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ABSTRACT

A functionalfundamentafrequeng (Fv) modelis appliedto ex-
tract tone peakand gliding featuresfrom Mandarin F;, contours
aiming at automaticprosodiclabelingof a large scalespeechcor-
pus. Modelingfour lexical tonesandrepresentinghemin apara-
metricform basedon the Fy model,we first clusterbaselinegone
patternaisingtheLBG algorithm thenperformanalysis-by-synthe-
sis-basegatternmatchingto estimateunderlyingtonepeaksand
tonepatterntypesfrom obsered F, contoursandphoneticlabels
with lexical tones.Tonegliding featuresarere-estimatedfter the
determinatiorof tone peaks.94% of the automaticallyestimated
labelswere consistentwith the manuallabelsin an opentestof
968 utterancedrom eight native speakersAlso, experimentalre-
sultsindicatethat the proposedmethodis applicablefor £, con-
tour smoothingandtoneverification.

1. INTRODUCTION

Theprosodicpropertief speechsuchastone,pitch accentand
intonation,aremainly manifestecby fundamentafrequeng (Fo)
contours.In Chinesetonescarriedby syllablesperformadiscrim-
ination function, like phonemesn a word. Within the prosodic
comple (basicallythe Fy contours)the smallestdistinctive con-
figurationis tone. Toneis primary in that larger configurations,
including the prosodiccomple itself, are specificmodifications
of a string of one or moretones[1]. Therefore tonefeatureex-
tractionbecomesssentiafor prosodicanalysisandlabeling.
TheToBI labelingsystem[2, originally developedfor English,
is now beingadaptedo otherlanguagesHowever, it lacksquan-
titative representatiorof Fy contoursand suffers from fluctua-
tionsbetweerabelers.Onthecontrary alanguage-unspéic and
quantitatve labelingof prosodicfeaturess possiblebasedon the
command-respongaodel(alsoknown asthe Fujisakimodel)[3].
However, difficulty in the automaticanalysisof obsered Fy con-
toursbasedon this modelrequiresa manualaid for reliablelabel-
ing. In addition,several methodsexist that makeuseof tonefea-
turesfor speechinformationprocessinge.g.,[4, 5]. However, no
automaticestimationyet offersreliableandaccuratdonefeatures.
In thispaperwe proposenefficientdata-drienmethodo ex-
tracttonefeaturedrom F;, contourghatmakesuseof afunctional
Fy model developedfor Chinese(hereinafterreferredto as the
model)[6]. An advantageof the model,comparedo the Fujisaki
model, is thatit supportsautomaticanalysisof the F, contours.
The modelwould bridgethe gapbetweeninguistic andacoustic
F, featuresandcreateconstraintso reducespeakeidepenéntef-
fects,thusfacilitating data-drvenlearningandfeatureextraction.
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The remainderof this paperexplains details of the method.
Section2 containsa descriptionof the £, model, the tone mod-
eling andbaselinemodeltraining. Section3 describeslgorithms
for parametricestimationof tonefeatures,including tone peaks,
gliding and patterntype. Finally, experimentalresultscomparing
automaticestimationresultswith manuallabelsare describedn
Sectiord, andcommentsandfuturework aregivenin Section5.

2. PARAMETRIC MODELING OF THE Fy; CONTOURS

2.1. A functional Fy model

In thepreviouswork [6], afunctionalmodelwasproposedo rep-
resentan £y contourin Mandarin. The vocal-cordvibration sys-
temis regardedasasecond-ordeforcedvibrationsystenfor mod-
eling of the controlmechanisnof the F;, contourgeneratiorpro-
cess. The voice register (a frequeny register of utterancespf a
speakeiis transposedo RONDO (RatiO of Naturalfrequeng of

thesystemto thatof Driving fOrce)throughwarpingit alongwith

thefrequeng responseune of the forcedvibrationsystem.The
RONDO-F;, contouris thenexpressedn concatenatie mountain-
shapedgatterndined upin seriesatthetime axis. The F; contour
asafunctionof timet is givenasfollows.

