
FRAME-DEPENDENT MULTI-STREAM RELIABILITY INDICATORS FOR
AUDIO-VISUAL SPEECH RECOGNITION

Ashutosh Garg,� Gerasimos Potamianos,+ Chalapathy Neti,+ and Thomas S. Huang�

+ IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
� Beckman Institute, University of Illinois, Urbana, IL 61801, USA

E-mails:+ fgpotam,cneti g@us.ibm.com ; � fashutosh,huang g@ifp.uiuc.edu

ABSTRACT

We investigate the use of local, frame-dependent reliability indi-
cators of the audio and visual modalities, as a means of estimat-
ing stream exponents of multi-stream hidden Markov models for
audio-visual automatic speech recognition. We consider two such
indicators at each modality, defined as functions of the speech-
class conditional observation probabilities of appropriate audio-
or visual-only classifiers. We subsequently map the four reliability
indicators into the stream exponents of a state-synchronous, two-
stream hidden Markov model, as a sigmoid function of their linear
combination. We propose two algorithms to estimate the sigmoid
weights, based on the maximum conditional likelihood and mini-
mum classification error criteria. We demonstrate the superiority
of the proposed approach on a connected-digit audio-visual speech
recognition task, under varying audio channel noise conditions. In-
deed, the use of the estimated, frame-dependent stream exponents
results in a significantly smaller word error rate than using global
stream exponents. In addition, it outperforms utterance-level ex-
ponents, even though the latter utilize a-priori knowledge of the
utterance noise level.

1. INTRODUCTION

Automatic speech recognition(ASR) using information from the
video of the speaker’s face, in addition to the traditional audio, has
been an active area of research in recent years [1]-[6]. Such work
has been well motivated by human speech perception [7], as well
as by the obvious visual signal robustness to acoustic degradation.

A challenging problem in audio-visual ASR is the integration
(fusion) of the two heterogeneous sources of speech information
[1]. A number of techniques have been proposed in the literature
for this task. It is generally agreed that the combination of single-
modality (audio- and visual-only) classifier outputs (e.g., obser-
vation likelihoods), also known as thedecision fusionframework,
outperforms fusion at the feature level [3]-[6]. Typically, decision
fusion linearly combines the two classifier scores, where the clas-
sifiers can be neural networks [6], [8], or, more commonly,hidden
Markov models(HMMs) [3]-[5], and the integration level can vary,
allowing for example audio-visual asynchrony, as is the case in the
product [3], [4] and coupled HMMs [5]. The linear combination
weights manipulate the contribution of each modality to the recog-
nition process, hopefully capturing the reliability of the audio and
visual observation streams.

In the literature, such combination weights have been usually
set toglobal values over an entire dataset, either constant for all
classes of interest (such as HMM states) [3]-[5], or dependent

on the class labels [4]. Occasionly, they have been chosen to be
utterance-dependent, based on estimates of the audio signal (us-
ing the “voicing index” [4], or the signal-to-noise ratio [8], [9]),
and utterance- [9], [10], or frame-dependent [6], based on confi-
dence estimates of the audio-only classifier. However, in practical
audio-visual ASR, the speech information carried byboth the au-
dio and video signals can vary dramatically, and at a verylocal,
temporal level. For example, possible noise bursts, face occlu-
sion, or face tracking failures can greatly change the reliability of
the affected stream in ASR. Clearly, frame-dependent combination
weights that capture the information content of both modalities are
needed to handle this scenario.

In this paper, we propose an algorithm to estimate such frame-
dependent weights within the framework of the state-synchronous
multi-stream HMM, a widely used model for audio-visual decision
fusion [3]-[5]. The algorithm utilizes well known indicators of the
confidence of both audio- and visual-only classifiers [9], [11] to
capture the reliability of the two streams of interest, and then es-
timates a sigmoid, that maps their values to the desirable decision
fusion weights. Both the proposed mapping and the estimation
algorithm constitute the contributions of this work.

The remaining of the paper is structured as follows: Section 2
reviews the multi-stream HMM framework for audio-visual speech
recognition, and Section 3 introduces the reliability indicators used.
Section 4 is devoted to the audio-visual combination weight esti-
mation algorithm, based on the frame-dependent modality reliabil-
ity indicators. Section 5 describes the audio-visual database and
ASR experiments, and finally, Section 6 summarizes the paper.

2. THE MULTI-STREAM HMM

The main concentration of this paper is modeling the reliability of
the two modalities in decision fusion for audio-visual ASR. Since
temporal modeling in not our focus, we restrict ourselves to the
popular, state-synchronousmulti-stream HMM(MSHMM) as the
statistical model for audio-visual integration [3], [4]. Extensions
of our proposed algorithm to models that allow audio-visual state
asynchrony, such as the product [3] and coupled HMMs [5], or to
neural network classifiers [6], can easily be devised.

