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ABSTRACT 
Automatic language identification is an integral part of multilin-
gual automatic speech recognition and synthesis systems. In this 
paper, we propose a novel scalable method for neural network 
based language identification from written text. The developed 
algorithm is further deployed in a multilingual ASR system. The 
developed algorithm is particularly proposed for embedded im-
plementation platforms with sparse memory resources. With the 
proposed approach, both high language identification as well as 
recognition rates are achieved across several languages with a 
compact size of the language identification model. The major 
benefit of the approach is that the neural network based language 
identification model can be scaled to meet the memory require-
ments set by the target platform while maintaining the language 
identification accuracy of the baseline system. The experiments 
show that the suggested scalable approach can save more than 
50% memory while the performance is comparable to that of the 
baseline system. The performance is also verified in a multilingual 
speech recognition task. 

1. INTRODUCTION 
The demand for multilingual speech recognition systems is increas-
ing rapidly. Automatic language identification (LID) is an integral 
part of multilingual speech recognition systems that use dynamic 
vocabularies. Most state-of-the-art automatic language identifica-
tion approaches identify the language based on the probabilities of 
the phoneme sequences extracted from the acoustic signal [8]. Such 
methods, however, can not be applied to language identification 
from text only. In language identification from text, n-grams, deci-
sion trees, and neural networks have been utilized [2][5]. In [5], we 
proposed a neural network based language identification (NN-LID) 
approach that is clearly better than n-gram and decision tree based 
methods in terms of generalization, performance, and complexity 
[2][5]. A high LID accuracy can be obtained with the NN-LID 
approach, but the memory requirements of the LID models will 
increase as the accuracy is increased. In addition, when the number 
of languages increases, the size of the LID model increases as well. 

In this paper, we propose a method for scaling the NN-LID 
models to meet the pre-defined memory resources of the target 
platform. Due to the limited memory resources available in many 
systems such as mobile devices, scalable neural network based 
language identification from written text with low memory con-
sumption is becoming a necessity. Scalable NN-LID from written 

text with low memory consumption has, however, previously not 
been well studied. First, as oppose to the low complexity speaker 
dependent name dialing applications, the majority of the available 
multilingual speaker-independent speech recognition systems today 
have mainly been realized on other platforms than embedded sys-
tems where the memory and processing power are the major im-
plementation bottlenecks. Second, most of the known LID methods 
are based on speech rather than text. In many speaker- and lan-
guage-independent speech recognition applications, there is no 
speech input available when doing LID. Therefore LID has to be 
performed for the textual input only. 

The remainder of the paper is organized as follows. Section 2 
gives an overview of our automatic speech recognition system. 
Next, section 3 presents the conventional NN-LID. Then we outline 
the principles of the scalable NN-LID in Section 4. This is fol-
lowed by experimental results confirming the usefulness of the 
proposed techniques in Section 5. Finally, conclusions are given in 
Section 6. 

2. SYSTEM DESCRIPTION 
Our multilingual ASR engine [7] consists of three key units that are 
automatic LID, on-line pronunciation modeling, and multilingual 
acoustic modeling and recognition modules. Initially, the recogni-
tion vocabulary is presented in written form to the recognizer. First, 
the language of each vocabulary item is identified with the LID 
module. Once this has been carried out, the phonetic transcription 
associated with each vocabulary item is found with the pronuncia-
tion modeling module [6]. In the system, multiple pronunciations 
are created for each name in the vocabulary. The multiple pronun-
ciations correspond to the n-best list of languages obtained from 
the LID module. Due to the multiple pronunciations, the recogni-
tion accuracy of non-native vocabulary entries remains high. Fi-
nally, the recognition model for each vocabulary item is con-
structed by concatenating the multilingual acoustic monophone 
models. The acoustic modeling and recognition module utilizes 
these concatenated models to carry out recognition. Using these 
basic modules the recognizer can, in principle, automatically cope 
with multilingual vocabulary items without any assistance from the 
user. 

3. NEURAL NETWORK BASED LID 
In language identification, a widely used multi-layer perceptron 
(MLP) neural network is used as shown in Figure 1. The MLP net-
work has a single hidden layer. The input of the network is com-
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posed of the current letter and the letters on the left and right con-
text of the current letter. The output units of the network corre-
spond to the languages, and they provide the probabilities of the 
languages for the current letter in the given left and right context. 

