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ABSTRACT

A functionalfundamentalfrequency ( ��� ) modelis appliedto ex-
tract tonepeakandgliding featuresfrom Mandarin ��� contours
aimingat automaticprosodiclabelingof a largescalespeechcor-
pus.Modelingfour lexical tonesandrepresentingthemin a para-
metric form basedon the ��� model,we first clusterbaselinetone
patternsusingtheLBG algorithm,thenperformanalysis-by-synthe-
sis-basedpatternmatchingto estimateunderlyingtonepeaksand
tonepatterntypesfrom observed � � contoursandphoneticlabels
with lexical tones.Tonegliding featuresarere-estimatedafter the
determinationof tonepeaks.94% of theautomaticallyestimated
labelswereconsistentwith the manuallabelsin an opentestof
968utterancesfrom eightnative speakers.Also, experimentalre-
sultsindicatethat the proposedmethodis applicablefor ��� con-
tour smoothingandtoneverification.

1. INTRODUCTION

Theprosodicpropertiesof speech,suchastone,pitch accent,and
intonation,aremainly manifestedby fundamentalfrequency ( � � )
contours.In Chinese,tonescarriedby syllablesperformadiscrim-
ination function, like phonemesin a word. Within the prosodic
complex (basicallythe � � contours),thesmallestdistinctive con-
figuration is tone. Tone is primary in that larger configurations,
including the prosodiccomplex itself, arespecificmodifications
of a string of oneor moretones[1]. Therefore,tonefeatureex-
tractionbecomesessentialfor prosodicanalysisandlabeling.

TheToBI labelingsystem[2], originally developedfor English,
is now beingadaptedto otherlanguages.However, it lacksquan-
titative representationof � � contoursand suffers from fluctua-
tionsbetweenlabelers.Onthecontrary, a language-unspecific and
quantitative labelingof prosodicfeaturesis possiblebasedon the
command-responsemodel(alsoknown astheFujisakimodel)[3].
However, difficulty in theautomaticanalysisof observed ��� con-
toursbasedon this modelrequiresa manualaid for reliablelabel-
ing. In addition,several methodsexist thatmakeuseof tonefea-
turesfor speechinformationprocessing,e.g.,[4, 5]. However, no
automaticestimationyetoffersreliableandaccuratetonefeatures.

In thispaper, weproposeanefficientdata-drivenmethodtoex-
tracttonefeaturesfrom � � contoursthatmakesuseof afunctional��� model developedfor Chinese(hereinafterreferredto as the
model)[6]. An advantageof themodel,comparedto theFujisaki
model, is that it supportsautomaticanalysisof the � � contours.
The modelwould bridgethe gapbetweenlinguistic andacoustic��� features,andcreateconstraintsto reducespeaker-dependentef-
fects,thusfacilitatingdata-drivenlearningandfeatureextraction.

The remainderof this paperexplains detailsof the method.
Section2 containsa descriptionof the � � model, the tonemod-
eling andbaselinemodeltraining. Section3 describesalgorithms
for parametricestimationof tonefeatures,including tone peaks,
gliding andpatterntype. Finally, experimentalresultscomparing
automaticestimationresultswith manuallabelsaredescribedin
Section4, andcommentsandfuturework aregivenin Section5.

2. PARAMETRIC MODELING OF THE � � CONTOURS

2.1. A functional � � model

In thepreviouswork [6], a functionalmodelwasproposedto rep-
resentan � � contourin Mandarin. The vocal-cordvibration sys-
temis regardedasasecond-orderforcedvibrationsystemfor mod-
eling of thecontrolmechanismof the ��� contourgenerationpro-
cess.The voice register (a frequency registerof utterances)of a
speakeris transposedto RONDO (RatiOof Natural frequency of
thesystemto thatof Driving fOrce)throughwarpingit alongwith
thefrequency responsecurve of the forcedvibrationsystem.The
RONDO-��� contouris thenexpressedin concatenative mountain-
shapedpatternslinedup in seriesat thetime axis.The ��� contour
asa functionof time � is givenasfollows.�	� ����
���
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(1) and (2) jointly indicate the transpositionof the voice regis-
ter. Equation(3) expressestheRONDO-� � contour ��
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In themodel,parameters, , �  and ��� canbecommonlyfixed
at &jH	*/k<l , ( and * , respectively [6]. Therearethentwo speaker-
dependentbut utterance-independentparametersin frequency do-
main,namely,m � ��� " � ����n : topandbottomfrequenciesof thevoiceregister,

andfive utterance-dependent but speaker-independent parameters
in theRONDO-timespace,o : numberof mountain-shapedpatterns,VX��K C : responsetime for theith rise/fall component,VX� K C : amplitudeof theith rise/fall component,
�� U C " � U Cp
 : peakof theith mountain-shapedpattern,J � ( " HqHiH " o .

