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ABSTRACT

This paper proposes a fast noise estimation algorithm for speech
enhancement using a perceptual Wiener filter. The noisy speech
is decomposed using a critical-band-rate filterbank so that a
perceptual modification of Wiener filtering can be applied in
speech denoising. The subband noise estimate is updated by
adaptively smoothing the noisy signal power. The smoothing
parameter is chosen as afunction of the estimated signal-to-noise
ratio. This noise estimation technique gives accurate results even
at very low signal-to-noise ratios and works continuously, even
in the presence of speech. It is effective for both non-stationary
and coloured noise  Enhanced speech of good quality is obtained
by the perceptual Wiener filter.

1. INTRODUCTION

Traditional speech denoising techniques are predominantly based
on either Wiener filtering or spectral subtraction [5, 10].
Although these methods improve the signal-to-noise ratio, they
distort the signal and aso tend to introduce a perceptualy
annoying residual noise, often referred to as musical noise.
Recent noise reduction techniques [4,11] have exploited the
masking properties of the human auditory system and have
resulted in good quality speech with reduced levels of musical
noise.

In most situations we have only the noisy speech signal
available. T he noise may be non-stationary and coloured, and its
power is unknown. Its properties must be extracted from the
noisy speech signal alone. Noise power estimation is crucial to
effective speech enhancement. Inaccurate noise power used in
the suppression rule can result in musical noise and speech
distortion. Work has been carried out in recent years to find
appropriate noise estimation techniques. Doblinger [3] proposed
a smple algorithm for tracking the minima of the noise power.
However, his algorithm cannot distinguish between a rise in
noise power and a rise in speech power, so that during voiced
speech interval s the noi se estimates are higher than the true noise
power. The minimum spectral tracking algorithm proposed by
Martin [9] requires a long segment of speech to work effectively
and has alarge latency .

In this paper, we propose a fast and reliable noise estimation
technique. The noise estimate is updated adaptively and
continuously, with a smoothing parameter that depends on the
estimated subband SNR. This noise estimation technique is then
applied to speech denoising using the perceptually modified
Wiener filter first proposed in [7, 8]. Enhanced speech of good
perceptual quality is obtained.
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The paper is organised as follows: Section 2 introduces the
perceptually modified Wiener filter. Section 3 presents the new
noise estimation technique, and section 4 gives some
experimental results.

2 PERCEPTUALLY MODIFIED WIENER FILTERING
FOR SPEECH DENOISING

The noisy speech x(n), consisting of the clean speech s(n) with
the additive noise w(n), is first decomposed into M bandpass
signals %(n) using a filterbank. In the implementation reported
here we use the auditory filters proposed in Lin [6] to split the
signa into critical band signals, athough other bandpass
filterbanks could be used (including the common Fourier
decomposition). The auditory filters we use are approximately
distortionless; that is, they satis'y Eq. 1, where h(n) isthe
impulse response of the critical band filters, C is a constant and L
is the number of FIR filter coefficients:

aMh()»Cd(L-n). @

Each noisy sub-band signd x(n) is multiplied by the denoising
gan K; to obtain the denoised sub-band signa §;(n). These
signas are summed to yield the denoised speech §(n) .

The output of theith critical band filter (i.e. theith noisy sub-
band signal) is given by

% (M) =h (n)* x(n) © s (N)+wi(n) , 2

where s(n) = hj(n)*g(n) is the output from the ith critical band
filter when the input to the filterbank is clean speech only, and
wi(n) =h(n)*w(n) is the corresponding output when the input is
noise only.

We define the signal powers s =E¥(n)}, sZ =E{§*(n)} and
st =EW M}

perceptua criterion (the audible noisg), is found in Lin et al.
[7, 8] tobe

The optimum channel gain K; based on a

S2

_ S
3 ssz+mmax{(sv2\‘-hTi),0} ’ )
where T; is the estimated masking threshold calculated using the
MPEG simultaneous masking model of [1, 2], and mand h are
arbitrary parameters which add degrees of freedom to the
solution. They alow a flexible trade-off between signal
distortion and audible noise. We commonly choose mto be about
1land hto be lessthan 1. The classical Wiener filter is obtained
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if wesst m=1and h=0 The generaized Wiener filter has
arbitrary m buth = 0.