The input of the network is a window of letters that is slid across 
the word and the probabilities of the languages are computed for 
each letter. Softmax normalization is applied at the output layer, 
and the value of an output unit is the posterior probability for the 
corresponding language [1]. The language scores are obtained by 
combining the probabilities of the letters of the word. The highest 
scoring languages are included in the n-best list provided by the 
NN-LID model. 

Since the neural network input units assume continuous values, 
the letters in the input window need to be transformed to some 
numeric quantity. As an example, a transformation based on an 
orthogonal codebook has been represented in [4][5]. An important 
property of the orthogonal coding scheme is that it does not intro-
duce any correlation between different letters. Instead of the or-
thogonal letter coding scheme to be used in this paper, other meth-
ods can also be used, for example a self-organizing codebook can 
be utilized [3]. By utilizing the self-organizing codebook, the num-
ber of input units of the MLP can be reduced, and therefore, the 
memory required for storing the parameters of the network is re-
duced. 

The memory size in bytes occupied by the LID NN model is di-
rectly proportional to 

)()12( LangSHiddenUHiddenUAlphaSContSMemS ×+××+×=
(1) 

where MemS, ContS, AlphaS, HiddenU and LangS stand for the 
memory size of LID model, the context size, the size of alphabet 
set, the number of hidden units in the neural network and the num-
ber of languages supported by LID, respectively. The alphabet set 
contains all the characters of the languages that are being identi-
fied.  

Obviously, when the number of languages increases, the whole 
size of the alphabet set (AlphaS) increases accordingly, and the 
LID model size (MemS) is proportionally increased as it can be 
seen from Equation (1). The increase in the alphabet size is due to 
the special characters of the languages. For example, in addition to 
the standard Latin [a-z] alphabet, French has the special characters 
à, â, ç, é, ê, ë, î, ï, ô, ö, ù, û, ü, Portuguese has the special characters 
à, á, â, ã, ç, é, ê, í, ò, ó, ô, õ, ú, ü, Spanish has the special characters 

á, é, í, ñ, ó, ú, ü, and so on. Moreover, Cyrillic languages have the 
Cyrillic alphabet that differs from the Latin alphabet. Due to lim-
ited memory resources available in embedded platforms, low 
memory consumption is required. Moreover, it is useful if the NN-
LID model can be scaled to meet the pre-defined memory require-
ments on the target platform. This paper is aimed at solving these 
problems with the scalable NN-LID approach. 

4. SCALABLE NN-LID 

4.1 Basic framework 

As seen in Equation (1), LangS and ContS are pre-defined. Hid-
denU controls the modeling accuracy and the discriminative capa-
bility of NN-LID system. In order to reduce the memory size of the 
NN-LID model, we now study the method to reduce the size of the 
alphabet set AlphaS. 

Suppose P(word) and )( ilangP  are constant, the language is 
determined by 
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where LangSi ≤<0 . We now define the standard and language-
dependent alphabet sets. Each language-dependent alphabet set is 
mapped to the standard alphabet set. Consider that we made such a 
mapping table including mapping from every language to the stan-
dard set. The standard alphabet set can be composed of standard 
letters or it can be a custom made alphabet. 

Define the ith language-dependent and the standard alphabet 
sets as LSi, and SS. We have 
LSi={ci,1, ci,2, ……, ci,ni};         i=1, 2, ……, N (3) 
SS={s1, s2, ……, sM}; (4) 
where ci,k, and sk are the kth characters in the ith language-
dependent and the standard alphabet sets. The sizes of the ith lan-
guage dependent and the standard alphabet sets are denoted by ni 
and M. 

Now, the mapping from the language-dependent set to the stan-
dard set can be defined as: 
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SSyLSxword(yyxxxxword j

N

i
ijsccc ∈∈=→=∃

=
 , ),     ,

1
111 ULLL

 (6) 

The alphabet size is reduced from the size of U
N

i
iLS
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of SS). It is easily understood from Equation (6) that any word 
written with the language-dependent alphabet set can be mapped to 
the word written with the standard alphabet set. Given the lan-
guage-dependent alphabet set and words written with the standard 
set, word written with the language-dependent set is approximately 
determined. Therefore, we could assume 

),()( alphabetwordword s⇔  (7) 

Figure 1. Architecture of neural network based LID. 
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4.2 Estimation of the language probabilities 

Since words, and alphabet are independent events, Equation (2) can 
be re-written as 
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The first item on the right-hand side of Equation (8) is esti-
mated with the NN-LID model. Since we now make LID on words 
written with the standard alphabet set and the standard set consists 
of "minimum" number of characters, according to Equation (1), the 
size of NN-LID model is reduced. 

