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ABSTRACT

Parallelsub-wordrecognition(PSWR)is anew modelthathas
beenproposedfor languageidentification(LID) which doesnot
needelaboratephoneticlabelingof the speechdatain a foreign
language.Thenew approachperformsa front-endtokenizationin
termsof sub-wordunitswhicharedesignedby automaticsegmen-
tation, segmentclusteringandsegmentHMM modeling. In this
paper, wedevelopPSWRbasedLID in a framework similar to the
parallelphonerecognition(PPR)approachin the literature. This
includesafront-endtokenizerandaback-endlanguagemodel,for
eachof thelanguageto beidentified.Consideringvariouscombi-
nationsof thestatisticalevaluationscores,it is found thatPSWR
canperformaswell asPPR,even with broadacousticsub-word
tokenization,thusmakingit anefficientalternativeto thePPRsys-
tem.

1. INTR ODUCTION

Automatic languageidentification (LID) hasbecomean impor-
tant researchproblemover the last decadewith several promis-
ing solutions[1], [2]. Amongthevariousapproachesto LID [2],
the phone-recognitionapproachoffers considerablepromise,as
it incorporatessufficient knowledgeof the phonologyof the lan-
guagesto beidentified.Oneof themainframeworksin thephone-
recognitionapproachesis ParallelPhoneRecognition(PPR)[3].

An
�

- languageLID taskis to classifyaninputspeechutter-
anceasbelongingto oneof

�
languages�������������	��
 . The PPR

systemfor this task has
�

paths,eachwith a front-endphone-
recognizer(PR) followed by a back-endlanguagemodel (LM)
in that language.The front-endPR tokenizesthe input utterance
into a sequenceof phonesymbols. The back-endLM performs
phonotacticanalysison the resultingphonesequence.Phonotac-
tics refersto thelanguage-dependentconstraintson thesequences
of phonesandis modeledby an � -gramanalysis,with typicalsys-
temsusinga bigram( ��
�� ) statistics.An input utteranceis clas-
sifiedby amaximumlikelihooddecisiononthe

�
scoresobtained

by the front-endPR [4] or by the back-endLM or jointly by PR
andLM of eachlanguage[3], [5].

In thePPRsystem,thefront-endPRhasto betrainedonpho-
neticallylabeleddata,usuallyobtainedby manuallabeling,to gen-
eratea ‘phoneHMM inventory’ of thatlanguage.Thus,a PPRre-
quireslabeledtrainingdatafor all the

�
languagesin the taskto

train eachof its
�

front-endPRs.
Recently, we have proposeda parallel sub-word recognition

(PSWR)systemfor LID [4], which operatesin a PPRframework
but without requiringmanuallylabeledphoneticdatain any of the
languagesin thetask.In this work, we studiedtheperformanceof

PSWRon6 languagesin theOGI-TSdatabase[6] andobtainedan
LID accuracy of 91.6%ontrainingdataand67.5%ontestdatafor
45-secutterancesusingonly theacousticscorefrom thefront-end
sub-word recognizers.Thesewerecomparableto thePPRsystem
(87.9%on training dataand70% on testdata),thusmaking the
PSWRsystemanefficient alternative to thePPRsystem.

In this paper, we studythecompletePSWRsystemwith both
the front-endsub-word recognizer(SWR) andthe back-endlan-
guagemodel (LM) of sub-word unit sequencestokenizedby the
front-endSWR.TheresultingPSWRsystemcanyield threetypes
of scores,namely, theacousticscore,joint acoustic-languagescore
and the languagemodelscore. We examinethe effectivenessof
thesescoresfor aLID taskof 6 languagesin theOGI-TSdatabase.

