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ABSTRACT on the class labels [4]. Occasionly, they have been chosen to be
. . ... . . Uutterance-dependent, based on estimates of the audio signal (us-
We investigate the use of local, frame-dependent reliability indi-

) . g . ing the “voicing index” [4], or the signal-to-noise ratio [8], [9]),
cators of the audio and visual modalities, as a means of estimat-, 4\ tterance- [9], [10], or frame-dependent [6], based on confi-
ng ;tream exponent§ of multi-stream .h.'dden 'V'a”‘o.v models for dence estimates of the audio-only classifier. However, in practical
audio-visual automatic speech recognition. We consider two SUChaudio-visual ASR, the speech information carriechioh the au-
indicators at each modality, defined as functions of the speech-dio and video sig’nals can vary dramatically, and at a vecgl
class conditional observation probabilities of appropriate audio- X !

‘<ual-only classifi We sub i the f liabilit temporal level. For example, possible noise bursts, face occlu-
or visual-only classitiers. YWe subsequently map the four reliabiiity giqn o face tracking failures can greatly change the reliability of
indicators into the stream exponents of a state-synchronous, two

hidden Mark del X o f i f their li ‘the affected stream in ASR. Clearly, frame-dependent combination
strear_n Idden Markov model, as a sigmol unc_t|on oft err linear weights that capture the information content of both modalities are
combination. We propose two algorithms to estimate the sigmoid

h . o S .~.~ needed to handle this scenario.
weights, based on the maximum conditional likelihood and mini- . . .
In this paper, we propose an algorithm to estimate such frame-

mum classification error criteria. We demonstrate the superiority dependent weights within the framework of the state-synchronous

of the prpposed approach on aconnected-digit a.UdiO'ViSl.J".il SIOeecrFnulti-stream HMM, a widely used model for audio-visual decision
recognition task, under varying audio channel noise conditions. In- usion [3]-[5]. The algorithm utilizes well known indicators of the

deed, the use of the estimated, frame-dependent stream exlDoner]LS'onfidence of both audio- and visual-only classifiers [9], [11] to
results in a significantly smaller word error rate than using global

stream exponents. In addition, it outperforms utterance-level ex- c_apture the_ relia_lbility of the two §treams of interest,_ and then_ es-
ponents, even tholugh the Iattér utilize a-priori knowledge of the timates a sigmoid, that maps their values to the desirable decision
P T fusion weights. Both the proposed mapping and the estimation
utterance noise level. . . o -
algorithm constitute the contributions of this work.
The remaining of the paper is structured as follows: Section 2
1. INTRODUCTION reviews the multi-stream HMM framework for audio-visual speech
recognition, and Section 3 introduces the reliability indicators used.
Automatic speech recognitiddSR) using information from the  Section 4 is devoted to the audio-visual combination weight esti-
video of the speaker’s face, in addition to the traditional audio, has mation a|gorithm’ based on the frame-dependent moda"ty reliabil-
been an active area of research in recent years [1]-[6]. Such workity indicators. Section 5 describes the audio-visual database and

has been well motivated by human speech perception [7], as wellASR experiments, and finally, Section 6 summarizes the paper.
as by the obvious visual signal robustness to acoustic degradation.

