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ABSTRACT

To improve recognition, speech signals corrupted by ava-
riety of noises can be used in speech model training. Pub-
lished hidden Markov modeling of speech uses multiple
Gaussian distributions to cover the spread of the speech
distribution caused by the noises, which distracts the mod-
eling of speech event itself and and possibly sacrifices the
performance on clean speech. We extend GMHMM by
alowing state emission parameters to change as function
of an environment-dependent continuous variable. At the
recognition time, a set of HMMS specific to the given
the environment is instantiated and used for recognition.
Variable parameter (VP) HMM with parameters modeled
as a polynomial function of the environment variable is
developed. Parameter estimation based on EM-algorithm
is given. With the same number of mixtures, VPHMM
reduces WER by 40% compared to conventional multi-
condition training.

1. INTRODUCTION

Speech recognition in a noisy environment using hidden
Markov models requires modeling speech distributionsin
the given environment, otherwise severe performancedegra-
dation may occur [1]. Approaches of such a modeling
include using noisy speech during the training phase [2,
3,4, 5, 6, 7] which can be generalized to multi-condition
training [8, 9] in which available speech data collected in
avariety of environmentsare used in model training.

Published Gaussian mixture hidden Markov modeling of
speech uses multiple Gaussian distributions to cover the
spread of the speech distribution caused by the noises.
Three problems with this approach can be mentioned:

/1 Since no noise modd is incorporated and since the
recognition accuracy isonly optimized to theintensity and
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characteristics of the training noises, recognition perfor-
mance could be sensitive to noise levels[10].

12/ At the recognition time, a speech signal can only be
produced in aparticular environment. However, for agiven
noisy environment, the distributions of al conditions in
the training phase are al open to the search space. The
variety of noisy speech distributions decreases model dis-
criminability. Therefore, the improvement of recognition
robustness to noisy speech is obtained at a cost: sacrific-
ing the recognition rate of any given environment includ-
ing the clean one.

/3/ Sinceisdifficult to collect al varieties of noisy datato
cover al possible types of noises at al SNRs, the perfor-
mance on unseen noises remains unpredictable.

We propose an extension to the conventional HMM, re-
ferred to as variable parameter Gaussian mixture HMM
(VPHMM). VPHMM alows HMM parametersto change
as function of a continuous variable that depends on the
environment. At the recognitiontime, a set of HMMs spe-
cific to the given the environment is instantiated. Speech
recognition istherefore based on the environment-specific
models, instead of on the models with distributions aver-
aged over al training environments.

Modeling multi-dimensional Gaussians distributions with
noise-dependent mean and covariance has been used in
the past in speech recognition, for instance in utterance
rejection in noisy environments[11, 12].

In this paper, we devel op variable parameter Gaussian mix-
ture HMM where parameters are modeled as apolynomial
function of the environment variable. ML parameter es-
timation based on EM-algorithm is given. We give the
solution for the mean vectors of state emission PDF.

2. VARIABLE PARAMETER HMM

Fig-1 plots the variation of mean vector components of
an HMM state as function of SNR change. The plot is
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obtained by computing the mean of uniformly segmented
states for a given phoneme under specific SNRs. The plot
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Fig. 1. Variation of MFCC mean components
(C1,--- ,Cr; ACY, - -+, ACY) vs. SNR for the first state
in/ah-1/ of female speakers

clearly shows that, for each dimension, the distribution
of the observed feature value is a function of SNR. Pool-
ing such distributionstogether and train SNR independent
models, as in multi-condition training, inevitably yields
flat distributions. Our task is to model such variation un-
der the GMHMM framework. We will focus on the state
emission PDFs. Other HMM parameters, including tran-
sition probabilities, can be solved by following the same
procedure.

Let N be the number of HMM states and M be the mix-
ture number. Let Q, 2 {1,2,...N} bethe set of states,

and Q,, 2 {1,2,... M} be the set of mixture indica-
tors. For an observed speech sequence of T' vectors: O 2
of 2 (01,02, ...07), Weintroduce state sequence

0 £ (6,...07) where b, € Q,

and mixture indicator sequence
—_ A
== (&,...&r) where & € Q.

We assume that, at an HMM state ¢, the emission proba-
bility density function is a multi-variate Gaussian mixture
distribution with parameters depending on v, ascalar rep-
resenting the environment [13].

p(0t|9t = i; I/) = Z ai7k(l/)bi7k(ot) (1)
k

= Z a; (V)N (04 wik(v), Bik(v))
k

where u; . (v) is the mean vector of the mixing compo-
nent k at the state j, X, () is the covariance matrix of

the mixing component  at the state ¢, o; 1, (v) 2 Pr(& =
k|0: = i;v) isthe a priori probability of component
at the state 7, and ), o; x(v) = 1 Notice that p;  (v),
¥, x(v) and «; 1 (v) are al function of environment v.
However, in the next only ;1. (v) will be elaborated.

