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ABSTRACT

Parallelsub-word recognition(PSWR)is anenv modelthathas
beenproposedfor languageidentification(LID) which doesnot
needelaboratephoneticlabeling of the speechdatain a foreign
language.The new approactperformsa front-endtokenizationin
termsof sub-word unitswhich aredesignedy automaticsggmen-
tation, sggmentclusteringand sggmentHMM modeling. In this
paperwe developPSWRbased.ID in aframewvork similarto the
parallelphonerecognition(PPR)approachin the literature. This
includesa front-endtokenizeranda back-endanguageamodel,for
eachof thelanguagdo beidentified. Consideringvariouscombi-
nationsof the statisticalevaluationscoresit is found that PSWR
canperformaswell asPPR,even with broadacousticsub-word
tokenization thusmakingit anefficientalternatve to the PPRsys-
tem.

1. INTRODUCTION

Automatic languageidentification (LID) has becomean impor-
tant researchproblemover the last decadewith several promis-
ing solutions[1], [2]. Amongthe variousapproacheso LID [2],
the phone-recognitiorapproachoffers considerablgpromise, as
it incorporatessufiicient knowledgeof the phonologyof the lan-
guagedo beidentified. Oneof themainframeavorksin thephone-
recognitionapproachess ParallelPhoneRecognition(PPR)[3].

An N - languagd.ID taskis to classifyaninput speechutter
anceasbelongingto oneof N language<i,...,Ln~y. The PPR
systemfor this task has N paths,eachwith a front-end phone-
recognizer(PR) followed by a back-endlanguagemodel (LM)
in thatlanguage.The front-end PR tokenizesthe input utterance
into a sequencef phonesymbols. The back-endLM performs
phonotacticanalysison the resultingphonesequence Phonotac-
tics refersto thelanguage-dependeabnstrainton the sequences
of phonesandis modeledby ann-gramanalysiswith typical sys-
temsusingabigram(n = 2) statistics.An inpututterances clas-
sifiedby amaximumlik elihooddecisiononthe NV scoresobtained
by the front-endPR [4] or by the back-endLM or jointly by PR
andLM of eachlanguagd3], [5].

In the PPRsystemthefront-endPR hasto betrainedon pho-
neticallylabeleddata,usuallyobtainedoy manualabeling,to gen-
eratea ‘phoneHMM inventory’ of thatlanguage Thus,a PPRre-
quireslabeledtraining datafor all the N languagesn the taskto
train eachof its V front-endPRs.

Recently we have proposeda parallel sub-word recognition
(PSWR)systemfor LID [4], which operatesn a PPRframevork
but without requiringmanuallylabeledphoneticdatain ary of the
language thetask.In this work, we studiedthe performancef
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PSWRon 6 languagei the OGI-TSdatabas¢6] andobtainedan
LID accurayg of 91.6%on trainingdataand67.5%on testdatafor
45-secutterancesisingonly the acousticscorefrom the front-end
sub-word recognizersThesewerecomparabldo the PPRsystem
(87.9%on training dataand 70% on testdata), thus making the
PSWRsysteman efficient alternatve to the PPRsystem.

In this paper we studythe completePSWRsystemwith both
the front-endsub-word recognize(SWR) andthe back-endlan-
guagemodel (LM) of sub-word unit sequencetokenizedby the
front-endSWR. TheresultingPSWRsystemcanyield threetypes
of scorespamelytheacousticscore joint acoustic-languagscore
andthe languagemodel score. We examinethe effectivenessof
thesescoredor aLID taskof 6 language# theOGI-TSdatabase.

2. PARALLEL SUB-WORD RECOGNITION (PSWR)

The PSWRsystemusesa front-endsub-word recognizeSWR)
for eachlanguagen thetask. For an N-languageask,the PSWR
systemhasN front-endSWRs.EachSWRhasa languagedepen-
dentsub-word unit (SWU) inventory Theimportantpointto note
is thatthe SWU inventoryis obtainedwithout the needfor man-
ually labeledtraining data. Eachfront-endSWRis followed by a
back-endanguagemodel(LM) which performsphonotactianal-
ysis. TheLM istypically ann-gramanalyzerof the SWU labelse-
gquenceoutputby the SWR front-end.For a giveninput utterance,
the PSWRsystemyields V scoreswhich canbe of the following
types:i) Acousticscore,obtainedby the front-endSWR, ii) Joint
acoustic-languagscore,obtainedby a joint decodingusingboth
the front-end SWR and back-endLM, andiii) Language-model
score pbtainedfrom only theback-end_M. Theinpututteranceas
classifiednto oneof IV languagebvasednamaximumlikelihood
decisiononthe NV scoref ary of thesethreetypes.