The MSHMM is a variant of the standard HMM [12], where
instead of a single observation stream, there exist multiple streams
of information (in our case, two: one for each modality, audio and
visual). Given a time-synchronous, bimodal (audio-visual) obser-
vation vectorot = [o a;t ; o v;t ] at time instantt (“frame”), the
MSHMM models its class-conditional likelihood as the product of
the observation likelihoods of its single-stream components, raised
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Fig. 1. Audio reliability indicatorsLa;t andDa;t (see (2) and (3)),
depicted as a function of the noise level, present in the audio data.

to appropriatestream exponents, namely

P (ot j c ) =
Y

s2fa;vg

P (o s;t j c )
�s;t : (1)

In (1), c2C denote the speech classes of interest (such as context-
dependent, sub-phonetic units), andP (os;tjc), s = a ; v , are the
audio- and visual-only emission probabilities, typically considered
to beGaussian mixture models(GMMs). Stream exponents�s;t
are in general non-negative, and, in this work, they are also as-
sumed to add to one, i.e.,�a;t+�v;t=1 , for all t . Notice that, due
to their presence, (1) does not represent a probability density func-
tion. Instead, it can be thought of as ascoringfunction. This view-
point allows us to analyze it similarly to the standard maximum
likelihood framework, and employ theexpectation-maximization
(EM) algorithm [12] to estimate the MSHMM parameters, where
the expectation step can be performed separately for each GMM,
or jointly for the entire model.

Exponents�s;t provide a means to model the reliability of
each feature stream, by allowing one to manipulate the contribu-
tion of each modality to the recognition score. In realistic audio-
visual ASR, such reliabilities can rapidly vary at a temporal level.
Therefore, in this work, we consider the exponents to be time vary-
ing, defined as a function of local (frame-dependent) reliability in-
dicators of the two streams of interest. As discussed in the follow-
ing section, such stream reliability indicators depend on the corre-
sponding local modality observations, and the respective statistical
model that is assumed to generate them. As a result, the stream ex-
ponents become a function of thejoint audio-visual feature vector
ot . Thus, (1) differs to work reported elsewhere, where exponents
are set to “global” weights, constant over a whole dataset [3]-[5],
possibly depending on the class labelc [4], or locally varying, but
depending only on the audio observationoa;t [4], [6], [9], [10].

3. STREAM RELIABILITY INDICATORS

A number of functions have been proposed in the literature as a
means of assessing the reliability of the class information that is

Reliability Correlation with Correlation with
Indicator audio-only WER visual-only WER

La -0.7434 0.0183
Lv 0.1041 -0.2191
Da -0.7589 0.0126
Dv 0.1014 -0.2066

Table 1. Correlation of the two stream reliability indicators (2)
and (3) with the audio- and visual-only word error rates (WERs).

contained in an observation, assumed to be modeled by a partic-
ular classifier [9]-[11]. Following prior work [11], we select two
reliability indicators for each of the two streams. Given the stream
observationos;t , both indicators utilize the class-conditional ob-
servation likelihoods of itsN -best most likely generative classes,
denoted bycs;t;n 2C , n = 1;:::;N . These are ranked according
to descending values ofP (os;tjc), c2C (see also (1)).

The first reliability indicator is theN -best log-likelihood dif-
ference, defined as

Ls;t =
1

N � 1

NX

n=2

log
P (o s;t j cs;t;1 )

P (o s;t j cs;t;n )
: (2)

This is chosen, since it is argued that the likelihood ratios between
the firstN classification decisions are informative about the class
discrimination. The second selected reliability indicator is the N-
best log-likelihood dispersion. This is defined as

Ds;t =
2

N (N � 1)

NX

n=1

NX

n0=n+1

log
P (o s;t j cs;t;n )

P (o s;t j cs;t;n0 )
: (3)

The main advantage of (3) over (2) lies on the fact that (3) captures
additionalN -best class likelihood ratios, not present in (2). In our
analysis, we chooseN to be5.

In the remainder of this section, we argue that the selected
indicators do capture the reliability of the speech class informa-
tion, available in the stream of interest. For example, such in-
formation, on basis of the audio channel alone, is expected to
degrade, as the audio becomes corrupted by increasing levels of
noise. Fig. 1 demonstrates that bothLa;t andDa;t successfully
convey the degradation of the audio stream reliability, since they
are monotonic on the signal-to-noise ratio (see Section 5 for the
data and the experiment design).