A challenging problem in audio-visual ASR is the integration
(fusion) of the two heterogeneous sources of speech information 2. THE MULTI-STREAM HMM
[1]. A number of techniques have been proposed in the literature
for this task. It is generally agreed that the combination of single- The main concentration of this paper is modeling the reliability of
modality (audio- and visual-only) classifier outputs (e.g., obser- the two modalities in decision fusion for audio-visual ASR. Since
vation likelihoods), also known as tlidecision fusiorframework, temporal modeling in not our focus, we restrict ourselves to the
outperforms fusion at the feature level [3]-[6]. Typically, decision popular, state-synchronousulti-stream HMM(MSHMM) as the
fusion linearly combines the two classifier scores, where the clas- statistical model for audio-visual integration [3], [4]. Extensions
sifiers can be neural networks [6], [8], or, more commohigiden of our proposed algorithm to models that allow audio-visual state
Markov model§HMMs) [3]-[5], and the integration level can vary, asynchrony, such as the product [3] and coupled HMMs [5], or to
allowing for example audio-visual asynchrony, as is the case in the neural network classifiers [6], can easily be devised.
product [3], [4] and coupled HMMs [5]. The linear combination The MSHMM is a variant of the standard HMM [12], where
weights manipulate the contribution of each modality to the recog- instead of a single observation stream, there exist multiple streams
nition process, hopefully capturing the reliability of the audio and of information (in our case, two: one for each modality, audio and
visual observation streams. visual). Given a time-synchronous, bimodal (audio-visual) obser-
In the literature, such combination weights have been usually vation vectoro; = [04,:,0.,:] at time instant (“frame”), the
set toglobal values over an entire dataset, either constant for all MSHMM models its class-conditional likelihood as the product of
classes of interest (such as HMM states) [3]-[5], or dependent the observation likelihoods of its single-stream components, raised
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10 Reliability || Correlation with | Correlation with
ol o Indicator || audio-only WER| visual-only WER
A L, -0.7434 0.0183
8r Do Ly 0.1041 -0.2191
. N-LIKELIHOOD (2)/>< | Da -0.7589 0.0126
, D, 0.1014 -0.2066

- Table 1. Correlation of the two stream reliability indicators (2)
7 and (3) with the audio- and visual-only word error rates (WERS).

contained in an observation, assumed to be modeled by a partic-
2r N-DISPERSION (3) 1 ular classifier [9]-[11]. Following prior work [11], we select two
. | reliability indicators for each of the two streams. Given the stream

observatiorno, , both indicators utilize the class-conditional ob-

AUDIO RELIABILITY INDICATOR VALUE
3]
\

0 ‘ ‘ ‘ ‘ ‘ servation likelihoods of itgV-best most likely generative classes,
0 5 10 15 20 denoted by ¢, €C, n = 1,...,N. These are ranked according
SIGNAL-TO-NOISE RATIO (SNR), dB to descending values @(os :|c), ce C (see also (1)).

The first reliability indicator is theéV-best log-likelihood dif-

Fig. 1. Audio reliability indicatorsC,,. andD,; (see (2) and (3)), ference. defined as

depicted as a function of the noise level, present in the audio data.

N
1 P ( Ot | Cs,t,1 )
L = — log —————>-~ | 2
) s,t N_]-Z og P(Ost|cstn) ()
to appropriatestream exponentsamely n=2 ’ o
This is chosen, since it is argued that the likelihood ratios between
P(ot|c) = P(o |C)>\s,t (1) . e - . .

t st . the first IV classification decisions are informative about the class
s€{a,v} discrimination. The second selected reliability indicator is the N-

In (1), ce C denote the speech classes of interest (such as context-beSt log-likelinood dispersion. This is defined as

dependent, sub-phonetic units), aRdos :|c), s =a,v, are the 92 N N P(0st|cotn)

audio- and visual-only emission probabilities, typically considered Ds; = NN=D Z Z log # )
to be Gaussian mixture mode(§&MMs). Stream exponents; ; ( ) n=1n/=n+1 (05 Catn)

are in general non-negative, and, in this work, they are also as-
sumed to add to one, i.6\,:+A,: =1, for all ¢. Notice that, due

to their presence, (1) does not represent a probability density func-
tion. Instead, it can be thought of as@oringfunction. This view-
point allows us to analyze it similarly to the standard maximum
likelihood framework, and employ thexpectation-maximization
(EM) algorithm [12] to estimate the MSHMM parameters, where
the expectation step can be performed separately for each GMM
or jointly for the entire model.

