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ABSTRACT

The most widespread approach to automatic language identi-
fication in the past has been the statistical modeling of phone se-
quences extracted from speech signals. Recently, we have devel-
oped an alternative approach to LID based on n-gram modeling of
parallel streams of articulatory features, which was shown to have
advantages over phone-based systems on short test signals whereas
the latter achieved a higher accuracy on longer signals. Addition-
ally, phone and feature streams can be combined to achieve max-
imum performance. Within this “multi-stream” framework two
types of statistical dependencies need to be modeled: (a) depen-
dencies between symbols in individual streams and (b) dependen-
cies between symbols in different streams. The space of possible
dependencies is typically too large to be searched exhaustively. In
this paper, we explore the use of genetic algorithms as a method for
data-driven dependency selection. The result is a general frame-
work for the discovery and modeling of dependencies between
multiple information sources expressed as sequences of symbols,
which has implications for other fields beyond language identifi-
cation, such as speaker identification or language modeling.

1. INTRODUCTION: N-GRAM MODEL APPROACHES
TO LANGUAGE IDENTIFICATION

Automatic language identification (LID) continues to be of con-
siderable importance for multilingual speech applications. Several
approaches to LID have been developed in the past which make
use of acoustic, prosodic, phonetic-phonotactic or lexical infor-
mation. Of these, the phonotactic approach (e.g.[1]) has emerged
as the most widespread and flexible technique. This approach as-
sumes that language-discriminating information is encoded in the
statistical regularities of phone sequences in different languages.
As a first step, the speech signal is mapped to a sequence of phone
symbols, �������
	��
��	�������	��
� , using acoustic models such as Hid-
den Markov Models (HMMs). Statistical n-gram models are then
trained on the resulting phone labels. An n-gram model specifies a
set of probability distributions of a phone given a context of �����
and the language � :

��� � � 	�� � ������	�� � � �"!"�
�#
$&%
'
��� � $ � � $)( � 	�������	�� $*(+'-, � 	��"! (1)

During language identification, the phone sequence derived from
the test speech signal is scored against each of the language-specific
n-gram models. The language of the n-gram model for which the
highest score is obtained is then hypothesized as the true language
( �/. ): � . ��02143256087+9 ��� � � 	�� � 	�������	�� �:� �/! (2)

In our recently developed feature-based approach [2, 3], artic-
ulatory feature sequences are used in place of phone sequences.
These features characterize different articulatory properties of the

speech signal and are arranged into five separate groups (man-
ner of articulation, consonantal place of articulation, vowel place
of articulation, front-back tongue position and lip rounding) and
Acoustic models are built for each feature value, analogous to
acoustic phone models. Using these models, parallel streams of
feature sequences, one for each feature group, are derived from a
given speech signal. Language-specific n-gram models are trained
for each feature stream. Analogous to the n-gram probability of a
phone sequence, the probability of a feature sequence in a particu-
lar feature stream ;<�>=?�@	
����� =4� given a language � ,

��� ; � �"! , is
defined as:

��� ; � �"!"�
�#
$&%
'
��� = $ � = $)( �@	�������	�= $*(+'-, �@	��"! (3)

The probability of an ensemble of A feature streams ;:�@	�������	B;DC
given language � ,

��� ;E��	�������	�;DC � �/! , is defined as:

��� ;E��	�������	B;DC � �/!F�HG �)��� ;E� � �/!�	�	@������	 ��� ;DC � �"!B! (4)

where G is some combination function, e.g. the product rule

��� ;E��	�������	�;DC � �/!F�
C#
I % �

��� ; I � �"! (5)

In our previous work we showed that both feature-based and phone-
based approaches achieved comparable performance overall but
that the feature-based system obtained a significantly higher per-
formance on very short test signals ( J 3sec. ) whereas the phone-
based system achieved a higher accuracy on longer test signals.
Due to the complementary nature of the two approaches, they can
be combined to achieve maximum performance. A seamless way
of integrating the phone and feature-based systems is to treat the
stream of phones as an additional stream within the set of artic-
ulatory feature streams. The equation for language classification
would now become

� . ��02143256027 9 ��� ;E�@	�������	B;DC:	�� � �/! (6)