The second item on the right-hand side of Equation (8) is the 
probability of the alphabet set of word given the language. For 
finding the probability of the alphabet set, we can first calculate the 
occurrence frequency, Freq(x), as follows: 

word
langalphabetFreq i in  letters ofnumber 

letters matched ofnumber )|( =  (9) 

Now, we can estimate such alphabet probability by either hard 
or soft decision. 

For hard decision, we have 
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For soft decision, we have 
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Since the multilingual pronunciation approach needs the n-best 
LID for finding multilingual pronunciations, and hard decision 
sometimes can not provide the n-best LID, soft decision is used in 
the paper. The factor α is used to separate the matched and un-
matched languages into two groups. For the factor α, a small value 
like 0.05 is used in our setup. As seen from Equation (1), the NN-
LID model size is significantly reduced, so it is even possible to 
add more hidden units to enhance the discriminative capability. 

Taking Finnish name "häkkinen" as example, we have 
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So we have alphabet scores as follows. 
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As mentioned above, the size of the NN-LID model is reduced 
when all the language-dependent alphabet sets are mapped to the 
standard set. The alphabet score is used to separate the languages 

into the matched and unmatched groups. The NN-LID module first 
identifies language on the matched group. Following this, NN-LID 
identifies language on the unmatched group. Ideally, the search 
space is minimized. However, the confusion increases for the lan-
guages whose alphabet sets are close to the standard alphabet set. 
For example, we originally define standard alphabet set SS={a, b, 
c, …, z, #}, ("#" stands for null character), the size of alphabet set is 
27. Clearly, confusion increases for Latin languages like English 
since all characters map to its set. 

There are two ways to alleviate this problem. First, since the 
LID model is simplified by introducing the standard character set, 
the number of hidden units can be increased to enhance the dis-
criminative power. Second, when mapping from the language-
dependent character to the standard character set, one character to 
one character mapping is done. In order to reduce confusability, we 
can map one non-standard character to a string of standard charac-
ters. I.e., a character string rather than a single character is used to 
enhance the difference. Though the mapping to the standard set 
reduces the alphabet size (decreases discrimination), the length of 
word is increased due to a single character to a character string 
(gaining discrimination). Discriminative information is transformed 
from the original representation by introducing more characters to 
enlarge the word length as described by  

k i,jiikijj1ki cSSsLScssc ∀∈∈→       , ,         ,2, L  (12) 

In addition, the standard set can be extended by adding a lim-
ited number of man-made characters defined as discriminative 
characters. Then a non-standard character can map to a string con-
sisting of mixed standard and discriminative character(s). Adding a 
few discriminative characters does not increase the size of NN-LID 
model significantly. In our study, we define three discriminative 
characters as s1, s2, s3, therefore we have SS={a, b, c, …, z, #, s1, s2, 
s3}. Now mapping is carried out by mapping a single character to a 
string as shown in equation (12). 

The memory occupied by the NN-LID model can be scaled to 
meet the memory requirements of the target platform by the defini-
tion of the language dependent character mappings to the standard 
set, and by selecting the number of hidden units of the neural net-
work suitably so as to keep LID the performance close to the base-
line with the full language dependent alphabet sets. 

5. EXPERIMENTS 
We conducted the experimental evaluation on 25 languages includ-
ing Bulgarian, Czech, Danish, Dutch, Estonian, Finnish, French, 
German, Greek, Hungarian, Icelandic, Italian, Latvian, Norwegian, 
Polish, Portuguese, Romanian, Russian, Slovakian, Slovenian, 
Spanish, Swedish, Turkish, English, and Ukrainian. For each lan-
guage, a set of 10,000 general words was chosen, and the NN-LID 
model was trained on the combined data set. The standard set de-
noted as BasicSet consisted of [a-z] set, and a null character. Three 
discriminative characters were added to the set BasicSet, this ex-
tended set was denoted as ExtendSet. The sizes of the standard 
alphabet for BasicSet and ExtendSet were 27 and 30. Table 1 gives 
the baseline result when the whole language-dependent alphabet 
was used (total of 133 characters) with 30 and 40 hidden units (hu). 
As shown in Table 1, the NN-LID model is already large when 30 
hidden units are used in the baseline NN-LID system. Table 2 
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shows the result of the proposed approach. It can be seen that the 
NN-LID rate is below the baseline result when using only the stan-
dard set (BasicSet) and alphabet scoring with 40 hidden units. 
When adding three discriminative characters (ExtendSet), the LID 
rate is close to the baseline rate while using only one fourth of 
baseline model size. When increasing the number of hidden units to 
80, the LID rate is clearly better than the baseline rate, and the size 
of the scalable NN-LID model is one half of the size of the baseline 
model. 

