsnxnhnx iiii +≡= , (2) 

where si(n) = hi(n)*s(n) is the output from the ith critical band 
filter when the input to the filterbank is clean speech only, and 
wi(n) =hi(n)*w(n) is the corresponding output when the input is 
noise only. 

We define the signal powers )}({ 22 nxixi
Ε=σ , )}({ 22 nsisi

Ε=σ  and 

)}({ 22 nwiwi
Ε=σ .  The optimum channel gain Ki based on a 

perceptual criterion (the audible noise), is found in Lin et al. 
[7, 8] to be 
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where Ti is the estimated masking threshold calculated using the 
MPEG simultaneous masking model of [1, 2], and µ  and η are 
arbitrary parameters which add degrees of freedom to the 
solution.  They allow a flexible trade-off between signal 
distortion and audible noise.  We commonly choose µ to be about 
1 and η to be less than 1.  The classical Wiener filter is obtained 
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if we set µ = 1 and η = 0.  The generalized Wiener filter has 
arbitrary µ, but η = 0. 

When the noise 2
iwσ  is under the (modified) masking 

threshold η Ti, the gain Ki will always be 1, so that the signal is 
not distorted.  The gain decreases as the noise exceeds this level, 
but it will always be larger than the optimum solutions to the 
Wiener and generalized Wiener problems [5], for both of which 
η = 0.  It is easy to show that the speech distortion is always 
smaller than achieved with the Wiener solutions (i.e. if masking 
is not allowed for).  Similarly, the noise residual is always larger 
than with the Wiener solution, but the difference will be less 
audible due to masking [7, 8]. 

To calculate the denoising gain in Eq. 3, both the noise power 
2

iwσ  and the signal power 2
is

σ  are required.  Usually only the 

noisy speech is available, so that the noise power and the clean 
signal power will have to be estimated.  Here we will introduce a 
new noise estimation technique that gives reliable results even 
with strong noise. 

3. ADAPTIVE NOISE ESTIMATION 

We assume that noise and speech are independent non-stationary 
signals, but that the noise power changes relatively slowly.  The 

subband noisy signal power, )}({ 22 nxixi
Ε=σ , is estimated on a 

frame-by-frame basis using 
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where )(ˆ 2 pxσ  is the estimated noise signal power calculated 
using frame p, and N is the frame size. 

The subband noise power, )}({ 22 nwiwi
Ε=σ , is estimated using 

the one-pole smoothing filter 

 )(ˆ))(1()1(ˆ)()(ˆ 222 ppppp
iii xiwiw σασασ −+−= , (5) 

where )(ˆ 2 p
iwσ  is the estimate of subband noise power in frame p. 

The smoothing parameter α i(p) at frame p is chosen as 
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where Q is an integer and )1(2 −p
iwσ  is the average or median of 

the noise estimates of the previous 5 to 10 frames, e.g.  

∑ −=− =
10

1
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ii
σσ .  The ratio )1(/)(ˆ 22 −pp

ii wx σσ  can 

be considered to be an approximation to the a posteriori signal-

to-noise ratio 22222 /)(/
iiiii wwswx σσσσσ += .  Ideally α i should be an 

increasing function of the ratio 22 /
ii wx σσ .  Because )(ˆ 2 p

ixσ  and 

)1(2 −p
iwσ  themselves are random variables, the ratio 

)1(/)(ˆ 22 −pp
ii wx σσ  may be smaller than 1 occasionally.  The 

operation min{⋅} is used in Eq. 6 to avoid negative αi(p) values 
and unstable updates. 

The foregoing algorithm can be explained as follows.  Firstly, 
if speech is absent in frame p, the new noise power calculation 

)(ˆ 2 p
ixσ  should be very close to the average noise estimate 

)1(2 −p
iwσ , so that, from Eq. 6, α i(p) ≈ 0.  Also, from Eq. 5 we 

have )(ˆ)(ˆ 22 pp
ii xw σσ ≈ , because of the small value of αi(p).  That 

is, the estimate of noise power in frame p rapidly follows the 
power of the noisy signal in the absence of speech –  there is 
minimal smoothing. 

On the other hand, if speech is present, the new signal power 
)(ˆ 2 p

ixσ  is much larger than the previous noise estimate 

)1(2 −p
iwσ , i.e. )1()(ˆ 22 −>> pp

ii wx σσ , so that, from Eq. 6, 

αi(p) ≈ 1.  Hence the noise update in Eq. 5 is slower because of 
the large value of α i(p).  For example, if )1(2)(ˆ 22 −= pp

ii wx σσ , 

which means that at this instant the speech power is equal to the 
noise power, we will have α i(p) ≈ 0.94 if Q = 4.  The value of 
αi(p) increases rapidly with increasing )1(/)(ˆ 22 −pp

ii wx σσ .  

During voiced frames we have )1()(ˆ 22 −>> pp
ii wx σσ , α i(p) ≈ 1, 

and )1(ˆ)(ˆ 22 −≈ pp
ii ww σσ .  That is, the noise update process almost 

stops and the noise estimate approximately equals that of the 
previous frame because the value of α i(p) is almost 1. 