ExponentsA,,. provide a means to model the reliability of
each feature stream, by allowing one to manipulate the contribu-
tion of each modality to the recognition score. In realistic audio-
visual ASR, such reliabilities can rapidly vary at a temporal level.
Therefore, in this work, we consider the exponents to be time vary-
ing, defined as a function of local (frame-dependent) reliability in-
idr:;a;g(rjig:}tr;ié\;]vztsrgaeﬁq":;ggnﬁirﬁlséicgfofésgg;zg Icr:nﬂt]r?;():l(ly?\r%- a correlation analysis between the values of these indicators, av-

’ eraged at the utterance level, and the utteramoedl error rate

sponding local modality observations, and the respective statlstlca)I((WER)_ The results are summarized in Table 1, and they clearly

model that is assumed to generate them.. AS. aresult, the stream e demonstrate the presence of significant within-stream correlation.
ponents become a function of tf@nt audio-visual feature vector

Thus, (1) differs to work reported elsewhere, where exponents As expected, there is low correlation across streams. These ob-
o i 9 P ’ P servations argue favorably for using reliability indicators of both
are set to “global” weights, constant over a whole dataset [3]-[5],

possibly depending on the class lab¢4], or locally varying, but audio and visual streams in audio-visual ASR.
depending only on the audio observatian: [4], [6], [9], [10].

The main advantage of (3) over (2) lies on the fact that (3) captures
additional NV-best class likelihood ratios, not present in (2). In our
analysis, we choos® to bebs.

In the remainder of this section, we argue that the selected
indicators do capture the reliability of the speech class informa-
tion, available in the stream of interest. For example, such in-
formation, on basis of the audio channel alone, is expected to
'degrade, as the audio becomes corrupted by increasing levels of
noise. Fig. 1 demonstrates that bath : and D, : successfully
convey the degradation of the audio stream reliability, since they
are monotonic on the signal-to-noise ratio (see Section 5 for the
data and the experiment design).

Of course, our primary interest lies in minimizing the word
error rate based on MSHMM (1). To further justify the selection
of the four reliability indicators in audio-visual ASR, we report

4. RELIABILITY BASED STREAM EXPONENTS

3. STREAM RELIABILITY INDICATORS 4.1. Reliability Indicator to Stream Exponent Mapping

A number of functions have been proposed in the literature as aWe would like now to estimate a mapping from the four selected
means of assessing the reliability of the class information that is reliability indicators to the desired MSHMM stream expongpt ,
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and its derived\,,; =1— M\, . We choose to use a sigmoid function choose the parameter vectér that maximizes the frame level
for this task, due to its nice properties: The sigmoid is bounded classification performance on the training §et In this particu-
within zero and one, and it is monotonic, and smooth. For simplic- lar task, since four reliability indicators are selected, we need to
ity, let us denote by, the vector of the four selected indicators, compute the value of four parameters. A grid search over such a

namely[di ¢+ ,da2,¢,ds,e,dai] = [Lat, Lot ,Dat,Dut]. Then, parameter space is not impossible, however since each wejght
the sigmoid mapping is defined as can vary from—oo to oo, it cannot be carried out exactly.
1 To simplify the search problem, we make use of the MCL pa-
Aot = I ) (4) rameter estimates &, obtained as discussed in the previous sub-
1+ exp (=30, widit) section, in order to obtain the approximate dynamic range for the

wherew = [w1,w2,ws,wa4] is the vector of the mapping pa- parameters and limit the search within it. Then, for each parame-
rameters. In the following, we propose two algorithms to estimate ter vector value over the reduced grid, we compute the frame error.
w , given frame-level labeled audio-visual observati¢(s, c; ) , The weight assignment that results in the best performance (mini-
t € T }, for a training set of time instantE . The first algorithm mum classification error at the frame level) is chosen as the output.
seeks maximum conditional likelihood estimates of paramsters
under the MSHMM observation model (1), whereas the second 5 DATABASE AND EXPERIMENTS
method seeks @& that minimizes the misclassification error on set
7. Notice that the required training set labels ¢ € 7, can be 14 jidate the performance of the proposed scheme, we conduct
obta.lned by a forced alignment of the training set utterances using,,,gio-visual ASR experiments on a multi-subject, connected-digit
a suitable HMM. recognition task. The database consists of synchronously captured,
high-quality audio and video of 50 subjects, uttering 7- or 10-tuple
4.2. Maximum Conditional Likelihood Parameter Estimation strings of connected digits. Approximately 10 hrs of such data are
available. Details of this database can be found in [13].
Time-synchronous audio and visual features are extracted from
this database using the algorithms reported in [4]. Briefly, the au-
P(0a,t|c) ¢ P(0y|c) ot dio stream featur(_es are obtair!ed by a linear discrim_inant ane_llysis
5 P(0at]c) mt Ploygc) e’ (%) (LDA) featgre projection, applied on the cpncatenatlon of neigh-
c€C at vt boring audio mel-frequency cepstral coefficient vectors, followed