LID Setups 1st-
best 

2nd-
best 

3rd-
best 

4th-
best 

Sum 
4-best 

Mem 
(kB) 

40hu 67.81 12.32 6.12 3.69 89.93 47.7 

30hu 65.25 12.82 6.31 4.11 88.49 35.8 
Table 1. Baseline LID the nth-best results by using all language-
dependent alphabet sets. 

LID Setups 1st-
best 

2nd-
best 

3rd-
best 

4th-
best 

Sum 
4-best 

Mem 
(kB) 

BasicSet, 40hu 
AlphaSize: 27 57.36 17.67 8.13 4.61 87.77 10.5 

BasicSet, 80hu 
AlphaSize: 27 65.59 13.94 6.85 4.06 90.44 20.9 

ExtendSet, 40hu 
AlphaSize: 30 64.16 14.14 6.45 4.03 88.78 11.5 

ExtendSet, 80hu 
AlphaSize: 30 71.01 11.98 5.44 3.30 91.73 23 

Table 2. LID the nth-best results by using standard alphabet set. 

To evaluate the effect of LID errors, the NN-LID model is 
evaluated as part of the multilingual speech recognizer outlined in 
Section 2. The standard set of the NN-LID model consists of the [a-
z] set, a null character, and three discriminative characters. The 
hidden layer of the NN-LID model contains 80 units. The evalua-
tion is done for clean speech on a vocabulary composed of names. 
The test vocabulary contains both first- and full names. Since LID 
is not always unambiguous as the same names are used across vari-
ous languages, and the automatic process makes occasionally iden-
tification errors, we have proposed multilingual pronunciation 
modeling in [6]. In these tests, the language identity of each vo-
cabulary item is specified using the NN-LID algorithm. NN-LID 
produces both 1-best and 4-best language tags. In order to obtain a 
baseline for testing the automatic system, a human expert assigned 
the language identity to each vocabulary item. As it is seen in the 
Table 3, the use of 1-best LID degrades the recognition perform-
ance compared to the baseline system. By providing n-best lan-
guage identity decisions for each vocabulary item, the recognition 
performance corresponding to 4-best LID is close to the baseline 
result. It is also shown that NN-LID and scalable NN-LID provide 
almost same recognition performance while scalable NN-LID uses 
less memory. 

Methods Alphabet 
Size Baseline 1-best 4-best Mem(kB) 

LID 133 93.77 86.69 93.49 47.7 

Scalable LID 30 93.77 86.79 93.35 20.9 
Table 3. The recognition results tested in clean speech database 
using conventional and scalable NN-LID for 25 languages. 

6. CONCLUSIONS 
The language identification of speech recognition vocabulary items 
directly from written text is an important task e.g. in multilingual 
speech recognition and synthesis applications. Due to the limited 
memory resources available in many embedded platforms, such as 
mobile terminals, a scalable language identification solution from 
written text with low memory consumption is becoming necessary. 
In the paper, an approach was presented for scaling the NN-LID 
model to meet the pre-defined memory requirements of the target 
platform. The scalable approach is based on the idea of reducing 
the size of the NN-LID model by mapping the language dependent 
character sets to a standard set of significantly smaller size. Ex-
perimental results on 25 languages confirmed the viability of the 
proposed approach. The results indicate that the suggested scalable 
NN-LID approach can save more than 50% memory while the per-
formance of the scalable LID solution is comparable to that of the 
baseline NN-LID system. The performance of the scalable NN-LID 
scheme is also verified in a multilingual speech recognition task. 
The recognition performance was comparable to the accuracy of 
the baseline system. 
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