2. PARALLEL SUB-WORD RECOGNITION (PSWR)

The PSWRsystemusesa front-endsub-word recognizer(SWR)
for eachlanguagein thetask.For an

�
-languagetask,thePSWR

systemhas
�

front-endSWRs.EachSWRhasa languagedepen-
dentsub-word unit (SWU) inventory. Theimportantpoint to note
is that the SWU inventoryis obtainedwithout the needfor man-
ually labeledtrainingdata.Eachfront-endSWRis followedby a
back-endlanguagemodel(LM) whichperformsphonotacticanal-
ysis.TheLM is typically an � -gramanalyzerof theSWUlabelse-
quenceoutputby theSWRfront-end.For a giveninput utterance,
thePSWRsystemyields

�
scoreswhich canbeof the following

types:i) Acousticscore,obtainedby thefront-endSWR,ii) Joint
acoustic-languagescore,obtainedby a joint decodingusingboth
the front-endSWR and back-endLM, and iii) Language-model
score,obtainedfrom only theback-endLM. Theinpututteranceis
classifiedinto oneof

�
languagesbasedonamaximumlikelihood

decisionon the
�

scoresof any of thesethreetypes.
ThePSWRsystemthusconsistsof threecomponents:i) Sub-

word recognizer(SWR),ii) Languagemodel(LM), andiii) Maxi-
mum- likelihood(ML) classifier. Thesearedescribedin detail in
the following sectionswith emphasison the threetypesof scores
statedabove.

2.1. Sub-word recognizer(SWR)

2.1.1. Sub-word unit (SWU) inventory

Eachof the
�

SWRsin a PSWRsystemhasaninventoryof sub-
word units (SWUs) ����
��������	�������������	����� andcorresponding
sub-word HMM models[7] � � 
��� � �! � �"�������	 � � for eachlan-
guage�#� , $%
'&(��������� � . In thePSWRsystem,thetrainingphase
involvesthedesignof theSWUinventory �)� for asetof SWUs ���
of eachlanguage�*� in theLID task.Theprocedurefor generating
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theSWUinventoryis essentiallythatusedfor acousticSWUbased
speechrecognition[8] andconstitutesthe trainingof theSWRin
thePSWRsystem;this is discussedin detailin [4]. Briefly, it con-
sistsof thefollowing stepsfor eachlanguage:
i) Automatic segmentation:Thetrainingutterances(in theform
of MFCC vectorsequence)is segmentedinto acousticsegments
usingthe maximum-likelihood (ML) segmentationtechnique[9]
for a requirednumberof segments/second.This generatesa large
corpusof segments+,
-��.����	./�����������!.�01� .
ii) Segmentclustering: Theacousticsegmentsin thesegmentcor-
pus + arerepresentedby theirrespectivecentroids;thesecentroids
areclusteredinto 2 clusters34
5��6����!6��(���������!6���� usingthe 7 -
meansalgorithm.Eachacousticsegment .�8:91+ thenbelongsto
oneof 2 sub-word clusters.
iii) Segmentmodeling: Eachcluster 6*;<9=3 definesa classof
acousticallysimilar segmentsandis treatedasrepresentinga no-
tionalsub-wordunit � ; . Thesegmentsbelongingto eachsub-word
class�%;>�	?@
5&A���������	2 aremodeledbyanHMM [7]. Thisresultsin
aninventoryof 2 sub-word HMMs, �)�B
-�� /���! C�(�D�������! C��� with
thecorrespondinginventoryof SWUs �*�B
-�������	���(���������	�%�@� for
thelanguage� � . Eachlanguagehasa different � � .
2.1.2. Sub-word tokenization

The front-endSWR in path $ usesthe sub-word inventory �)� to
tokenizean input utteranceinto a sequenceof sub-word unit la-
bels by optimal decodingas in connectedword recognition[7].
This decodingis an optimum ‘connectedsub-word recognition’
problem,which generatesa decodedsub-word sequenceandthe
associatedacousticlikelihoodscorecorrespondingto thedecoded
bestpathby theViterbi search.This SWRdecodingis performed
for eachof the

�
languagesin PSWR.