Naturally, this can be extended to using multiple phone sequences,
as is the standard in some phone-based LID systems. In all “multi-
stream” models of this type, two sets of dependencies need to be
modeled: (a) dependencies within individual streams, and (b) de-
pendencies across different streams. The model in Equation 5 as-
sumes that all streams are independent given the language and thus
ignores dependencies of type (b), which is clearly an oversimpli-
fication. The main objective of this study is to explore how statis-
tical dependencies between different information streams can be
detected and modeled more adequately.
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2. MODELING CROSS-STREAM DEPENDENCIES

In our work, the phone stream is treated as an additional
� A�� �@! ���

feature stream. The baseline phone and feature systems described
above model the probabilities of a symbol at a given time � con-
ditioned on symbols at previous time positions within the same
stream. Possible dependencies on variables in other streams are
not taken into account. However, the different streams are ex-
tracted from the same speech signal and conditioning a symbols on
variables in other streams might therefore yield additional gains. A
cross-stream model can be represented more formally as:

��� = �$ !F� ��� = �$ � = �$)( � 	�= �$*( � 	
��������	�= �$*(+' , � 	 ;��
	���
�! (7)

where, ;���	���
 represents some subset of the set of all features
minus those in stream � . In general, for a fixed context length of �
and A streams, there are ���FA � � conditioning features, viz. the� � � previous features in the same stream and all � features in the
current context window in the A ��� remaining streams. To find
the optimal combination of some or all of these conditioning vari-
ables, we in principle need to conduct an exhaustive search over
all possible subsets. The number of possible subsets, � � $&% ��� � $�� ,
where � ����� A � � , is prohibitively large and cannot be searched
exhaustively.

For models with cross-stream dependencies, the conditioning
and the dependent streams need to be aligned to determine joint
frequencies. A simultaneous alignment of all streams at the frame
level typically leads to multiple repetitions of the same symbol
within a stream and across sub-groups of streams. We noticed in
previous experiments that such repetitions decrease accuracy sig-
nificantly as they tend to dominate the n-gram scores. To overcome
this problem, we separately align the sets of conditioning and de-
pendent variables corresponding to different cross-stream depen-
dencies and, within each set, only use those vectors of variable
values for scoring where at least one value changes. The scores for
the different stream groupings, normalized by the number of vec-
tors considered, are then combined using Equation 5. Weighted
combination using another classifier, e.g. a multi-layer perceptron,
was not shown to yield any advantages beyond product combina-
tion in the past.

In our previous work [2] pair-wise cross-stream dependencies
in a purely feature-based system were identified using a greedy
search technique. Their integration yielded improvements in LID
accuracy; however, only a small subset of all possible dependen-
cies was explored. In this study we use a more powerful search
technique, viz. Genetic Algorithms (GA), as described in the next
section.

3. GENETIC ALGORITHMS FOR DEPENDENCY
SELECTION

Genetic Algorithms are a general search and optimization tech-
nique inspired by natural evolutionary processes. Some of the dis-
tinguishing characteristics of GAs are the following:

1. GAs do not deal directly with problem parameters them-
selves but with binary string encodings of individual prob-
lem solutions. Different solutions are created by applying
genetic operators modifying these strings, as described be-
low. Since these operators are applied probabilistically, the
search is guided towards various unexplored parts of the
search space that might potentially contain better solutions.
In contrast, deterministic techniques always search within a
fixed pre-defined area of the search space.

2. GAs work with a population of potential solutions i.e. sets
of parameter values (in the form of encoded strings) rather
than a single solution. GAs thus simultaneously explore

several sections of the search space for a particular prob-
lem, which often prevents them from converging on a local
optimum.

3. GAs employ a user defined fitness function to determine
the goodness of each solution or the entire population. At
each iteration of the genetic search, the current population
is evaluated and modified to move to a higher fitness value.