The integer Q controls the way in which αi(p) changes with 

)1(/)(ˆ 22 −pp
ii wx σσ .  A plot of α i as a function of the a posteriori 

signal-to-noise ratio 22 /
ii wx σσ  at different values of Q is shown in 

Figure 1.  Generally, larger values of Q lead to larger values of α i 
and slower noise updates, whereas smaller values of Q give faster 
noise updates, at the risk of possible over-estimation during long 
voiced intervals.  The value of Q is usually chosen in the range 4 
to 6. 
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Figure 1.  Plot  of α as a function of the SNR 22 / wx σσ . 

To further smooth the noise estimate, the following filtering 

operation is used to obtain the final noise estimate )(ˆ2
, pfinalwi

σ , 

where αfinal is chosen to be around 0.5-0.8: 

 )(ˆ)1()1(ˆ)(ˆ 22
,

2
, ppp

iii wfinalfinalwfinalfinalw σασασ −+−= .  (7) 
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The estimate for the subband clean signal power, 
)}({ 22 nsisi

Ε=σ , is then calculated using 

 { }0),(ˆ)(ˆmax)(ˆ 2
,

22 ppp finalwxs iii
σσσ −= , (8) 

where )(ˆ 2 p
isσ  is the estimate of subband clean speech power at 

frame p.  The operation max{ ⋅} is used to avoid negative power 
estimates. 

With the estimates )(ˆ 2
, pfinalwi

σ  and )(ˆ2 p
isσ  available for each 

subband, the masking threshold Ti and the denosing gain Ki in 
Eq. 3 can then be calculated on a frame-by-frame basis. 

4. EXPERIMENTAL RESULTS 

A noisy speech sentence is shown in Fig. 2a, with additive 
artificial white noise of slowly changing noise power (first 
reducing, then increasing).  The overall signal-to-noise ratio for 
the noisy sentence is approximately 2 dB.  The subband noise 
estimate for critical band 10 (centre frequency 1170 Hz) is shown 
in Fig. 2c, with the dashed line being the noisy signal power; the 
solid thin line the true noise power, and the solid thick line the 
estimated noise power.  The true subband noise power is 
calculated frame by frame using ∑ += −

=
1
0

2
10

2 )(/1)(
10

N
nw npNwNpσ  

from the noise alone (which is known in this experiment).  The 
value of Q in Eq. 6 is chosen to be 5, and finalα  in Eq. 7 is 0.7. 

 
 

 
(a) Noisy Sentence 

 
(b) Update of the smoothing parameter α10(p) 

 
(c) Noise estimate. 

Figure 2.  Noise estimation in critical band 10. 

 

The corresponding updates of α10(p) are shown in Fig. 2b.  As 
can be seen, the noise estimate follows the ideal noise power 
with little delay.  In voiced frames, where the speech energy is 
high, the noise estimat es almost stop  changing because the value 
of α10(p) is almost 1.  This behaviour can be seen in Fig. 2c in the 
voiced speech segment between 1.5 s and 2 s.  Because of the 
large value of Q = 5, over-estimation of noise power is avoided. 

Extensive testing of our noise estimation algorithm has also 
been made using a variety of other noises , including pink noise, 
tank noise, F16 noise and car noise.  The proposed algorithm 
gives accurate and robust results at signal-to-noise ratios from 
-5 dB to 15 dB. 

 
The proposed noise estimation algorithm was also applied to 

speech denoising using the perceptual Wiener filter.  The 
spectrograms of the clean, noisy and denoised sentences are 
shown Fig. 3(a), 3(b) and 3(c), respectively.  The noisy sentence 
is a short speech sentence mixed with car noise at a signal-to-
noise ratio of about 5 dB.  Car noise is also a slowly changing 
non-stationary coloured noise.  The noise is estimated on a frame 
basis using the proposed estimation algorithm.  The estimate is 
then used to calculate the denoising gain (Eq. 3).  Informal 
listening demonstrates that the denoised sentence is natural 
sounding without any detectable musical noise. 
 

 

 
(a) Clean speech 

 
(b) Noisy speech 

 
(c) Denoised speech 

Figure 3:  Spectrograms of the clean, noisy and denoised 
sentences. 
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5. CONCLUSION 

A fast and robust noise estimation algorithm has been proposed.  
The noise estimation is based on adaptive smoothing of the noisy 
signal power, with the smoothing parameter controlled by the 
estimated subband a posteriori signal-to-noise ratio.  It produces 
accurate results even at very low signal-to-noise ratios. 

The proposed noise estimation algorithm is designed to 
rapidly track non-stationary noise in the presence of speech, and 
does not depend on preliminary voice activity detection.  Since it 
was developed for a subband system, it is also inherently suitable 
for tracking coloured as well as non-stationary noise. 

The proposed noise estimation algorithm was developed 
especially for the perceptual Wiener filtering method of speech 
denoising [7, 9].  However, it could equally be used in virtually 
all other noise reduction algorithms, since most methods depend 
on having an accurate estimate of the noise energy. 

Enhanced speech of good perceptual quality is produced by 
the perceptual Wiener filter using this noise estimation technique.   
Although we have used a critical band filterbank as a time-
frequency decomposition tool, the proposed noise estimation and 
speech enhancement technique can also be extended easily to 
other filterbanks, e.g. those based on the DFT or the DCT. 
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