3. ML PARAMETER ESTIMATION

3.1. Criterion

We use maximum likelihood criterion to find model pa-
rameters, which can be solved by EM algorithm[14]. Two
kinds of data are involved in EM: observable X and non-
observable Y. The EM algorithm maximizes, w.r.t. the
new parameter set )\, the mathematical expectation of the
log-likelihood of {X,Y}, conditioned on the observed
data X, and for avalue X € A of the parameter. The
expectation is taken over the sample space of the unob-
servabledataY':

Q(\}) 2 Ey {logp(X, YN)IX, A} (2

3.2. Formulation

We will use z" to denote any variablesor functionsinstan-
tiated with the r-th observation sequence. Suppose we
have R observation sequences: X = (0%, 02,...0F)
with corresponding unobservable variables:

Y = (0,51,02,52,...08 =8), We have:

R
p(X,Y)) = [[p(O7,0",E"|)) ©)

r=1

Using Eg-3, Eg-2 can be instantiated as

R
QM) =33 p(e,E70", X) logp(0”, O, E7|N)

r=1 @7 &~

=Qu(AIN) + Qa(AIX) + Qe (AX) + Qu(A|A)

Q., Q. and 9., which share the same mathematical struc-
ture, are respectively function of HMM initial state oc-
cupancy probabilities, HMM transition probabilities, and
mixing probabilities. The maximization of the related equa-
tions are similar and can be solved by following [16]. Q.
isafunction of state observation parameters:

R T
AN EY ST S S w6 = 5,60 = k|07, %) (@)

r=1;€Qs kEQ,, t=1

log bk (0})
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Themaximization of Q; () for VPHMM requiressolu-
tion of linear systems and will be presented in section 3.3.

3.3. Solution to observation parameters

We derivethe parametersinvol ved in maximizing the quan-
tity Q»(A|A) as defined by Eg-4. As introduced in Eg-1,

bjr(0¢) is the observation pdf of o, at state 4, assuming
mixture component k. We now specify the form of de-

pendence of mean vector on the environment v. Many

continuous function of v can be used to model such de-

pendences. Polynomial function of v isexploited here, for

three reasons. /1/ With higher enough degree, polynomial

approximation can be arbitrarily close to any continuous
function. /2/ The derivatives of polynomia function are
easy to obtain, which makesit attractivein parameter esti-
mation. /3/ As shown by Fig-1, the dependenceis smooth
and can be modeled by low order polynomials.

We assume that the observation mean vector is a polyno-
mial function of environment v:

A .
pik(v) =Y cip g ©)
J
With Eg-5, equating the partial derivative of Eq-4 w.r.t.
c;,i,; t0 zero, we have, after some arrangement [13]:

Pl R T _ .
S ST p(6; =i = K0T, N (SBik () o ek
p=0r=1t=1

R T"

=3 p(6i =i,& = k|O", N)(Zik(1r) v - 0f (6)

r=1t=1
Let, for each state + and each mixing component &,

Lx(Cm o, B) 2 7
R T" _
SN p(0; =i, = KO", X (Biw () 0
r=1t=1

Eg-6 can be written as

Py
Zli,k(yrayrapvj) *Cikp = lin(Vr,OI,j, 1) (8)
p=0

Eg-8 describes, for each state < and mixture component &,
alinear equation system with P; ;, + 1 variablesdefinedin
the vector space R”, which can be written in a compact
form:

Ajrcir =big )
Where A; i isa(P;  + 1) x (P; 1 + 1) dimension matrix:
u; 1(0,0) u; (0, P; 1)
A2 . ) .
bk = : w; i (p, J) :
u; (P, 0) u; i (Pik, Pik)

whereu; . (p, j) isitself a.D by D matrix:

LA )
Wk (p,5) = Lix(Vr, Ve, 0, J) (10)

b, isa(P; + 1) dimensional vector:

AN .
bik = [vik(0),...vix (), ... vir(Pig)]”

where v, () itself isa D-dimensional vector:

RAN .
vi,k(]) = li,k(VﬁO;a]v 1) (11)

andc; ; a(P;  + 1) dimensional vector:

A .
cie = [€ik(0), ... cin(h), .- cin(Pip)]”

c;,k,; Can be obtained by any adequate linear system solu-
tion method. In solving 9, the value of (X 4 (v,)) " can
be substituted by the onein the X set, since such a substi-
tution will still guarantee the increase of Eg-4 as required
by EM procedure. Finally, for diagonal covariance matrix
case, the computation is substantially simpler [13, 11].

4. EXPERIMENTAL RESULTS

The goal of the experimentation reported in this paper is
to verify, on the same noisy training and testing data sets,
if VPHMM can achieve lower recognition error rates than
conventional multi-condition training.

Speech database used in the experimentsis TIDIGI TS data-
base, corrupted digitally with highway car noise recorded
with a hand free microphone. Training data contains 8603
utterances. The SNR ranges from 40 dB to -5 dB, in an
uniform distribution. Testing database contains 8507 ut-
terances, not used as training data. The testing SNR is
either 30, 25, 20, 15, 10, or 5 dB, with equal probabilities.
Inthe experiments, the environment variable v (EQ-5) mea-
sures the SNR of an utterance. Second order of polynomi-
als are used. At the recognitiontime, a set of HMMS spe-
cific to the given the environment is instantiated according
to Eg-5 and used for recognition.

Fig-2 compares conventional HMM (CVHMM) with VP-
HMM, both with a single mixture per HMM state. The
two schemes have thus the same degree of freedomin dis-
tribution mode representation. It can be seen that over
SNR ranging from 30 to 5 dB, VPHMM gives 40% lower
word error rates.

5. CONCLUSION

Conventional GMHMM uses a constant set of parameters
to cover all noisy environments, resulting in HMM distri-
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Fig. 2. WER vs. SNR with HMM trained using conven-
tional multi-condition training and using VPHMM train-

ing

butions that do not match any of the environments. vari-
able parameter incorporates environment variables (e.g.
SNR) into conventional HMMs to make the HMM envi-
ronment dependent. By explicitly modeling the Gaussian
mean vectors as polynomials of SNR, VPHMM adjusts
its model parameters based on the environmental SNR to
obtain accurate speech distribution under any given SNR
level. With the same number of mixtures, VPHMM re-
duces by 40% the word error rates given by CVHMM for
SNR ranging from 5 to 30 dB. Interesting directions for
further study includes polynomial function tying among
states, the use of vectoria environment variablerather than
scalar variable, and modeling variance as environment de-
pendent quantity.
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