Of course, our primary interest lies in minimizing the word
error rate based on MSHMM (1). To further justify the selection
of the four reliability indicators in audio-visual ASR, we report
a correlation analysis between the values of these indicators, av-
eraged at the utterance level, and the utteranceword error rate
(WER). The results are summarized in Table 1, and they clearly
demonstrate the presence of significant within-stream correlation.
As expected, there is low correlation across streams. These ob-
servations argue favorably for using reliability indicators of both
audio and visual streams in audio-visual ASR.

4. RELIABILITY BASED STREAM EXPONENTS

4.1. Reliability Indicator to Stream Exponent Mapping

We would like now to estimate a mapping from the four selected
reliability indicators to the desired MSHMM stream exponent�a;t ,
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and its derived�v;t=1��a;t . We choose to use a sigmoid function
for this task, due to its nice properties: The sigmoid is bounded
within zero and one, and it is monotonic, and smooth. For simplic-
ity, let us denote bydt the vector of the four selected indicators,
namely[ d1;t ; d2;t ; d3;t ; d4;t ] = [La;t ;Lv;t ;Da;t ;Dv;t ] . Then,
the sigmoid mapping is defined as

�a;t =
1

1 + exp (�
P4

i=1wi di;t )
; (4)

wherew = [w1 ;w2 ;w3 ;w4 ] is the vector of the mapping pa-
rameters. In the following, we propose two algorithms to estimate
w , given frame-level labeled audio-visual observationsf(ot; ct ) ;
t2 T g, for a training set of time instantsT . The first algorithm
seeks maximum conditional likelihood estimates of parametersw ,
under the MSHMM observation model (1), whereas the second
method seeks aw that minimizes the misclassification error on set
T. Notice that the required training set labelsct , t 2 T, can be
obtained by a forced alignment of the training set utterances using
a suitable HMM.

4.2. Maximum Conditional Likelihood Parameter Estimation

Given an audio-visual observation vectorot , we represent the con-
ditional likelihood of the classc2C by

P ( c jot ) =
P (oa;tjc)

�a;tP (ov;tjc)
1��a;t

P
c2C P (oa;tjc)�a;tP (ov;tjc)1��a;t

; (5)

under the assumption of a uniform class priorP (c) (see also (1)).
We then seek parametersw of (4) that result tomaximum con-

ditional likelihood(MCL) of the training data labels, namely

ŵ = arg max
w

X

t2T

log P ( ct jot ) : (6)

The above optimization problem is solved iteratively, by perform-
ing a gradient descent on (6), with respect tow, as

w
(k+1) = w

(k) + �
X

t2T

@ log P (ctjot)

@w
j
w=w(k)

; (7)

for k=0;1;2;:::; where the gradient vector elements are given by

@ log P (ctjot)

@ wi

= �a;t (1� �a;t ) di;t [ log
P (oa;tjct)

P (ov;tjct)

�

P
c2C

P (oa;tjc)
�a;tP (ov;tjc)

1��a;t log
P (oa;tjc)
P (ov;tjc)P

c2C
P (oa;tjc)�a;tP (ov;tjc)1��a;t

] ;

for 1� i� 4 (see also (4)-(6)). In (7), we choosew(0)=[1;1;1;1].
The learning rate parameter� controls convergence speed, and
since (6) is not a convex optimization problem,� needs to be kept
relatively small. In our experiments, when choosing� = 0:01,
convergence is typically achieved within a few tens of iterations.

4.3. Minimum Classification Error Parameter Estimation

The second technique adopted in this work for the estimation of the
sigmoid parametersw is theminimum classification error(MCE)
approach. Here, instead of maximizing the conditional likelihood,
we need to perform a grid search over the parameter space, and

choose the parameter vector̂w that maximizes the frame level
classification performance on the training setT. In this particu-
lar task, since four reliability indicators are selected, we need to
compute the value of four parameters. A grid search over such a
parameter space is not impossible, however since each weightwi

can vary from�1 to1, it cannot be carried out exactly.
To simplify the search problem, we make use of the MCL pa-

rameter estimates ofw, obtained as discussed in the previous sub-
section, in order to obtain the approximate dynamic range for the
parameters and limit the search within it. Then, for each parame-
ter vector value over the reduced grid, we compute the frame error.
The weight assignment that results in the best performance (mini-
mum classification error at the frame level) is chosen as the output.

5. DATABASE AND EXPERIMENTS

To validate the performance of the proposed scheme, we conduct
audio-visual ASR experiments on a multi-subject, connected-digit
recognition task. The database consists of synchronously captured,
high-quality audio and video of 50 subjects, uttering 7- or 10-tuple
strings of connected digits. Approximately 10 hrs of such data are
available. Details of this database can be found in [13].