When the noise svzV is under the (modified) masking

threshold h T;, the gain K; will always be 1, so that the signal is
not distorted. The gain decreases as the noise exceeds this level,
but it will always be larger than the optimum solutions to the
Wiener and generalized Wiener problems [5], for both of which
h=0. Itis easy to show that the speech distortion is aways
smaller than achieved with the Wiener solutions (i.e. if masking
is not alowed for). Similarly, the noise residua is aways larger
than with the Wiener solution, but the difference will be less
audible due to masking [7, 8].

To calculate the denoising gain in Eq. 3, both the noise power

s« and the signal power s g are required. Usually only the

noisy speech is available, so that the noise power and the clean
signal power will have to be estimated. Here we will introduce a
new noise estimation technique that gives reliable results even
with strong noise.

3. ADAPTIVE NOISE ESTIMATION

We assume that noise and speech are independent non-stationary
signals, but that the noise power changes relatively slowly. The

subband noisy signal power, sZ =ExXn)}, is estimated on a
frame-by -frame basis using

. 1N-1
SL(P= & X (pN+n), @
=0

where §'2(p) is the estimated noise signal power calculated
using frame p, and N is the frame size.

The subband noise power, Sev =Hw(n)}, is estimated using
the one-pole smoothing filter

S (P =a(pSa(p-D+A-ai(PEE(P), O

where s‘vi (p) isthe estimate of subband noise power in frame p.

The smoothing parameter a;(p) at frame p is chosen as

i el
M a':'SA)Z(_(p) 9 b

aj(p)=1- min}l, 9_2'—_ {/ (©)]
i §SW.('°'1)E b

where Qisan integer and s_vi (p-1 isthe average or median of
the noise estimates of the previous 5 to 10 frames, eg.
Sa(p-)=V10R{2SE (p- K. Theratio s (p)/5q(p-1) can
be considered to be an approximation to the a posteriori signal-
to-noiseratio s % /s =(s2 +s%)/s s . Idedly a; should be an
increasing function of the ratio s i /svi . Because s”i(p) and

§Z(p-1) themselves are random variables, the ratio

SZ(P/Sa(p-) may be smaler than 1 occasiondly. The

operation min{%} is used in Eq. 6 to avoid negative a;(p) values
and unstable updates.

Theforegoing algorithm can be explained asfollows. Firstly,
if speech is absent in frame p, the new noise power calculation

Sszi(p) should be very close to the average noise estimate
§2(p-1), sothat, from Eq. 6, a|(p) » 0. Also, from Eq. 5 we

have 2 (p) »$ 2 (p) , because of the small value of ai(p). That

is, the estimate of noise power in frame p rapidly followsthe
power of the noisy signal in the absence of speech — there is
minimal smoothing

On the other hand, if speech is present, the new signal power

SZ(p) is much larger than the previous noise estimate
Sa(p-1), ie $Z(p>>§5(p-1), so tha, from Eq. 6,
ai(p) » 1. Hence the noise update in Eq. 5 is slower because of
the large value of a(p). For example, if s'Z(p)=25% (p-1),
which means that at this instant the speech power is equal to the
noise power, we will have a;(p) » 0.94 if Q =4. The value of
ai(p) increases rapidly with increasing s“le (p)/s_\,ﬁl(p- 1.

During voiced frames we have s7 (p)>>5a (p-1), ai(p)» 1,

and §®(p) »sﬁ(p- 1. That is, the noise update process almost

stops and the noise estimate approximately equals that of the
previous frame because the value of a;(p) isalmost 1.
Theinteger Q controls the way in which a;(p) changes with

s‘fi(p)/s_vi (p-1). A plot of a; as afunction of the a posteriori
signa-to-noiseratio s i /s\f4 at different values of Q is shown in

Figure 1. Generally, larger values of Q lead to larger values of a;
and slower noise updates, whereas smaller values of Q give faster
noise updates, at the risk of possible over-estimation during long
voiced intervals. Thevalue of Q is usually chosen in the range 4
to 6.
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Figure 1. Plot of a asafunction of the SNR s 2/s 2.