under the assumption of a uniform class piifc) (see also (1)). by a maximum IiI_<eIihood linear transform (MLLT). Th_e visual
We then seek parametessof (4) that result tanaximum con- features are obtained by an LDA/MLLT cascade, applied on the

Given an audio-visual observation vecigr, we represent the con-
ditional likelihood of the classe C by

P(clo) =

ditional likelihood (MCL) of the training data labels, namely discrete cos_ine trangform (_:oefficients of the pixel values of_a prop-
erly normalized region-of-interest (ROI). Such ROI contains the
W = arg maXZ log P (ct|o). (6) mouth and jaw area of the subject, detected by means of a sta-

tistical face tracking algorithm. The visual features are upsam-
pled to the audio feature extraction rate (100 Hz) using linear in-
terpolation, thus allowing audio-visual speech modeling with the
MSHMM (1). All feature transform matrices are estimated on the
8 log P(c|or) training part of the database.

wltt) = w® o H g cejor) ws @ For the 11-word digit vocabulary (includes both “zero” and

T ow w=w “oh”), a set of 22 phones are used in ASR, with 104 context-
dependent sub-phonetic HMM states, and approximately 5.3k Gaus-
sian mixture components per stream. The parameters of both audio-

teT

The above optimization problem is solved iteratively, by perform-
ing a gradient descent on (6), with respecttpas

for k=0,1,2,..., where the gradient vector elements are given by

and visual-only HMMs are separately estimated by EM on the
9 log P(ct|o) = At (1= Aat)di [1Og P(oa,tlet) training part of the database, and the two models joined into the
O w; ’ o P(oy,¢lct) MSHMM (1).
To test the performance of our algorithm over varying stream
Z P(0a.1]c)*** P(0y ]c) 2= log P(0q,t|c) reliability conditions, we artificially add speech babble noise to the
_ cec ’ ' P(oy¢|c) ] database audio, at various levelssifnal-to-noise ratio(SNR).
Cp(0a1t|c)xa,tp(ov,t|c)1fka,t ' Such noise is added to the test and held-out sets of the database
e only, thus creating a mismatch to the audio-only HMMs, that are
for 1< i< 4 (see also (4)-(6)). In (7), we choos€® =[1,1,1,1]. trained on the original clean database audio, as mentioned above.
The learning rate parametgr controls convergence speed, and In Table 2, we summarize our experimental results. We report
since (6) is not a convex optimization problegneeds to be kept ~ bothframe misclassification errofFER - as compared to the 22
relatively small. In our experiments, when choosipg= 0.01, phone labels of the forced alignment of the test set clean audio

convergence is typically achieved within a few tens of iterations. data), as well as the ASRord error rate (WER), %. We first
consider the audio-only and video-only performance, using the
single-modality HMMs. Subsequently, we estimate a global au-
dio exponent, constant over the entire dataset and all classes, that
The second technique adopted in this work for the estimation of the minimizes the MSHMM based audio-visual WER on the held-out
sigmoid parameters is theminimum classification errofMCE) set. Such exponerit, is estimated after a grid search at the res-
approach. Here, instead of maximizing the conditional likelihood, olution of 0.01. Not surprisingly, audio-visual ASR significantly
we need to perform a grid search over the parameter space, andutperforms both audio- and visual-only WERS, demonstrating the