Time-synchronous audio and visual features are extracted from
this database using the algorithms reported in [4]. Briefly, the au-
dio stream features are obtained by a linear discriminant analysis
(LDA) feature projection, applied on the concatenation of neigh-
boring audio mel-frequency cepstral coefficient vectors, followed
by a maximum likelihood linear transform (MLLT). The visual
features are obtained by an LDA/MLLT cascade, applied on the
discrete cosine transform coefficients of the pixel values of a prop-
erly normalized region-of-interest (ROI). Such ROI contains the
mouth and jaw area of the subject, detected by means of a sta-
tistical face tracking algorithm. The visual features are upsam-
pled to the audio feature extraction rate (100 Hz) using linear in-
terpolation, thus allowing audio-visual speech modeling with the
MSHMM (1). All feature transform matrices are estimated on the
training part of the database.

For the 11-word digit vocabulary (includes both “zero” and
“oh”), a set of 22 phones are used in ASR, with 104 context-
dependent sub-phonetic HMM states, and approximately 5.3k Gaus-
sian mixture components per stream. The parameters of both audio-
and visual-only HMMs are separately estimated by EM on the
training part of the database, and the two models joined into the
MSHMM (1).

To test the performance of our algorithm over varying stream
reliability conditions, we artificially add speech babble noise to the
database audio, at various levels ofsignal-to-noise ratio(SNR).
Such noise is added to the test and held-out sets of the database
only, thus creating a mismatch to the audio-only HMMs, that are
trained on the original clean database audio, as mentioned above.

In Table 2, we summarize our experimental results. We report
both frame misclassification error(FER - as compared to the 22
phone labels of the forced alignment of the test set clean audio
data), as well as the ASRword error rate (WER), %. We first
consider the audio-only and video-only performance, using the
single-modality HMMs. Subsequently, we estimate a global au-
dio exponent, constant over the entire dataset and all classes, that
minimizes the MSHMM based audio-visual WER on the held-out
set. Such exponent�a is estimated after a grid search at the res-
olution of 0.01. Not surprisingly, audio-visual ASR significantly
outperforms both audio- and visual-only WERs, demonstrating the
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Condition FER WER

Audio-Only 58.80 30.29
Visual-Only 41.18 20.45
AV-Global 31.80 10.35

AV-Frame, MCL 31.53 10.13
AV-Frame, MCE 31.18 8.64

Table 2. Frame misclassification (FER) and word error rates
(WER), %, for multi-stream HMM based audio-visual digit recog-
nition using global vs. frame dependent exponents, estimated by
means of the proposed algorithm. Audio-only and visual-only
recognition results are also depicted. Noise at a number of SNRs
has been added to the audio utterances.

suitability of MSHMM based decision fusion. We then use the four
reliability measures of Section 3 to obtain frame-dependent stream
exponents by means of (4). Both MCL and MCE algorithms, intro-
duced in Section 4, are employed to estimate the regression param-
eter vectorw. Both approaches further reduce FER, as well as the
WER, with the MCE based estimation resulting in a 17% relative
WER reduction, over the use of global weights. It is interesting to
compare these WERs to the scenario that uses utterance-dependent
exponents, and assumes a-priori knowledge of the SNR (a best
case scenario for SNR-dependent exponent estimation). Such ex-
ponents are estimated on held-out data matched to the noise level,
and are depicted in Fig. 2. Even in this “cheating” case, the re-
sulting 9.08% WER is worse than the WER achieved by frame-
dependent exponents with MCE estimation of the parameters.

The results presented above clearly demonstrate the superior-
ity of our approach over existing schemes for weighting the differ-
ent modalities for audio-visual ASR. It significantly outperforms
the use of global optimal weights, and, interestingly, MCE based
sigmoid parameter estimation even beats the “cheating” case of
SNR-dependent exponents with known noise degradation level.
We believe that this occurs because our approach captures both
audio and video stream reliabilities, and jointly uses them to esti-
mate the audio-visual fusion exponents.

6. CONCLUSIONS

We considered stream reliability measures for estimating adap-
tive, frame-dependent decision fusion weights for improved audio-
visual speech recognition by means of multi-stream HMMs. We
proposed a novelreliability to fusion weight mappingand pre-
sented two estimation algorithms (MCL and MCE) of the map-
ping parameters. This paper thus extended previous work, where
the fusion weights were either limited to constant, or audio-noise
dependent values. The reported recognition results demonstrated
the superiority of the introduced technique.
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