Let theinput utterancebea sequenceof featurevectors EF
GIH ��� H �(��������� HKJ%L . E is tokenizedby theSWRinto anoptimalse-
quenceof 7 SWUs

G ��M� ���������N�#MO �P�������N�)MQ L , where ��MO 9�� � . The
likelihoodassociatedwith this optimalstringof sub-word units is
calculatedas RTS G $ L 
U� G E4V �)� L (acousticscore)givenby,RTS G $ L 
XW)Y�Z[]\ Q Q^O�_ � `baAc Ged%Ggf O V  MO LNL (1)h 
 Gji�k � i � ��������� i Q L , with

i�k 
5l and
i Q 
Um , arethesegment

boundariesfor any segmentationof the m framesof E . The nPojp
segment

f O 
 GIH�qsr�tvuxw � ��������� HKqyrPL is associatedwith theSWU
model  /MO , where, @MO is theHMM modelwhich hasthemaximum
likelihoodof generatingsegment

f O , from among�)��
z�( /���D C����������x C��� ; d%Ggf O V  MO L is thecorrespondingHMM likelihoodand � MO
is thecorrespondingSWU.

2.2. Language-model(LM)

The back-endLM in eachof the PSWRsystempathsperforms
phonotacticanalysison theSWU labelsequencegeneratedby the
front-endSWR; typically, it evaluatesthe likelihoodof theSWU
sequenceusinga bigramdistribution.

Let the front-endSWRof language� � tokenizethe input ut-
teranceinto a sequenceof 7 SWU labels

G ��M� � . . . , ��MO �"���������)MQ L ,
asgiven by (1). The LM likelihood R{� G $ L 
|� G E}V ~]� L , usinga
bigrammodel ~ � of language� � , is givenby,R � G $ L 
 Q^O�_ � `baAc d@G �#MO V � O�� � �N�#� L (2)

where ��MO and � O�� � areconsecutive symbolsobserved in thetok-
enizedSWU stream.Thebigrammodelfor language�#� is given
by ~]��
�� d � G ?	�I� L ��
-� d%G �C�PV � ; L �D�N?N�g��
5&(���������	2 , where

d � G ?	�I� L
is usedto evaluate

d%G ��MO V � O�� � �>� � L in (2) when ��MO 
�� � and� O�� � 
�� ; . ~]� is learnt from the SWU labelsobtainedfrom
tokenizationof trainingutterancesof language�*� usingtheSWR
front-endof language�*� .
2.3. Joint acoustic-phonotacticdecoding

While sub-word recognition(SWR)andlanguagemodeling(LM)
aredescribedabove asdoneindependently, they canbecombined
into onestepin thePSWRconfiguration;i.e., it is possibleto in-
tegratethe acoustic/phonotacticmodelsso that language-specific
phonotacticconstraintscan be usedduring the Viterbi decoding
processof SWR ratherthanapplyingthe LM (phonotactic)con-
straintsafter the sub-word recognitionis complete. This is re-
ferredto asjoint acoustic-phonotactic decoding or simply asjoint
decoding. This wasfirst usedin [3] and is beingextendedhere
to joint decodingwith sub-word units. Themostlikely sub-word
sequenceobtainedby joint decodingandthecorrespondingacous-
tic - phonotacticlikelihoodmeasureoptimally combinesboth the
acousticlikelihoodand the languagemodel likelihood (obtained
by bigrammodels).

In the caseof joint acoustic-phonotacticdecoding,the input
utteranceE�
 GIH � � H � ��������� H J L is tokenizedby the SWR and
LM jointly for eachlanguage�#�y�	$#
�&A��������� � . Theoptimal se-
quenceof 7 SWUs

G � M � ����������� MO ����������� MQ L , obtainedby joint
decodingby the SWR and LM of language�#� , maximizesthe
joint acoustic-phonotacticlikelihood(or acoustic-languagescore)RTS�� G $ L 
�� G E4V �)�s�N~]� L , asgivenby,

R S�� G $ L 
�W)Y�Z[]\��� \ Q � R ��� Q^O�_ � `baAcC� d%Ggf O V  �O L��sd%G � �O V ��� O�� � Ly�>�
(3)

where
h

and
f O are as given in (1); R � 
 `baAc d%Ggf � V  �� L , � :
G  �� ���������! �O ���������! �Q L is any sequenceof  �O 91�)�y�	n�
:&(���������!7

and
G � �� ���������	� �O ���������	� �Q L is the correspondingsub - word se-

quence.
G �]M� ���������	��MO �"�������	��MQ L is theSWU sequencecorrespond-

ing to theoptimal � �
��( MO � QO�_ � whichmaximizesRTS�� G $ L in (3).