4.3. Minimum Classification Error Parameter Estimation
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[ Conditon [ FER [ WER | 09

Audio-Only 58.80 | 30.29
Visual-Only || 41.18 | 20.45 0.8y ]
AV-Global 31.80| 10.35 = |
AV-Frame, MCL || 31.53| 10.13 T
AV-Frame, MCE || 31.18| 8.64 O 06l |
x 0
Table 2 Frame misclassification (FER) and word error rates % 05r i
(WER), %, for multi-stream HMM based audio-visual digit recog- &
nition using global vs. frame dependent exponents, estimated byg 04r )

means of the proposed algorithm. Audio-only and visual-only 7
recognition results are also depicted. Noise at a number of SNRsz 03| 7

has been added to the audio utterances.
0.2 il

suitability of MSHMM based decision fusion. We then use the four 0.1 5 : 1 i 2
reliability measures of Section 3 to obtain frame-dependent stream
exponents by means of (4). Both MCL and MCE algorithms, intro- SIGNAL-TO-NOISE RATIO (SNR), dB

duced in Section 4, are employed to estimate the regression paramgig. 2. Optimal MSHMM audio stream exponent as a function of

eter vectorw. Both approaches further reduce FER, as well as the {he audio channel SNR. The audio-only MSHMM component has
WER, with the MCE based estimation resulting in a 17% relative peen trained on clean audio data (20 dB SNR).

WER reduction, over the use of global weights. It is interesting to

compare these WERSs to the scenario that uses utterance-dependent

exponents, and assumes a-priori knowledge of the SNR (a best [3] S. Dupont and J. Luettin, “Audio-visual speech modeling
case scenario for SNR-dependent exponent estimation). Such ex-  for continuous speech recognitionEEE Trans. Multim.,

ponents are estimated on held-out data matched to the noise level, 2(3):141-151, 2000.

and are depicted in Fig. 2. Even in this “cheating” case, the re- [4] C. Neti, G. Potamianos, J. Luettin, I. Matthews, H. Glotin,
sulting 9.08% WER is worse than the WER achieved by frame- D.Vergyri, “Large-vocabulary audio-visual speech recog-
dependent exponents with MCE estimation of the parameters. nition:A summary of the Johns Hopkins summer 2000 work-

The results presented above clearly demonstrate the superior- shop”, Proc. Wks. Multim. Sig. Procesgp. 619-624, 2001.
ity of our approach over existing schemes for weighting the differ- [5] A.V. Nefian, L. Liang, X. Pi, X. Liu, and K. Murphy, “Dy-
ent modalities for audio-visual ASR. It significantly outperforms n.;m.lic Bayési.;;m netv’vor.ks %or-audio-visua.l speech, recogni-
the use of global optimal weights, and, interestingly, MCE based tion,” in press:EURASIP J. Appl. Sig. Proces2002
sigmoid parameter estimation even beats the “cheating” case of ' ) T o
SNR-dependent exponents with known noise degradation level. [6] M. Heckmann, F. Berthommier, and K. Kroschel, “Noise
We believe that this occurs because our approach captures both a}daet_lve stream weighting in audio-visual speech recogni-
audio and video stream reliabilities, and jointly uses them to esti- tion,”in press:EURASIP J. Appl. Sig. Procesg002.

mate the audio-visual fusion exponents. [7] H. McGurk and J. MacDonald, “Hearing lips and seeing
voices,"Nature, 264746-748, 1976.
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proposed a noveleliability to fusion weight mappingnd pre- D.G. Stork and M.E. Hennecke (EdsSpeechreading by Hu-
sented two estimation algorithms (MCL and MCE) of the map- mans and Machinegerlin: Springer, pp. 461-471, 1996.

ping parameters. This paper thus extended previous work, wher: 10]
the fusion weights were either limited to constant, or audio-noise compensation with visual information in speech recogni-

dependent values. The reported recognition results demonstrated tion,” Proc. Europ. Tut. Wks. Audio-Visual Speech Progess.
the superiority of the introduced technique. pp. ’53—56 1997.
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