Whengiven the voice register
m � � � " � � �pn , the � � contourcan

be convertedinto andbethentreatedin theRONDO-timespace.
Henceforth,let a variabletakingr denotethat its valueis observed
from realspeechoppositeto thatgeneratedby themodel. An al-
gorithmfor converting r� � 
���
 to r��
���
 is describedasfollows.

Algorithm 1 Conversionof r� � 
���
 to r��
���
 given
m � � � " � ��� n� = �  .

if r� � 
���
%$ � � � , go to Outlet.

Loop : � � 
���
 � c�sSt uwvZx]sSt	u � vsSt	u � vyxjsSt u � vwz�{ | } A�~ � ; | } A�~ ����� | } A�~ � .
If ���-
���
%[ r���-
���
 , go to Outlet.� � ��0^&jH &�&-& ( .
Gobackto Loop.

Outlet : r��
���
 � � .

2.2. Tone modeling

In MandarinChinese,every syllable carriesone of the five lex-
ical tones,traditionally called the 0th to 4th tones,also denoted
by N(eutral),H(igh), R(ise),L(ow) andF(all) tones,respectively,
which arebasedon their pitchmovements.

Tonemodelingneedsto considernot only themain tonefea-
tures,includingpeakandgliding (rise,level andfall) features,and
tonic ��� pattern(henceforth,tonepattern)type,but alsoacoustic
requirementsfor generatingsmooth � � contours. Consequently,
six tonepatternsarenecessaryfor Mandarin ��� contours.Figure
1 illustratesthemodelingof tonepatternsbasedon themodel;ac-
cordingly, they areexpressedin parametricform in equations(7)
and(8) andrelocatedvia a settingparameter� U C . Basically, there
is apatternH-2P(eaks)for H tone,two patterns,R-1P(eak)andR-
2P(eaks),for R tone,two patterns,L-1P(eak)andL-2P(eaks),for
L tone,anda patternF-1P(eak)for F tone. Thereneedsno extra
tonepatternfor the N tone,becauseits � � valuesdependon its
contextual tones;it maytakeoneof thesetonepatternsaccording
to its actualvalue.

1P(eak)case: ��V�� 58C " VX� 58C " �]U C " VX� A�C " VX� A�C�� (7)
2P(eak)case: ��V�� 58C " VX� 58C " �]U C " VX� A�C " VX� A�C " VX� 5�C	D�7 " VX� 58C D�7 "�]U C	D�7 �+�]U C " VX� A�C DE7 " V�� A�C	D�7 " �yU C DE7 �'�yU C!� H<
�b<

2.3. Training baseline tone models

A setof baselinemodelswastrainedastheprototypesof tonepat-
terns,which areusedin Analysis-by-Synthesis(AbS) basedpat-
ternmatchingfor speaker-independent estimationof thepeakpa-
rameters(discussedin Section3.1). Sincespeaker-dependent ef-
fectsarelargely reducedwith thetranspositionof voice registers,
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Fig. 1. Modeling of Mandarintonesusingmountain-shapedpat-
terns. A mountain-shapedpatternwith its control parametersis
alsosuperimposedon thisfigure.Solidcirclesindicatepeaks.

Table 1. Notefor trainingbaselinetonemodels

Tone Tone Primarymodelparameters Codebook Tone
pattern representingthetonepattern size count

N n/a
H H-2P � U C " V��8A�C " VX�9A�C " � U C DE7 , 128 727� U C	D�7L�^� U C
R R-1P VX� 5�C " VX� 58C " �]U C 128 462

R-2P � U C " V��8A�C " VX�9A�C " V���58C D�7 , 143 1089VX� 5�C	D�7 " �ZU C DE7 �+�yU C " �]U C	D�7L L-1P �ZU C " �]U C " VX� A�C " V�� A�C 128 833
L-2P � U C " V��8A�C " VX�9A�C " V���58C D�7 " 131 165VX� 5�C	D�7 " �ZU C DE7 �+�yU C " �]U C	D�7F F-1P �]U C " V�� A�C " VX� A�C 256 2541

200 read-utterances(0.7 hour speech)from a speakerFR were
usedfor settingup the training dataset. The alignmentbetween
a toneandits underlyingtonepatternwasmanuallychecked.To
emphasizethetonefeatures,only theparameterslistedin Table1
wereextractedfrom the trainingdata,while theotherparametersVX��K and VX�aK wereall fixedat &jH	* and &jH	*�_ , respectively.