To further smooth the noise estimate, the following filtering
operation is used to obtain the final noise estimate sAVZ\Lfina( P,
where as,y 1S chosen to be around 0.5-0.8;

Se final(P = fina o na(P- D +A-agina)S 2 (P) - ()
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The estimate for the subband clean signa power,
s2 =B (")}, isthen calculated using

SASZ(p):max{sAi(p)'Sszq,final(p)’ 0}’ ®

where sf(p) is the estimate of subband clean speech power at

frame p. The operation max{ % is used to avoid negative power
estimates.

With the estimates §3 fina (p) and s2 (p) available for each

subband, the masking threshold T; and the denosing gain K; in
Eq. 3 can then be calculated on a frame-by -frame basis.

4. EXPERIMENTAL RESULTS

A noisy speech sentence is shown in Fig. 2a, with additive
artificial white noise of slowly changing noise power (first
reducing, then increasing). The overall signal-to-noise ratio for
the noisy sentence is approximately 2dB. The subband noise
estimate for critical band 10 (centre frequency 1170 Hz) is shown
in Fig. 2c, with the dashed line being the noisy signal power; the
solid thin line the true noise power, and the solid thick line the
estimated noise power. The true subband noise power is

calculated frame by frame using s 2 (p) =1/ N& gwé (pN+n)
10

from the noise alone (which is known in this experiment). The
value of Q in Eq. 6 ischosen to be5, and a 4, INEq. 7is0.7.
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(b) Update of the smoothing parameter a 1o(p)

(c) Noise estimate.
Figure 2. Noise estimation in critical band 10.
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The corresponding updates of a(p) are shown in Fig. 2b. As
can be seen, the noise estimate follows the ideal noise power
with little delay. In voiced frames, where the speech energy is
high, the noise estimat es amost stop changing because the value
of a1o(p) isamost 1. This behaviour can be seenin Fig. 2cinthe
voiced speech segment between 1.5 s and 2 s. Because of the
large value of Q = 5, over-estimation of noise power is avoided.

Extensive testing of our noise estimation algorithm has also
been made using a variety of other noises, including pink noise,
tank noise, F16 noise and car noise. The proposed agorithm
gives accurate and robust results at signal-to-noise ratios from
-5dB to 15 dB.

The proposed noise estimation algorithm was also applied to

speech denoising using the perceptual Wiener filter. The
spectrograms of the clean, noisy and denoised sentences are
shown Fig. 3(a), 3(b) and 3(c), respectively. The noisy sentence
is a short speech sentence mixed with car noise at a signa-to-
noise ratio of about 5dB. Car noise is also a dowly changing
non-stationary coloured noise. The noise is estimated on a frame
basis using the proposed estimation algorithm. The estimate is
then used to calculate the denoising gain (Eg. 3). Informal
listening demonstrates that the denoised sentence is natural
sounding without any detectable musical noise.
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(c) Denoised speech

Figure 3: Spectrograms of the clean, noisy and denoised
sentences.




5. CONCLUSION

A fast and robust noise estimation algorithm has been proposed.
The noise estimation is based on adaptive smoothing of the noisy
signal power, with the smoothing parameter controlled by the
estimated subband a posteriori signal-to-noiseratio. It produces
accurate results even at very low signal-to-noise ratios.

The proposed noise estimation algorithm is designed to
rapidly track non-stationary noise in the presence of speech, and
does not depend on preliminary voice activity detection. Since it
was developed for a subband system, it isasoinherently suitable
for tracking coloured aswell as non-stationary noise.

The proposed noise estimation algorithm was developed
especialy for the perceptual Wiener filtering method of speech
denoising[7, 9]. However, it could equally be used in virtually
all other noise reduction agorithms, since most methods depend
on having an accurate estimate of the noise energy.

Enhanced speech of good perceptua quality is produced by
the perceptua Wiener filter using this noise estimation technique.
Although we have used a critical band filterbank as a time-
frequency decomposition tool, the proposed noise estimation and
speech enhancement technique can also be extended easily to
other filterbanks, e.g. thosebased on the DFT or the DCT .
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