2.4. Language-model(LM) scores

The bigrammodel ~ � usedin (2) is estimatedfrom SWU labels
obtainedfrom decodingof training utterancesof language�*� by
the front-endSWRof language�#� , asgivenby (1); this doesnot
useany LM (bigram)constraintin theSWU decodingasdonein
(3). The LM scorein (2) using this ~]� on the SWU sequence
obtainedby (1), is referredhereasthe “Language-Modelscore–
Decoupled”andis denotedby R �P� G $ L .

For joint decoding(3), thebigrammodel ~]� (which providesd%G � �O V ��� O�� � L in (3)) is estimatedfrom the ‘referenceSWU labels’
of trainingutterances,obtainedasfollows during theSWRtrain-
ing for language�*� (Sec.2.1.1): The trainingutterancesareseg-
mentedusingML-segmentationinto a sequenceof segments

G . � �.��(���������x.�0 L ; eachof thesesegmentsbelongstosomeclusterfrom31
5��6����!6��(�D�������!6���� andis labeledby thecorrespondingSWU
from � � 
���� � �!� � ���������N� � � . TheresultingSWU labelsequence
givesthe ‘referenceSWU labels’ of the training utterances.Use
of the ~]� (estimatedfrom thesereferenceSWU labels)in (3) con-
strainsthe joint decodingto decodean utteranceinto a SWU se-
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quencewhich bettermatchesthe referenceSWU label sequence
of theutterance.TheLM scorecomputedby (2) whenappliedon
theSWU sequenceobtainedby (3) is referredhereas“Language-
Model score– Joint” andis denotedby R ��� G $ L .

In aPPRsystem,thebigrammodel ~]� usedfor joint decoding
(3) is estimatedfrom themanuallylabeledphonesequenceof the
training data. In the PSWRsystem,the referenceSWU labels,
derived by automaticsegmentationandlabelingof training data,
servestherole of themanualphonelabelsin thePPRsystem.

2.5. Maximum-lik elihoodclassifier(MLC)

We have describedfour typesof scoresin PSWRfor an input ut-
terance: i) Acoustic score R S G $ L (Eqn. (1)), ii) Joint acoustic-
phonotactic(or acoustic-language)score RTS�� G $ L (Eqn. (3)), iii)
Language-modelscore– DecoupledR{�P� G $ L (Sec. 2.4), and iv)
Language-modelscore– Joint R ��� G $ L (Sec.2.4).Denotingany of
thesefour scoresby R G $ L , themaximum- likelihood(ML) classi-
fier identifiesthelanguageof theinpututteranceas �*��� whichhas
thehighestlikelihood(score)R G $ L , i.e.,$j��
UY�� c W)Y�Z� _ � \       \ 
 R G $ L (4)

It hasbeenobserved[3] thatthelog-likelihoodscoresRTS�� G $ L
werebiasedin favor of onelanguageover anotheror evenall lan-
guages.This is correctedusingabias-removal method,whichsub-
tractsabias

iAG $ L from RTS�� G $ L of thelanguage�*� path,beforeper-
forming ML classificationby (4). The bias

iAG $ L is determinedas
the averageof RTS�� G $ L obtainedfrom utterancesof all languages
input to language�*� path. We have observed this biasproblem
in all four scoresR S G $ L , R S�� G $ L , R �P� G $ L and R �P� G $ L to varying
extentsandhave usedthe bias-removal methodof [3] for all the
four scoresin both PPRandPSWRsystems.Note that the PPR
systemalsohasthesamefour typesof scoresasdiscussedin this
paperfor PSWRandin [5], thoughnot dealtwith in [3] (which is
alsotheonly otherearlierwork on PPRreportedsofar). We have
interpretedthis bias-problemin [5] andalsoproposedanalternate
methodfor bias-removal.