IH F(J(t) — IH fob

In fot —1In fob
where
AA) =

_ AA(L) — A(Xe)
AN = A(N) for ¢ 20, @

1
VI = (1 =2¢?)A)? +4¢>(1 = 2¢%)A

A() = Ary () + D MIN(A L (1), Ay () + Ag (). ()

i=1

Min(z1, z2) meansthe smalleroneof both z; andz,. Equations
(1) and (2) jointly indicate the transpositionof the voice regis-
ter. Equation(3) expresseshe RONDO-F;, contourA(t), where
A, (t) andAy, (t) indicatetherise andfall component®f thesth
mountain-shapegatternrespectiely. Following the modelingof
theaccentontrolmechanisnin thecommand-responseodel[3],
AL (t), z € {r, f}, is basicallyexpressedszero-inputresponses
of a critically-dampedsecond-ordelinear system Particularly,

Api + AN (1= Dry(ty, — 1)), fore < iy,

Jforh > 1, (2)

and

An(®) :{ 0, otherwise, (V)
N — Ap; + A)‘fi(l - Dfi(t - tm‘))v fort>t,,,
An(®) _{ 0, otherwise, (°)
- , 4.8t -8t
where D, (t) = (1 + AT) e =i fort > 0. (6)
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In themodel,parameterg, A; andA, canbe commonlyfixed
at0.237, 1 and2, respectrely [6]. Therearethentwo speaker
dependenbut utterance-independeparameterin frequeny do-
main,namely
[fo,, fo.] :topandbottomfrequencie®f thevoiceregister,

andfive utterance-dependehut speakeindepenént parameters
in the RONDO-timespace,

n : numberof mountain-shapepatterns,
Atg, : respons¢ime for theith rise/fallcomponent,
Az, : amplitudeof theith rise/fallcomponent,

(tp:, Ap;) : peakof theith mountain-shapepattern: = 1, ..., n.

When given the voice register|[ fo,, fo,], the Fy contourcan
be convertedinto andbe thentreatedin the RONDO-time space.
Henceforthlet a variabletaking”denotethatits valueis obsered
from real speechoppositeto thatgeneratedy the model. An al-
gorithmfor corverting £ () to A(t) is describedasfollows.

Algorithm 1 Conversionof £y (t) to A(t) given|[fo,, fo,]

)\:)\t .
if Fo(t) > fo,, goto Outlet.

20=A08) 4 (1n fo, —In fo,)+In fo,

Loop : Fy(t) = eACI=-A0s)
If Fo(t) < Fo(t), goto Outlet.
A = A+ 0.0001.
Gobackto Loop.
Outlet : A(t) = A.

2.2. Tonemodeling

In MandarinChinese,every syllable carriesone of the five lex-
ical tones,traditionally calledthe Oth to 4th tones,also denoted
by N(eutral),H(igh), R(ise),L(ow) andF(all) tones respectiely,
which arebasecdbn their pitch movements.

Tonemodelingneedsto considemot only the maintonefea-
tures,includingpeakandgliding (rise,level andfall) featuresand
tonic Fo pattern(henceforthtonepattern)type, but alsoacoustic
requirementdor generatingsmooth £, contours. Consequently
six tone patternsarenecessaryor Mandarin £, contours.Figure
lillustratesthe modelingof tonepatterndhasedn the model;ac-
cordingly, they areexpressedn parametridorm in equationg7)
and(8) andrelocatedvia a settingparametet,,,. Basically there
is a patternH-2P(eaksjor H tone,two patternsR-1P(eakandR-
2P(eaks)for R tone,two patternsL-1P(eak)andL-2P(eaks)for
L tone,anda patternF-1P(eak)or F tone. Thereneedsno extra
tone patternfor the N tone, becauséts F; valuesdependon its
contetual tones;it may takeoneof thesetonepatternsaccording
toits actualvalue.

1P(eak)case < At,,, AXr;, Ap;, Abs,, AXy, > O
2P(eak)caset < Atr“ AAri y Apl‘ s Atfi7 AAfi s AtrH.l s AATi+1 )
)‘Pz+1 - )\pz7Atfz+17AAfz+1 ) tpz+1 —lp; > (8)

2.3. Training baseline tone models

A setof baselinemodelswastrainedasthe prototypesof tonepat-
terns,which are usedin Analysis-by-Synthesi§AbS) basedpat-
ternmatchingfor speakeiindependast estimationof the peakpa-
rametergdiscussedn Section3.1). Sincespeakeidepenént ef-
fectsarelargely reducedwith thetranspositiorof voice registers,
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Fig. 1. Modeling of Mandarintonesusing mountain-shapegat-
terns. A mountain-shapegatternwith its control parameterss
alsosuperimposedn this figure. Solid circlesindicatepeaks.