GA operators are simple, well defined functions that are applied
to members within its population. The most basic operators em-
ployed by GAs are reproduction or selection, crossover, and mu-
tation. Reproduction is a process by which individual strings are
copied into a pool from which strings for the next iteration are
selected. Strings with a higher fitness value have a greater proba-
bility of contributing to this pool. During crossover, pairs of mem-
bers from the pool are selected and new strings are produced by
swapping characters from the original pair at randomly selected
positions. Mutation is the occasional random alteration of value
of a bit or digit in the string. Reproduction and crossover try to
preserve good partial solutions from one iteration to the next. Mu-
tation is of secondary importance compared to reproduction and
crossover and is used mainly to maintain the heterogeneity of the
population and to prevent premature convergence. GA search in-
volves the following steps:� encode the problem parameters (i.e decision variables) as

binary strings;� determine an appropriate fitness function;� randomly generate an initial population of strings;� while the termination criterion has not been reached

– evaluate the fitness of each individual in the popula-
tion and select a pool of solutions for the next gener-
ation

– apply crossover and mutation

The operators work on successive generations of solutions, with
each generation producing more and more refined solutions. The
algorithm stops when some termination criterion (usually a spe-
cific value of the fitness function or value of its change over sev-
eral generations) is satisfied. Several alternatives are available for
the specific implementation of the GA operators. In our work
we investigated different implementations, namely roulette wheel,
stochastic universal sampling and tournament for selection, and
one-point, two-point and uniform crossover operators. The choice
of operator implementation had an impact on efficiency of the
search but rarely on the final outcome and we settled upon tourna-
ment selection and uniform crossover for most of our experiments.
The GA can be made more powerful by integrating advanced op-
erators and techniques. One such technique that we have adopted
is an elitist model, which ensures that the best individual of a gen-
eration is preserved in the next generation.

In order to apply GA-based search to the problem of depen-
dency selection, the set of conditioning features for any given de-
pendent feature variable needs to be encoded in a string. Consider
a feature variable =��$ , with a potential set of conditioning variables
defined by:� = I$*( � 	�= I$*( � 	�= I$ 	�=��$*( � 	�=��$*( � 	�=��$ 	�=��$*( � 	�=��$)( �
�
where the context length of interest is 3. This conditioning set can
be represented by an eight bit binary string with � representing
presence and 0 representing absence of the dependency. For ex-
ample, �! 8� ���" # 8� would imply that =��$ is conditioned on:� = I$*( � 	�= I$ 	�=��$*( � 	�=��$*( � 	�=��$)( � � .
It is important to prevent circular dependencies in order to obtain
valid probability distributions. This occurs, for instance, when =$�$
is conditioned on = I$ and vice versa. One method of overcoming
this problem is to restrict the potential conditioning set for each

I - 29

➡ ➡



dependent variable such that no circular dependencies are possi-
ble. The individual streams are arranged in an ordered tuple, for
example:

� � 	��+	�� 	B5 � . Any feature variable can be conditioned
only on other feature variables in its own stream and those pre-
ceding it in the tuple. Though this effectively implies that the GA
search will now be exploring a more restricted search space, dif-
ferent orderings of the set of features can be evaluated to get the
optimal set of dependencies. Since the final goal is to improve
on language identification accuracy, we use LID performance on a
held-out development set as the fitness function.

4. CORPUS AND BASELINE SYSTEMS

Experiments reported in this paper are based on the OGI-TS cor-
pus [4] of telephone speech data from 10 different languages (En-
glish, Farsi, French, German, Japanese, Korean, Mandarin, Span-
ish, Tamil and Vietnamese). We follow the same division of the
corpus into training, development and evaluation sets as defined
in [5], which is identical to the definitions included in the LDC
distribution. These sets contain 4650, 1898 and 1848 utterances
for training, development and evaluation respectively. Each of the
three sets contains approximately the same number of utterances
per language. It is important to note that unlike many previous
studies which have excluded speech signals shorter than 10 sec-
onds or only used a subset of the 10 languages, our results are
based on a 10-way forced choice including all languages and sig-
nal files of all lengths.