The PSWRsystemthusconsistsof threecomponentsi) Sub-
word recognize(SWR),ii) Languagemodel(LM), andiii) Maxi-
mum- likelihood(ML) classifier Thesearedescribedn detailin
the following sectionswith emphasin the threetypesof scores
statedabove.

2.1. Sub-word recognizer(SWR)
2.1.1. Sub-word unit (SAWU) inventory

Eachof the N SWRsin a PSWRsystemhasaninventoryof sub-
word units (SWUs)P; = {Pi, P, ..., P.} andcorresponding
sub-word HMM models[7] H; = {\1, A2, ..., A} for eachlan-
guagel;,l =1,...,N. InthePSWRsystemthetraining phase
involvesthedesignof theSWUinventory#, for asetof SWUsP,
of eachlanguage’; in theLID task.Theprocedurdor generating
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theSWUinventoryis essentiallthatusedfor acousticSWUbased
speectrecognition[8] andconstituteghe training of the SWRin

the PSWRsystemthisis discussedhn detailin [4]. Briefly, it con-
sistsof thefollowing stepsfor eachlanguage:

i) Automatic segmentation: Thetraining utterancegin theform

of MFCC vector sequence)s sggmentedinto acousticsgments
usingthe maximum-likelihood (ML) segmentationtechniquef9]

for arequirednumberof sggments/secondThis generates: large
corpusof sgmentsS = {S1,5s,...,Sm}.

i) Segmentlustering: Theacousticsggmentsn thesegmentcor-

pusS arerepresentefly theirrespectire centroidsthesecentroids
areclusterednto L clustersC = {Ci, Cs,...,Cr} usingthe K -

meansalgorithm. EachacousticsggmentS,,, € S thenbelongsto

oneof L sub-word clusters.

iii) Segmentmodeling: EachclusterC; € C definesa classof

acousticallysimilar sgmentsandis treatedasrepresenting no-
tionalsub-word unit P;. Thesegmentshelongingto eachsub-word
classP;,i = 1,..., L aremodeledoy anHMM [7]. Thisresultsn

aninventoryof L sub-word HMMs, H; = {A1, A2, ..., Az} with

thecorrespondingnventoryof SWUsP; = {Py, P,, ..., Pp} for

thelanguagel;. Eachlanguagéhasa different?;.

2.1.2. Sub-word tokenization

The front-endSWRin path! usesthe sub-word inventory #; to
tokenizean input utterancento a sequencef sub-word unit la-
bels by optimal decodingasin connectedvord recognition[7].
This decodingis an optimum ‘connectedsub-word recognition’
problem,which generates decodedsub-word sequenceandthe
associate@coustidik elihoodscorecorrespondingo the decoded
bestpathby the Viterbi search.This SWRdecodings performed
for eachof the N language$n PSWR.

Let theinput utterancebe a sequencef featurevectorsO =
(01,04, ...,07). O istokenizedby the SWRinto anoptimalse-
quenceof K SWUs(Py, ..., P, ..., Pg), whereP;, € P;. The
likelihoodassociatedvith this optimal string of sub-word unitsis
calculatedasP 4 (1) = P(O|H.;) (acousticscore)givenby;,

P4 (1) = max Y log(p(sk|Ar)) (1)
T k=1

B = (bo, b1, -..,bx), with bp = 0 andbx = T, arethe sggment
boundariedor ary segmentatiorof the T’ framesof O. The k"
sgmentsy = (Op,_,+1,---, O, ) is associatedvith the SWU
model\;, where,\; is the HMM modelwhich hasthe maximum
likelihoodof generatingsggmentsy,, from among#; = {1, A2,
..., Ar}: p(sk|Az) is thecorrespondingiMM likelihoodand P
is thecorrespondinggWU.

2.2. Language-model(LM)

The back-endLM in eachof the PSWR systempathsperforms
phonotactianalysison the SWU label sequencgeneratedby the
front-endSWR; typically, it evaluatesthe likelihood of the SWU
sequenceisinga bigramdistribution.

Let the front-endSWR of languagel; tokenizethe input ut-
teranceinto asequencef K SWU labels(P;, ..., Py, ..., Pg),
asgivenby (1). TheLM likelihoodP () = P(O|B;), usinga
bigrammodelB; of language’l;, is givenby;,

K
Pr(l) =) logp(Pg|Pe=y, L1) @)
k=2
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where P, and P,—; areconsecutie symbolsobseredin the tok-
enizedSWU stream.The bigrammodelfor languagel; is given
by Bi = {pi(i,5)} = {p(Pj|P:)},i,§ = 1,..., L, wherepi(i, j)
is usedto evaluatep(Pg|Pr—=, £:) in (2) when P, = P; and
P— = P;. B is learntfrom the SWU labels obtainedfrom
tokenizationof training utterance®f languageC; usingthe SWR
front-endof language’;.