Table 1. Notefor trainingbaselindonemodels

Tong Tone | Primarymodelparameters | Codebook Tone
pattern| representinghetonepattern size count
N | n/a
H | H2P | Ay, Aby,, AXg, Apiyss 128 727
tpz+1 - th
R | R-1IP | Atr,, AXr,, Ap; 128 462
R-2P | Xp,, Aty ANy, Aby,,,, 143 |1089
AAM-H ’ tpz+1 - tpm )‘Pz+1
L | L-1P | tp;, Ap;, Aly,, AXy, 128 833
L-2P | Ap;, Aty ANy, Aby, 131 165
AAM-H ’ tpz+1 - tpm )‘Pz+1
F | F-1P | A, Aty AXy, 256 |2541

200 read-utterance$0.7 hour speech)from a speaker-R were
usedfor settingup the training dataset. The alignmentbetween
atoneandits underlyingtone patternwasmanuallychecked.To
emphasizehe tonefeaturespnly the parameteréistedin Table1
were extractedfrom the training data,while the otherparameters
At, andAM, wereall fixedat0.2 and0.25, respectiely.

The LBG algorithmwasusedto clusterthe samplesassigned
to atonepattern,andform a codebookfor the tone pattern. The
numberof tonesamplesandresultantodeboolsizefor individual
tonepatternscanbefoundin Tablel.

3. PARAMETER ESTIMATION

Takingadwantageof themodelthatgivesthe peakparameterét,,,
Ap;), 1 = 1,...,n, the other parameterganthen be easily esti-
matedfrom the F,, contourwith minimal distortion. Thefirst step
in analyzingthe F contouris tonepeakdetection.

3.1. Estimating ¢, and A, for peak feature

The model parameters,, and ),, are estimatedby performing
AbS-basedpatternmatchingof a tone patternwith a specific Fo
fragment. Here, we at first assumethat the tone patterntype is
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given; Section3.3discussefiow to ascertairthetonepatterntype
from the candidatesThetime scopeof the Fy fragmentis deter

minedby syllable boundariesaccordingto given phoneticlabels.
AbStechniques usedto locally adjustthe peakparametersvhen
performingthe patternmatching. In the 1P(eak)case,searching
Ap, over[A,,-0.1, ), +0.1] stepsto 0.02,where),,, indicatesthe
parametevaluesetby the prototypeused.In the2P(eak)casethe
adjustments carriedouton A, , andt,,, by similar methods.
Thetime scopdimit to searchor ¢,,, is determinedy analysisof

the curve shapeof the F, fragment. The parameteestimationis

thenperformedby thefollowing steps.

Stepl: Initialize/update,, andthe otherparameterd needbe.
Step2 : Calculatethe meansquareerror(MSE) betweerthe obs-
enedandmodel-generatedy fragmentslIf theMSEis
lessthanthe existing minimal MSE, performthe AbS-
basedeakadjustmentOtherwise go backto Stepl.
Step3: Terminatethe currentsearchif the MSE is lessthana
giventhresholdor the searcthascoveredthetime scope.
Step4 : Turnto thenext prototypejf ary, andrepeatrom Stepl.

3.2. Estimating At,, and Az, for gliding features

ParametersAt,; andA);,; arejointly estimatedby the iteration
processrom the obsered (rise/fall) componentf\zl (t) givenits
peak(t,,, A, ). For corveniencejet A, (t,) denotethejth sam-
pleof A,,(t),j =0, ..., No,, andassumeo = t,,. Timing N,

is definedat the lowestvalley betweentwo adjacentpeaks. Ac-
cordingly, ¢; = t,, — jxtint for therise componentandt; =
tp; + jxtint for the fall componentwheretint indicatesa time
intenal betweenadjacentF, frames.An AbS-basedterational-
gorithmis describedelow for the parameteestimation.

Algorithm 2 EstimatingAt,, andA,, fromanobseredcom-
ponentA;, (¢;),5=0,..., Ng,

At,, = 4xtint (tint = 0.01in thisexperiment). € = 999.
Loopl : AX;; =0.04.
Nz . ~ .
Loop2 te =372 {5 1Aw (1) = A (15)]. o
+é Zk:l |Ak£\$z(t]) - AkA-Tz(tJ)l}'
If e <€, Alz, = Adg;; Aly; = Aty ande = e.

ANz, 4+ =0.01.
If AX;; < 1, gobackto Loop 2.
Aty,+ =tint.

If At,;< 0.4 (terminalthreshold)go backto Loop 1.
Outlet : At;; = Al andAX;, = AX,,.