The first step in our baseline LID system is speech/non-speech
segmentation, which is performed by a neural network trained on
a hand-labeled subset of the training data, followed by tempo-
ral smoothing of the network outputs. The speech segments are
then converted to 12 mel-frequency cepstral coefficients, log en-
ergy, and first-order temporal derivatives, yielding 26-dimensional
feature vectors. Based on this acoustic representation, Hidden
Markov Models (HMMs) with 3 states and 2 Gaussian mixture
components each are trained for 26 features grouped into the fol-
lowing five streams: manner of articulation (mann), consonantal
place of articulation (cpl), vowel place of articulation (vpl), lip
rounding (rd) and front-back position of the tongue (fb). Further-
more, 8 models are used for silence and various types of back-
ground noises. Individual noise models are trained for each fea-
ture group. The total number of models in the feature based sys-
tem is 66. The trained acoustic models are then used to gener-
ate feature labels by unconstrained recognition. For each stream,
trigram models with Witten-Bell smoothing are trained using the
SRILM toolkit [6] with an extension module for multi-stream n-
gram models implemented by Jeff Bilmes (U Washington). Ex-
plicit duration modeling was incorporated into the n-gram models
by relabeling feature labels in accordance with their temporal du-
ration: for each feature, a duration histogram was estimated and all
labels above the 25th percentile of the distribution were relabeled
as long features, others were relabeled as short features. This split,
as well as the final selection of split labels to be incorporated into
the n-gram modeling component, was optimized on the develop-
ment set. This leads to a total of 89 feature models, arranged in
sets of 19,21,21,15 and 13 models respectively, for the articulatory
feature streams mentioned above. The phone system is trained on
the same acoustic representation and contains 133 HMMs with 3
states and 4 Gaussian mixture components each. Phone trigrams
are used.

5. EXPERIMENTS AND RESULTS

Table 1 shows the baseline error rates for the phone, feature and
combined system. System combination was done as specified in
Equation 5. In our previous work we concentrated on improv-
ing the feature-based approach by applying techniques such as

Set Phone Feature Combined
Dev. set 49.84 58.96 64.54
Eval. set 47.99 57.30 62.17
# params 2.35M 30K 2.38M

Table 1. LID accuracy (%) and number of n-gram parameters for
phone-based, feature-based and combined LID systems.

Search Dev. Set Eval. Set # params dep.s
Group A 60.01 58.44 31K 1
Group B 61.85 60.06 33K 2
Group C 64.54 62.17 2.38M none
Group D 54.21 51.35 2.35M 5

Table 2. LID accuracy (%), number of system parameters, and
number of selected cross-stream dependencies .

explicit duration modeling for features, as explained in Section
4. These techniques were not applied to the phone-based system,
which is why the baseline feature-based system shows a much bet-
ter performance. However, due to the complementary nature of
the two approaches, their combination still yields significant im-
provements in LID accuracy (significant at the 0.0002 and 0.002
level, respectively, using a difference of proportions significance
test). It should be noted that the number of parameters required
for the phone trigrams, i.e. ������� is much larger than the num-
ber of parameters required for the all feature trigrams combined,
i.e. �	��� ��
2�	� ��
2�	� ���
��� �H����� .

Our next step was to incorporate explicit cross-stream depen-
dencies, with the goal of not only obtaining the maximum LID ac-
curacy but also of minimizing the number of parameters needed.
The entire set of possible dependencies included within-stream
feature and phone dependencies (i.e. standard n-grams), cross-stream
dependencies among feature streams, as well as cross-stream de-
pendencies between individual feature streams and the phone stream.
N-gram orders of up to � ��� were considered. We applied GA-
based search to the following subsets of dependency models:� within-stream + cross-stream dependencies for features only

(Group A), i.e. standard feature n-grams plus allowing con-
ditioning features in streams other than the current one;� as Group A, but additionally allowing phones to be condi-
tioned on features or vice versa (Group B);� as Group B, but additionally including standard phone n-
grams (Group C);� standard phone n-gram plus allowing phones to be condi-
tioned on features or vice versa; no feature n-grams (Group
D).

Results are shown in Table 2. We made the following observa-
tions: first, the accuracy on the development set always increases
significantly, which is not surprising since the fitness function was
directly designed to maximize accuracy on this set. On the eval-
uation set, significant gains (p = 0.05) were obtained for Groups
B and D, compared to the baseline systems. Second, cross-stream
dependencies were selected for Groups A and B, which do not in-
clude phone n-grams among the set of possible models, but not
in C, which does include phone trigrams. It seems that phone
n-grams and feature n-grams plus cross-stream dependencies are
two different ways of modeling similar information. These two
approaches are associated with different accuracy-cost tradeoffs:
whereas the inclusion of phone n-grams leads to the best accuracy
overall it comes at a significant cost in terms of the number of
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Search Dev. Set Eval. Set # params dep.s
Group A 58.48 58.98 31K 1
Group B 61.59 58.93 33K 1
Group C 64.54 62.17 2.38M none
Group D 52.16 49.78 2.3M 1

Table 3. LID accuracy (%), number of system parameters, and
number of selected cross-stream dependencies for greedy depen-
dency selection.