2.3. Joint acoustic-phonotacticdecoding

While sub-word recognition(SWR) andlanguagemodeling(LM)
aredescribedabore asdoneindependentlythey canbe combined
into onestepin the PSWRconfiguration;i.e., it is possibleto in-
tegratethe acoustic/phonotactimodelsso that language-specific
phonotacticconstraintscan be usedduring the Viterbi decoding
processof SWR ratherthanapplyingthe LM (phonotactic)con-
straintsafter the sub-word recognitionis complete. This is re-
ferredto asjoint acoustic-phonotactic decoding or simply asjoint
decoding. This wasfirst usedin [3] andis being extendedhere
to joint decodingwith sub-word units. The mostlikely sub-word
sequencebtainedby joint decodingandthe correspondingcous-
tic - phonotactidik elihood measureoptimally combinesboth the
acousticlikelihood and the languagemodel likelihood (obtained
by bigrammaodels).

In the caseof joint acoustic-phonotactidecoding,the input
utteranceO = (01, Oa, ..., Or) is tokenizedby the SWR and
LM jointly for eachlanguagel;,l = 1,..., N. Theoptimal se-
quenceof K SWUs (P4, ..., P, ..., Pg), obtainedby joint
decodingby the SWR and LM of language£;, maximizesthe
joint acoustic-phonotactilik elihood (or acoustic-languagecore)
P41 (l) = P(O|H, B), asgivenby,

PAL(l) = max {Pl —+ Zlog[p(skp\fc) p(PI}|Pk/;\1)]}

B,\,K P
3)

where B and s;, areasgivenin (1); P1 = logp(si|A;), A =
(Aiy -5 Ay ---, Ag) isary sequencef A\, € H;,k=1,..., K
and (Pi,...,P;,...,Pg) is the correspondingsub - word se-
quence(Ps,..., P, ..., Pg) isthe SWU sequenceorrespond-
ing to theoptimal X = {\;}f, which maximizesP 41.(1) in (3).

2.4. Language-model(LM) scores

The bigrammodel B; usedin (2) is estimatedrom SWU labels
obtainedfrom decodingof training utterancef languagel; by
the front-endSWR of language’;, asgivenby (1); this doesnot
useary LM (bigram)constraintin the SWU decodingasdonein
(3). The LM scorein (2) using this B; on the SWU sequence
obtainedby (1), is referredhereasthe “Language-Modekcore—
Decoupled”andis denotecby Prp(1).

For joint decoding(3), the bigrammodelB; (which provides
p(Py|P—) in (3)) is estimatedrom the ‘referenceSWU labels’
of training utterancespbtainedasfollows during the SWR train-
ing for languagel; (Sec.2.1.1): Thetraining utterancesire sey-
mentedusingML-segmentatiorinto a sequencef segments(Sh,
Sa, ..., Sum); eachof thesesegmentshelonggo someclusterfrom
C = {C1,C,,...,Cr} andis labeledby thecorrespondinggWu
from P, = {P1, P,...,P.}. TheresultingSWU labelsequence
givesthe ‘referenceSWU labels’ of the training utterances.Use
of the B; (estimatedrom thesereferenceSWU labels)in (3) con-
strainsthe joint decodingto decodean utteranceinto a SWU se-




guencewhich bettermatcheshe referenceSWU label sequence
of theutteranceThe LM scorecomputedby (2) whenappliedon
the SWU sequencebtainedby (3) is referredhereas“Language-
Model score-Joint” andis denotedoy P s (7).

In aPPRsystemthebigrammodel; usedfor joint decoding
(3) is estimatedrom the manuallylabeledphonesequencef the
training data. In the PSWR system,the referenceSWU labels,
derived by automaticsegmentationand labeling of training data,
senestherole of themanualphonelabelsin the PPRsystem.