3. EXPERIMENTS AND RESULTS

We treat the PPR system[3] as a baselinesystemwith which
to comparethe performanceof the PSWRsystem. PPRis de-
scribedbriefly in Sec. 1. We presenthereresultscomparingthe
performanceof the PPRandPSWRsystemsfor the four differ-
enttypesof scores:Acousticscore( R S ), Jointacoustic-language
score( RTS�� ), Languagemodel score– Decoupled( R{��� ), and
Languagemodelscore– Joint( R{�P� ).
3.1. Database

We usethe Oregon GraduateInstituteMulti-languageTelephone
Speech(OGI-TS)corpus[6] for evaluation.TheOGI-TShasa to-
tal of 11languages,outof which6 languages– English(EN),Ger-
man(GE),Hindi (HI), Japanese(JA), Mandarin(MA) andSpanish
(SP)– havephoneticlabels.WeevaluateboththePPRandPSWR
systemsusingthese6 languagesof theOGI-TSdatabase.

Both the PPRand PSWRsystemsare trainedon 50 ‘story-
bt’ (story-before-the-tone)utterancesper languagespoken by 50
differentspeakers.Both thesystemsaretestedusing20 ‘story-bt’
utterancesper languageoutsidethetrainingdata;thetrainingand
testutterancesareeach45secondslong.

3.2. Parametersof PSWR system

TheML segmentationtechnique(Sec.2.1.1),cansegmentan in-
put utteranceinto a pre-specifiednumberof segments[9],[4]. We
specifythis as ¡¢
¤£�¥ , where £ is thenumberof segmentsper
secondand ¥ is the duration of the input utterancein seconds.£ is usedasa parameterto control the segmentationrateof the
ML segmentation. £ takes valuesas 2, 5, 10 and 20 seg/sec.£=
=� and5 correspondto acoarsesegmentationandcangenerate
broad-phoneticsegmentsandphonestrings. £=
5&�l givesphone-
like segmentationasthephoneratein normalspeechis about10
phones/sec;£�
��(l resultsin a fine segmentationandproduces
sub-phonemicsegments.

Thesub-word inventorysize 2 (Sec. 2.1.1),controlsthe res-
olution of the acousticspace;2 is variedas10, 30, 50 and100.
Small 2 ( 25
¦&�l ) correspondsto a coarseclusteringandgener-
atesHMM modelsof broad-phoneticcategories. 2�
¨§(l and50
generatephone-like units in the inventoryaslanguagestypically
have phonesetsizesin this range. 2�
z&�lAl yieldsa finer cluster-
ing of theacousticspace.

3.3. Model building

Speechdata is parameterizedevery 20mswith a frame shift of
10ms. Eachframe of speechis first pre - emphasizedby ( &�©lP� ªA«(¬ � � ) andthenwindowed by a Hammingwindow. The pre-
emphasizedandwindowedframeis thenusedfor MFCC parame-
ter estimation.

Trainingof a PPRsystemconsistsof generatingan inventory
of phoneHMM modelsof sizedeterminedby thenumberof dif-
ferentphoneticunitsin thecorpuslabelingschemefor eachof the
6 languages.Whereasin a PSWRsystem,thetrainingconsistsof
generatinganinventoryof sub-word HMM modelsof any desired
size 2 (Sec. 2.1.1). Both thesetraining proceduresare imple-
mentedusingHTK [10].

TheHMMs for both PPRandPSWRusea 26 - dimensional
parametervectorconsistingof 12 MFCC,12delta-MFCC,energy
anddeltaenergy. TheHMMs are3 state,left to right models.For
PPRsystemthe bestperformancewasobtainedwith 6 Gaussian
mixturesper state. For PSWRsystemwe use9 Gaussianmix-
turesperstate,for thevarious

G £��	2 L studiedhere.Only diagonal
covariancesareusedfor all mixturecomponents.