TheLBG algorithmwasusedto clusterthesamplesassigned
to a tonepattern,andform a codebookfor the tonepattern. The
numberof tonesamplesandresultantcodebooksizefor individual
tonepatternscanbefoundin Table1.

3. PARAMETER ESTIMATION

Takingadvantageof themodelthatgivesthepeakparameters( ��U C ,� U C ), J � ( " HqHqH " o , the other parameterscan then be easily esti-
matedfrom the ��� contourwith minimal distortion.Thefirst step
in analyzingthe � � contouris tonepeakdetection.

3.1. Estimating � U C and � U C for peak feature

The model parameters� U C and � U C are estimatedby performing
AbS-basedpatternmatchingof a tonepatternwith a specific ���
fragment. Here,we at first assumethat the tone patterntype is
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given;Section3.3discusseshow to ascertainthetonepatterntype
from thecandidates.The time scopeof the � � fragmentis deter-
minedby syllableboundariesaccordingto given phoneticlabels.
AbS techniqueis usedto locally adjustthepeakparameterswhen
performingthe patternmatching. In the 1P(eak)case,searching�]U C over [ ��]U C -0.1, ��]U C +0.1] stepsto 0.02,where ��]U C indicatesthe
parametervaluesetby theprototypeused.In the2P(eak)case,the
adjustmentis carriedout on � U C DE7 and � U C	D�7 by similar methods.
Thetime scopelimit to searchfor �ZU C is determinedby analysisof
thecurve shapeof the � � fragment.Theparameterestimationis
thenperformedby thefollowing steps.

Step1 : Initialize/update� U C andtheotherparametersif needbe.
Step2 : Calculatethemeansquareerror(MSE)betweentheobs-

ervedandmodel-generated��� fragments.If theMSE is
lessthantheexisting minimal MSE,performtheAbS-
basedpeakadjustment.Otherwise,go backto Step1.

Step3 : Terminatethecurrentsearchif theMSE is lessthana
giventhresholdor thesearchhascoveredthetime scope.

Step4 : Turn to thenext prototype,if any, andrepeatfrom Step1.

3.2. Estimating V�� K C and VX� K C for gliding features

ParametersV�� K C and VX� K C arejointly estimatedby the iteration
processfrom the observed (rise/fall) component r�1K C 
���
 given its
peak( �yU C " �]U C ). For convenience,let r�LK C 
��Z��
 denotethe jth sam-
ple of r� K C�
���
 , � � & " HqHqH "p� K C , andassume��� � � U C . Timing ��� h C
is definedat the lowestvalley betweentwo adjacentpeaks. Ac-
cordingly, �Z� � �yU C �'��� tint for the rise component,and �Z� �� U C�0W��� tint for the fall component,where tint indicatesa time
interval betweenadjacent��� frames.An AbS-basediterational-
gorithmis describedbelow for theparameterestimation.

Algorithm 2 EstimatingV���K C and V��aK C from anobservedcom-
ponent r� K C�
�� � 
 " � � & " HqHqH "p� K CVX��K C � 2�� tint (tint = 0.01in thisexperiment). �� = 999.

Loop1 : VX�aK C = 0.04.

Loop2 : � ��� � h C� @ � O =.9� �LK C 
��y�/
�� r�LK C 
��Z��
 �0 =� �W�� @ = � V � �LK C 
��y�/
!�FV � r�LK C 
��Z��
 � R .If � � �� , V��� K C � VX� K C ; V �� K C � V�� K C ; and �� � � .VX�aK C 0 � &aH & ( .
If V��aK C � (

, go backto Loop2.VX� K C�0 � tint.
If V���K C [\&aH 2 (terminalthreshold),gobackto Loop1.