2.5. Maximume-lik elihood classifier(MLC)

We have describedour typesof scoresn PSWRfor aninput ut-
terance:i) AcousticscoreP 4(I) (Eqn. (1)), ii) Joint acoustic-
phonotactic(or acoustic-languagejcoreP 41 (1) (Eqn. (3)), iii)
Language-modetcore— DecoupledP 1. (1) (Sec. 2.4), andiv)
Language-modedcore-JointP 15 (1) (Sec.2.4). Denotingary of
thesefour scoresby P (1), themaximum- likelihood(ML) classi-
fieridentifiesthelanguageof theinpututteranceas ;- which has
thehighestlikelihood(score)P (1), i.e.,

I" =arg max P(l) 4)

It hasbeenobsered[3] thatthelog-likelihoodscoresP 41 (1)
werebiasedin favor of onelanguageover anotheror evenall lan-
guagesThisis correctedusingabias-remwoal method which sub-
tractsabiasb(l) from P 4 (!) of thelanguageC; path,beforeper
forming ML classificatiorby (4). The biasb(l) is determinedas
the averageof P 41.(1) obtainedfrom utterance®f all languages
input to languagel; path. We have obsered this bias problem
in all four scoresP 4 (1), Par (1), Prp(I) andP (1) to varying
extentsand have usedthe bias-remweal methodof [3] for all the
four scoresin both PPRand PSWRsystems.Note thatthe PPR
systemalsohasthe samefour typesof scoresasdiscussedn this
paperfor PSWRandin [5], thoughnot dealtwith in [3] (whichis
alsothe only otherearlierwork on PPRreportedsofar). We have
interpretedhis bias-problemnin [5] andalsoproposedanalternate
methodfor bias-remwal.

3. EXPERIMENTS AND RESULTS

We treat the PPR system[3] as a baselinesystemwith which
to comparethe performanceof the PSWR system. PPRis de-
scribedbriefly in Sec. 1. We presenthereresultscomparingthe
performanceof the PPRand PSWR systemsfor the four differ-
enttypesof scores:Acousticscore(P 4 ), Jointacoustic-language
score(P ar1,), Languagemodel score— Decoupled(Prp), and
Languagemodelscore- Joint(P ).

3.1. Database

We usethe Oregon Graduatenstitute Multi-languageTelephone
SpeecHOGI-TS)corpus[6] for evaluation. The OGI-TShasato-
tal of 11languagesputof which 6 languages- English(EN), Ger
man(GE), Hindi (HI), JapanesglA), Mandarin(MA) andSpanish
(SP)—have phoneticlabels.We evaluateboththe PPRandPSWR
systemsusingthese6 language®f the OGI-TSdatabase.

Both the PPRand PSWR systemsare trainedon 50 ‘story-
bt’ (story-before-the-tone)tterancegper languagespolen by 50
differentspealers. Both the systemsaretestedusing 20 ‘story-bt’
utteranceperlanguageoutsidethe training data;the trainingand
testutterancesreeach45 secondsong.

3.2. Parametersof PSWR system

The ML segmentationtechnique(Sec. 2.1.1),cansggmentanin-
put utterancento a pre-specifiechumberof sggmentg9],[4]. We
specifythisasm = Rt, whereR is the numberof segmentsper
secondand t is the duration of the input utterancein seconds.
R is usedasa parameteto control the segmentationrate of the
ML segmentation. R takes valuesas 2, 5, 10 and 20 segy/sec.
R = 2 and5 correspondo acoarsesggmentatiorandcangenerate
broad-phonetisggmentsandphonestrings.R = 10 givesphone-
like segmentationasthe phoneratein normalspeechis about10
phones/secR = 20 resultsin a fine sggmentationand produces
sub-phonemisggments.

The sub-word inventorysize L (Sec. 2.1.1),controlstheres-
olution of the acousticspace;L is variedas 10, 30, 50 and 100.
Small L (L = 10) correspondso a coarseclusteringand gener
atesHMM modelsof broad-phoneticategyories. L = 30 and50
generatephone-lile unitsin the inventory aslanguagesypically
have phonesetsizesin thisrange.L = 100 yieldsafiner cluster
ing of theacousticspace.

3.3. Model building

Speechdatais parameterizeadvery 20mswith a frame shift of

10ms. Eachframe of speechis first pre - emphasizedy (1 —

0.95z 1) andthenwindowed by a Hammingwindow. The pre-
emphasize@ndwindowed frameis thenusedfor MFCC parame-
ter estimation.

Training of a PPRsystemconsistof generatinganinventory
of phoneHMM maodelsof sizedeterminedyy the numberof dif-
ferentphoneticunitsin the corpuslabelingschemeéor eachof the
6 languagesWhereasn a PSWRsystem the training consistsof
generatinganinventoryof sub-word HMM modelsof ary desired
size L (Sec. 2.1.1). Both thesetraining proceduresare imple-
mentedusingHTK [10].