Set Phone Feature Combined
Dev. set 48.87 62.14 67.23
Eval. set 47.99 62.07 65.02

Table 4. LID accuracy (%) for phone-based, feature-based and
combined LID systems using duration-specific n-grams.

parameters (see Table 2, column 3). The feature-based system, by
contrast, has a lower accuracy but only a fraction of the parameters
needed for the phone-based system. Finally, in the course of many
experiments using GA-based search we noticed that it is impossi-
ble to predict which dependencies are selected under which con-
ditions, indicating strong non-linear interactions between different
conditioning variables. This emphasizes the advantages of using
the Genetic Algorithm rather than heuristic or other conventional
search techniques for dependency selection. As a comparison, we
ran dependency selection experiments for the three groups using
greedy search as described in [2]. The results (Table 3) show that
GA-based search did indeed lead to better performance in most
cases.
The OGI-TS corpus consists of spontaneous and non-spontaneous

utterances ranging from a few seconds to a maximum of about
one minute. Whereas short utterances include enumerations such
as the days of the week, longer utterances are spontaneous nar-
rations. Utterance duration is therefore related to speaking style
and vocabulary effects. Better results might be obtained if both
n-gram model training and GA search were applied to different
duration-specific subsets of utterances separately. We sorted train-
ing utterances into different groups based on their length. Within
these groups, the sets of development utterances were randomly
sub-sampled to ensure that each language had roughly the same
number of samples, which prevents language-specific biases in the
GA search. For each category, within-stream and/or cross-stream
dependency models trained on utterances in that category alone
were considered for scoring if, on development data, they out-
performed models trained on the entire training set. The results in
Table 4 show that duration-specific n-grams are indeed beneficial
for LID accuracy. Individual GA searches were then conducted
separately for each durational category, using the same configu-
ration as in Tables 2 and 3. Results from these experiments for
different duration categories are shown in Table 5. We can see
that there is hardly any additional advantage due to using depen-
dencency selection conditioned on utterance length - we even see
a decrease in performance for Groups A and C. Since utterances
are divided into sub-groups based on their lengths, there may not
be enough data in the dev set of each group to obtain generaliz-
able models and the Genetic Algorithm may be over-training on
the development set.

6. SUMMARY AND CONCLUSIONS

In this paper we have demonstrated the importance of incorporat-
ing cross-stream dependencies into multi-stream models for LID.

duration-based GA standard GA
Search Dev. Set Eval. Set Dev. Set Eval. Set

Group A 64.74 59.81 63.35 61.95
Group B 67.15 63.35 67.44 63.25
Group C 69.69 63.35 67.23 65.02
Group D 60.68 52.57 54.21 51.35

Table 5. LID accuracy (%) for duration-specific ngrams plus
duration-specific GA search vs. standard GA search.

Our conclusions are that (a) due to the complementary nature of
the two approaches, combining phone and feature-based informa-
tion streams leads to significant improvements in LID accuracy;
(b) further significant improvements in accuracy can be obtained
by explicitly modeling dependencies across these different streams;
(c) Genetic Algorithms outperform heuristic search for the pur-
pose of selecting the best set of dependency models from the large
space of all possible combinations. Applying GA-based search
to different subclusters of utterances separately did not yield any
significant improvement compared to GA search using all avail-
able data collectively. We also noticed the danger of over-training
the GA to the development data, especially when cluster sizes are
small. In the future, we intend to incorporate explicit penaliza-
tion factors for model complexity into the fitness function. The
approach presented here can be applied to a number of different
scenarios, e.g. standard phonotactic LID systems that use multi-
ple phone streams and to recently developed systems for speaker
identification based on similar approaches [7, 8]. Furthermore,
the framework is general enough to be able to accommodate any
other information source which can be expressed as sequences
of discrete symbols, such as sequences of HMM state indices or
prosodic symbols.
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