Outlet : VX� K C � V �� K C and VX� K C � V��� K C .
Here, V � ��
�� � 
 indicatesthe k-interval differenceexpressedasV � ��
��Z��
 = ��
��Z� ; � 
%�\��
��y�/
 for both �B
��Z� ; � 
 and ��
��Z��
 being
voice frames. Otherwise, V � ��
�� � 
 � & . The distortion � be-
tweenobservedandmodel-generatedcomponentscoversboth the

absoluteerror � � h C� @ = � �1K C 
��y�/
L� r�LK C 
��y�/
 � andtheerror concern-

ing themultiple � -interval differences� � h C� @ = �W�� @ = � V � �LK C 
��Z��
-�V � r� K C�
�� � 
 � . TheAbS-basediterationprocessminimizesthedis-
tortion to seekan optimalvaluepair for VX��K C and VX�jK C relevant
to theamplitudeandresponsetimeof thecomponent.

3.3. Ascertaining parameter o and tone pattern type

In theframeworkof tonemodeling,theparametero for an ��� con-
tour is determinedby estimatingthesequenceof tonepatternsfor

Table 2. Specificationof tonepatterncandidatesfor lexical tones

Lexical tone H R L F N
H-2P R-1P L-1P F-1P R-1P

Tonepattern R-1P L-1P R-1P R-1P F-1P
candidates F-1P R-2P L-2P H-2P

R-2P

the ��� contour’s underlyingtonespecification.The toneshapes
often deviate from the expectedcanonicalshapes,even in read
speech.The situationis particularly difficult in speechwherea
tonecanberealizedwith a shapeoppositeto theunderlyingspec-
ification in isolatedwords. In readspeech,the unexpectedtone
shapeis largelya consequence of tonesandhi,e.g.,L � R � L, and
contextual tonechangesin thesyllableslike yi1 (one),qi1 (seven),
ba1 (eight) and bu4 (not), as well as tone neutralizationdue to
weakstress[1, 7].

Wetreattheissueof tonevariationsby searchingmultiple tone
patternsfor a lexical tone. Table2 lists the primary tonepattern
candidatesfor eachlexical tone. Furthermore,to suppresspeak
insertionerrors,we searcha pathover thecandidatetonepattern
matrix with minimal � � mismatcherrorsfor the tone sequence.
Theparameterestimationis describedin thefollowing steps.

Step1 : Estimatetheparametersfor eachtonepatternassignedfor
every tonein anutterance,usingthemethodin section3.1.

Step2 : If largeerrorspresent,reportmismatchesof tonepatterns
with a tone,thensearchtheremainingtonepatternsfor it.

Step3 : Select2 tonepatternsaccordingto theMSE for eachtone.
Step4 : Find out thetonepatternsequencewith minimal MSEfor

theutterance.In thepruningprocess,parametersVX��K C andVX�aK C , J � ( " HqHiH " o , areall re-estimatedby Algorithm 2.

4. EXPERIMENTAL RESULTS

To testtheperformanceof theproposedmethod,experimentswere
conductedon968utterancesadoptedfrom eightnativespeakersin
threeMandarinspeechcorpora,HKU-96,USTC-96,andasynthe-
sis-orientedcorpusrecentlybuilt upatATR. Therewere268utter-
ancestakenfrom the speakerFR, whoseanother200 utterances
wereusedfor training the baselinetone models. The rest were
pickedup from the others(100 utterancesfor each).Experimen-
tal evaluationis mostlybasedon comparisonof theautomatically
estimatedresults,alongwith themanuallabels,anderroranalysis.

An exampleresultof the tone featureextractionfor speaker
LW is illustratedin Figure2 andTable3. Table4 lists thenumber
of samplesanalyzedandtheexperimentalresultsfor eachspeaker.
ThecolumnPbAM indicatesthepercentageof consistency between
the automaticallyestimatedresultsand the manual labelsunder
twoconstrainedconditions.Thefirst is thatbothtonepatterntypes
arethesame,exceptfor R-1PandR-2P(aswell asL-1PandL-2P),
which wereregardedasthesamething. Theotheris thatparam-
eter �ZU C is allowed to flutter within threeframesarounda manual
label. The next two columns ����� and ����� indicatemeanof er-
rorsbetweenobservedandre-synthesized� � contours,where c��
indicatesframeerrors � r����
���
��+���-
���
 � calculatedwith themanual
labels,and c�� indicatesthosewith theautomaticallyestimatedre-
sults.Thelasttwo columnsindicatethepercentageof frameswith
errorsof c���[ � � � and c���[¡*/� � � , respectively. On theother
hand,Table5 lists the distribution of tonepatterncandidatesfor
individual tonesproducedby themalespeakerLW andthefemale
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Fig. 2. Exampleof re-synthesized� � contours(lines) using the
resultsestimatedby thismethod(partly listedin Table3). Vertical
barsmarkpeaksto clarify them,and“+” denotesobserved ��� .
Table 3. Partial parametervaluesfor theexampleshown in Fig. 2.