The HMMs for both PPRandPSWRusea 26 - dimensional
parametewectorconsistingof 12 MFCC, 12 delta-MFCC enegy
anddeltaenegy. The HMMs are3 state Jeft to right models.For
PPRsystemthe bestperformancewvas obtainedwith 6 Gaussian
mixtures per state. For PSWR systemwe use9 Gaussiammix-
turesper state for thevarious(R, L) studiedhere.Only diagonal
covariancesareusedfor all mixturecomponents.

3.4. Results

Fig. 1 shavs the averageLID accurag for the 6 languagegEN,
GE, HI, JA, MA, SP),for both PPRand PSWRsystemsfor the
4 different scores: (a) Acoustic score(P 4), (b) Joint acoustic-
languagescore(P 41), (c¢) Language-modescore— Decoupled
(Pp), and(d) Language-modedcore— Joint (P ;). Thesere-
sultsarefor testdataof 20 utteranceg languagesach45 seclong
(story-btutterances)For PSWR therearetwo parameterfor each
of thefour scoresi) Segmentatiorrate R, varyingasR = 2, 5,10
and 20 sgments/secandii) SWU inventorysize L, varying as
L = 10,30,50 and 100. Eachplot ((a) to (d)) shavs the LID
accurag (y-axis)vs L = 10,30, 50,100 (z-axis) for different
R =2,5,10, 20, asgivenin thelegendin Fig. 1. ThePPRsystem
doesnot have ary parametersindtheLID accuray is shavn asa
thick-darkline for eachof thefour scores.

The following canbe obsened from this figure: i) PPRper
formsequallywell (with anLID accurag of 70%)for all thefour
scoreswith slight advantagefor Pr.p or P . ii) PSWRoffers
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Fig. 1. AveragelID accurag of PPRandPSWRfor differentscoresia) Acousticscore(P 4), (b) Jointacoustic-languagecore(P 4 1.), (C)
Language-modedcore— DecoupledP . p) and(d) Language-modedcore— Joint (P ;). Testdata: 20 utterances language Utterance
length:45 sec.Thick darkline: PPR.Legendfor PSWR:R=2(0), R=5(X), R=10(+), R=20(*).

a performancecomparable¢o PPRfor bothP 4 andP 41, for all
the SWU inventorysizesL andsegmentatiorratesR. iii) Thead-
vantageof PSWRis the control on the granularityof the acoustic
spacein termsof variablesize of SWUsobtainedfor differentR
and L. We hadexpectedthis to provide a meansof determining
whetherary particulargranularityis optimalfor discriminationof
languages.However, while P4 and P 41, shaved no particular
dependencen this granularity P, p (or PLs) seemso require
largerSWUinventorysize(i.e.,fine acoustiaesolution)or higher
PSWRperformanceiv) GiventhatP 4 integratesoththeacous-
tic andphonotactidnformation,andrepresentshe completePPR
(and PSWR)system,PSWRperformsaswell asPPR,makingit
anefficientalternatve to PPR,with theadwantageof notrequiring
manuallylabeledtrainingdatafor ary of thelanguage#n thetask.
V) TheacousticscoreP 4 aloneis alsoseerto beconsistenthjhigh
for both PPRand PSWR,indicatingthe possibility of betterLID
performancevith improved acoustiomodeling.vi) With regardto
LM scoresPrp andPr;, PSWRis distinctly poorerthan PPR.
It appearshatthe SWU inventoryis not sufiiciently uniqueacross
languages. This can also be ascribedto accumulationof errors
from the sub-word tokenizationstage.

4. CONCLUSIONS

We have proposed parallelsub-word recognitionsystem(PSWR)
asan alternatve to the parallel phonerecognition(PPR)system
for languagedentification(LID). Thesub-wordrecognize(SWR)
usedin the PSWRsystemcanbeobtainedrom trainingdatawith-
out phonetictranscriptionin ary of the languagesn the task. It
is basedon automaticsggmentationfollowed by segmentclus-
tering and sgmentHMM modeling. We have studiedthe com-
pletePSWRsystemincludingthelanguagemodelingof sub-word
unit sequences.The resulting PSWR systemyields threetypes
of scores,namely acousticscore,joint acoustic-languagscore
andlanguage-modedcore.We have examinedthe effectivenesof
thesescoredor aLID taskof 6 language# the OGI-TSdatabase.
We find thatthe PSWRperformscomparablyto PPRfor boththe
acousticand acoustic-languagscoreswith an LID accurag of
70%ontestdata(45 seclong), thusmakingit anefficientalterna-

tive to the PPRsystem.
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