Here, ArA(t;) indicatesthe k-intenal differenceexpressedas
ARA(ty;) = A(tj—r) — A(t;) for both A(¢;_x) andA(¢;) being
voice frames. Otherwise,AxA(t;) = 0. Thedistortione be-
tweenobsened andmodel-generatedomponentgoversboththe
absoluteerrorzjvjf |A.,(t;) — AL, (t;)| andthe error concern-
ingthemultiplek-intervaldifferenceszj\]:{ S 1 ARAL (t) —
ArAg,(t;)]. The AbS-basedterationprocessninimizesthe dis-
tortion to seekan optimalvalue pair for A¢,;, andA\,, relevant
to theamplitudeandresponséime of the component.

3.3. Ascertaining parameter n and tone pattern type

In theframework of tonemodeling theparameter: for an Fy con-
touris determinedby estimatingthe sequencef tonepatternsfor

Table 2. Specificatiorof tonepatterncandidategor lexical tones

Lexical tone H R L F N
H-2P R-1P L-1P F-1P R-1P
Tonepattern| R-1P L-1P R-1P R-1P F-1P
candidates| F-1P R-2P | L-2P H-2P
R-2P

the Fy contours underlyingtone specification. The tone shapes
often deviate from the expectedcanonicalshapeseven in read
speech. The situationis particularly difficult in speechwherea
tonecanberealizedwith a shapeoppositeto the underlyingspec-
ification in isolatedwords. In readspeechthe unexpectedtone
shapss largely aconsequereof tonesandhie.g.,.L—R|_L, and
contetualtonechangesn thesyllabledlike yi1 (one),qil (seven),
bal (eight) and bu4 (not), as well as tone neutralizationdue to
weakstresq1, 7].

Wetreattheissueof tonevariationsby searchingnultiple tone
patternsfor a lexical tone. Table2 lists the primary tone pattern
candidatedor eachlexical tone. Furthermoreto supprespeak
insertionerrors,we searcha pathover the candidatetone pattern
matrix with minimal F, mismatcherrorsfor the tone sequence.
Theparameteestimationis describedn thefollowing steps.

Stepl : Estimatethe parameter$or eachtonepatternassignedor
every tonein anutteranceysingthe methodin section3.1.
Step2 : If largeerrorspresentreportmismatchesf tonepatterns
with atone,thensearchtheremainingtonepatterndor it.
Step3 : Select2 tonepatternsaccordingto the MSE for eachtone.
Step4 : Find outthetonepatternsequencevith minimal MSE for
theutteranceln thepruningprocessparameters\t¢,, and
AlXz;, 1 =1, ...,n, areall re-estimatedby Algorithm 2.

4. EXPERIMENTAL RESULTS

Totestthe performanc®f theproposednethod experimentsvere
conductedn 968 utterancesdoptedrom eightnative speakerin
threeMandarinspeecttorpora HKU-96, USTC-96,anda synthe-
sis-orientedcorpusrecentlybuilt upatATR. Therewere268 utter
ancestakenfrom the speakel-R, whoseanother200 utterances
were usedfor training the baselinetone models. The restwere
pickedup from the others(100 utterancegor each). Experimen-
tal evaluationis mostly basedon comparisorof the automatically
estimatedesults alongwith themanuallabels,anderroranalysis.
An exampleresultof the tone featureextractionfor speaker
LW isillustratedin Figure2 andTable3. Table4 lists thenumber
of samplesanalyzedandthe experimentakesultsfor eachspeaker
ThecolumnPbAM indicateghepercentagef consisteng between
the automatically estimatedresultsand the manuallabels under
two constrainedtonditions.Thefirstis thatbothtonepatterntypes
arethesamegxceptfor R-1PandR-2P(aswell asL-1PandL-2P),
which wereregardedasthe samething. The otheris thatparam-
etert,, is allowedto flutter within threeframesarounda manual
label. The next two columnsy.,, and ., indicatemeanof er
rorsbetweerobsened andre-synthesized;, contourswheree,,
indicatesframeerrors| Fo(t) — Fo(t)| calculatedwith themanual
labels,ande, indicatesthosewith the automaticallyestimatede-
sults. Thelasttwo columnsindicatethe percentagef frameswith
errorsof e, < pe,, andeq, < 2u.,,, respectiely. On the other
hand, Table5 lists the distribution of tone patterncandidategor
individualtonesproducedoy the malespeaket W andthefemale
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Fig. 2. Exampleof re-synthesized", contours(lines) usingthe
resultsestimatedy this method(partly listedin Table3). Vertical
barsmarkpeakgo clarify them,and“+” denotebsered Fy.