3.4. Results

Fig. 1 shows the averageLID accuracy for the 6 languages(EN,
GE, HI, JA, MA, SP), for both PPRandPSWRsystemsfor the
4 different scores: (a) Acoustic score( R S ), (b) Joint acoustic-
languagescore( R S�� ), (c) Language-modelscore– Decoupled
( R{�P� ), and(d) Language-modelscore– Joint ( R{��� ). Thesere-
sultsarefor testdataof 20 utterances/ languageeach45 seclong
(story-btutterances).ForPSWR,therearetwo parametersfor each
of thefour scores:i) Segmentationrate £ , varyingas £=
=�­�x«"��&�l
and 20 segments/sec,and ii) SWU inventorysize 2 , varying as2F
�&�l­�!§Al­�x«(l and 100. Eachplot ((a) to (d)) shows the LID
accuracy ( ® -axis) vs 2�
¯&�lP�!§Al­�x«(l­��&�lAl ( ° -axis) for different£=
=�­�x«"��&�l­�x�(l , asgivenin thelegendin Fig. 1. ThePPRsystem
doesnot have any parametersandtheLID accuracy is shown asa
thick-darkline for eachof thefour scores.

The following canbe observed from this figure: i) PPRper-
formsequallywell (with anLID accuracy of 70%)for all thefour
scoreswith slight advantagefor R ��� or R ��� . ii) PSWRoffers
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Fig. 1. AverageLID accuracy of PPRandPSWRfor differentscores:(a)Acousticscore( RTS ), (b) Jointacoustic-languagescore( RTS/� ), (c)
Language-modelscore– Decoupled( R{��� ) and(d) Language-modelscore– Joint ( R{�P� ). Testdata:20 utterances/ language.Utterance
length:45sec.Thick darkline: PPR.Legendfor PSWR:R=2(O), R=5(X), R=10(+), R=20(*).

a performancecomparableto PPRfor both R S and R S�� for all
theSWU inventorysizes2 andsegmentationrates£ . iii) Thead-
vantageof PSWRis thecontrolon thegranularityof theacoustic
spacein termsof variablesizeof SWUsobtainedfor different £
and 2 . We hadexpectedthis to provide a meansof determining
whetherany particulargranularityis optimalfor discriminationof
languages.However, while R S and R S�� showed no particular
dependenceon this granularity, R{�P� (or R{�P� ) seemsto require
largerSWUinventorysize(i.e.,fineacousticresolution)for higher
PSWRperformance.iv) Giventhat R S/� integratesboththeacous-
tic andphonotacticinformation,andrepresentsthecompletePPR
(andPSWR)system,PSWRperformsaswell asPPR,makingit
anefficientalternative to PPR,with theadvantageof not requiring
manuallylabeledtrainingdatafor any of thelanguagesin thetask.
v) TheacousticscoreR S aloneis alsoseento beconsistentlyhigh
for both PPRandPSWR,indicatingthe possibilityof betterLID
performancewith improvedacousticmodeling.vi) With regardto
LM scoresR �P� and R �P� , PSWRis distinctly poorerthanPPR.
It appearsthattheSWUinventoryis not sufficiently uniqueacross
languages.This can also be ascribedto accumulationof errors
from thesub-word tokenizationstage.

4. CONCLUSIONS

Wehaveproposedaparallelsub-wordrecognitionsystem(PSWR)
asan alternative to the parallel phonerecognition(PPR)system
for languageidentification(LID). Thesub-wordrecognizer(SWR)
usedin thePSWRsystemcanbeobtainedfrom trainingdatawith-
out phonetictranscriptionin any of the languagesin the task. It
is basedon automaticsegmentationfollowed by segmentclus-
tering andsegmentHMM modeling. We have studiedthe com-
pletePSWRsystemincludingthelanguagemodelingof sub-word
unit sequences.The resultingPSWRsystemyields threetypes
of scores,namely, acousticscore,joint acoustic-languagescore
andlanguage-modelscore.Wehaveexaminedtheeffectivenessof
thesescoresfor aLID taskof 6 languagesin theOGI-TSdatabase.
We find that thePSWRperformscomparablyto PPRfor boththe
acousticand acoustic-languagescoreswith an LID accuracy of
70%on testdata(45 seclong), thusmakingit anefficient alterna-

tive to thePPRsystem.
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