Syllable Tone Pattern J¢�ZU C �]U C VX� 58C VX� 58C VX� A�C VX� A�C
type (Sec) (Sec) (Sec)

yu3 L L-1P 1 0.06 1.38 0.20 0.25 0.05 0.10
tian1 H H-2P 2 0.42 1.16 0.23 0.36 0.38 0.04

3 0.59 1.15 0.20 0.25 0.20 0.25
geng4 F F-1P 4 0.67 1.07 0.20 0.25 0.26 0.42£<£<£ £<£<£ £<£<£

speakerFR, whosesamplesanalyzedhereincludeboth the open
testsetandthosefrom thetrainingset(200utterances).

Threepointsareclearfrom Figure2 andTables3 to 5. Firstly,
the proposedmethodis vital and speaker-independent; it shows
quitegoodperformancefor all of thespeakersanalyzed.Secondly,
94%accuracy is obtainedon averagefor the tonelabeling. It im-
provestheperformanceby around10%comparedto the � � peak-
detectionbasedmethod[8]. Lastly, a few parameterscancapture
the tone features: two parametersfor tone peaksand two other
parametersfor tonegliding. Thereexist morethan83%of theob-
servationscloselywaving aroundthe re-synthesized��� contours.
In addition, the results,showing low averageframeerror, which
slightly dependson speakers,andtheability to selecta tonepat-
ternfrom candidates,implied thatthismethodis applicablefor ���
smoothingandtoneverificationfor a largescalespeechcorpus.

5. COMMENTS AND FUTURE WORK

Wepresenteda methodfor theefficient extractionof tonefeatures
from � � contoursthat makesuseof a functional � � model. The
modelbridgesthegapbetweenlinguisticandacoustic��� features.
Therefore,it not only facilitatesdata-driven learningandparame-
ter estimation,but alsomakesit possibleto usefew parametersto
capturethe tonefeatures.Theparametricform of tonefeaturesis
simpleandagreeswith thefindingsin recenttoneresearch[1, 7].
Experimentalresultshave confirmedtheeffectivenessof thepro-
posedmethodin realMandarinspeechwith multiple speakers.

Somework is worthwhile doing in future. Firstly, the size
of the codebookfor baselinetone modelscould be reducedvia
clusteringa codebookof parametersV�� K and VX� K . Secondly, the
methodmaybeextendedto otherlanguages.

Table 4. Speechsamplesanalyzedandexperimentalresults.

Speaker [
� � � ,

� ��� ] Tone PbAM ��� � ��� � c � [���� � c � [1*¤��� �
(sex) Hz Hz count % Hz Hz % %

FR (F) [95 , 365] 7,178 94.8 4.46 4.85 64.7 81.9
WL (F) [120,440]1,589 95.0 3.38 4.00 60.4 81.9
ZYG (F) [95 , 360] 1,192 93.3 3.16 3.39 63.0 83.7
LWX(F) [140,395]1,030 93.0 3.58 3.43 64.4 86.4
LW (M) [85 , 210] 1,007 92.8 1.97 2.36 63.1 82.2
LYF (M) [95 , 220] 992 94.6 2.12 2.12 65.3 83.3
GYQ(M) [95 , 280] 910 94.6 2.08 2.19 64.7 83.5
SFW(M) [65 , 170] 1,004 94.7 1.73 1.78 65.5 83.1
Average 94.1 63.9 83.3

Table 5. Distribution of tonepatterncandidatesfor eachtone.

Tone Samplecount H-2P R-1P R-2P L-1P L-2P F-1P
for FR andLW % % % % % %

H 3,114 (FR) 87.6 3.7 8.7
196 (LW) 79.9 10.2 9.9

R 3,196 (FR) 18.7 72.4 8.8
199 (LW) 38.2 50.2 10.6 1.0

L 2,402 (FR) 5.0 11.6 62.7 20.1 0.5
127 (LW) 6.3 9.4 64.6 19.7

F 4,726 (FR) 0.2 6.2 0.3 93.8
478 (LW) 11.5 88.5

N 619 (FR) 12.8 19.9 67.2
23 (LW) 4.3 30.4 65.2
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