Table 3. Partial parametewvaluesfor the exampleshavn in Fig. 2.

Syllable| Tone(Pattern| @ &5, Ap, Aty; AXy, Aty Ady,
type (Sec) (Sec) (Sec)

yu3 L |L-1P | 1 0.06 1.38 0.20 0.25 0.05 0.10
tianl H | H-2P | 2 0.421.16 0.23 0.36 0.38 0.04
3 0.591.15 0.20 0.25 0.20 0.25
4 0.671.07 0.20 0.25 0.26 0.42

i

geng4 | F | F-1P

speake=R, whosesamplesanalyzedhereinclude both the open
testsetandthosefrom thetrainingset(200 utterances).
Threepointsareclearfrom Figure2 andTables3 to 5. Firstly,
the proposedmethodis vital and speakeiindependat; it shavs
quitegoodperformancdor all of thespeakeranalyzed Secondly
94% accuray is obtainedon averagefor the tonelabeling. It im-
provesthe performancdy around10% comparedo the £, peak-
detectionbasedmethod[8]. Lastly, afew parametergancapture
the tone features:two parameterdor tone peaksand two other
parameterfor tonegliding. Thereexist morethan83% of the ob-
senationscloselywaving aroundthe re-synthesized, contours.
In addition, the results,shaving low averageframe error, which
slightly dependsn speakersandthe ability to selecta tone pat-
ternfrom candidatesmplied thatthis methodis applicablefor Fy
smoothingandtoneverificationfor alarge scalespeectcorpus.

5. COMMENTSAND FUTURE WORK

We presenteé methodfor the efficient extractionof tonefeatures
from F, contoursthat makesuseof a functional F; model. The
modelbridgesthegapbetweeringuistic andacousticF; features.
Thereforejt notonly facilitatesdata-drven learningandparame-
ter estimation put alsomakesit possibleto usefew parameterso
capturethe tonefeatures.The parametridorm of tonefeaturess
simpleandagreeswith thefindingsin recenttoneresearchl, 7].
Experimentakesultshave confirmedthe effectivenessof the pro-
posedmethodin real Mandarinspeectwith multiple speakers.
Somework is worthwhile doing in future. Firstly, the size
of the codebookfor baselinetone modelscould be reducedvia
clusteringa codeboolof parameters\¢, andA .. Secondlythe
methodmay be extendedo otherlanguages.

Table 4. Speectsamplesanalyzedandexperimentakresults.

Speaketf [ fo, ,fo.]|Tone|PbAM| pic,, | tie, |€a<tte,,|€a<2tie,,
(s&x) | Hz Hz [count % | Hz | Hz | % %

FR (F)[[95,365]7,178 94.8|4.46/4.85| 64.7 | 81.9
WL (F)|[120,440]1,589 95.0|3.38/4.00| 60.4 | 81.9
ZYG (F)|[95, 360]|1,192 93.3|3.16/3.39| 63.0 | 83.7
LWX(F)|[140,395]1,030 93.0|3.58/3.43| 64.4 | 86.4
LW (M)|[85, 210]|1,007 92.8|1.97|2.36| 63.1 | 82.2
LYF(M)[[95,220]| 992| 94.6|2.12|2.12| 65.3 | 83.3
GYQ(M)[ [95, 280]] 910| 94.6(2.08|2.19| 64.7 | 83.5
SFWM)| [65, 170]|1,004 94.7[1.73|1.78| 65.5 | 83.1

Average 94.1 63.9 | 83.3

Table 5. Distribution of tonepatterncandidategor eachtone.

Tone Samplecount| H-2P | R-1P | R-2P | L-1P | L-2P | F-1P
for FRandLW| % % % % % | %

H |3114 (FR)|87.6| 3.7 8.7
196 (LW)| 79.9 | 10.2 9.9

R |3,196 (FR) 18.7| 724 | 8.8
199 (Lw) 38.2|50.2|10.6 1.0

L |2402 (FR) 5.0 (11.6|62.7|20.1| 05
127 (Lw) 6.3 | 9.4 |64.6|19.7

F | 4,726 (FR)| 02 | 6.2 0.3 [93.8
478 (Lw) 11.5 88.5

N | 619 (FR)| 12.8 | 19.9 67.2
23 (LW)| 4.3 |30.4 65.2
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