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ABSTRACT 

 
In this paper we report on recent improvements in the University 
of Colorado system for the DARPA/NRL Speech in Noisy 
Environments (SPINE) task. In particular, we describe our 
efforts on improving acoustic and language modeling for the task 
and investigate methods for unsupervised speaker and 
environment adaptation from limited data.  We show that the 
MAPLR adaptation method outperforms single and multiple 
regression class MLLR on the SPINE task.  Our current SPINE 
system uses the Sonic speech recognition engine that was 
recently developed at the University of Colorado.  This system is 
shown to have a word error rate of 31.5% on the SPINE-2 
evaluation data. These improvements amount to a 16% reduction 
in relative word error rate compared to our previous SPINE-2 
system fielded in the Nov. 2001 DARPA/NRL evaluation.  
 

1. INTRODUCTION 
 
The Speech in Noisy Environments (SPINE) task attempts to 
measure and inspire improvements in state-of-the-art processing 
for robust continuous speech recognition [1]. The task has 
several challenges: limited task-dependent training data (~20 
hours), multiple military noise environments in both training and 
testing, unsegmented audio streams as well as a limited amount 
of speech per task session for recognizer adaptation. 
 
In November of 2000 (SPINE-1) and November 2001 (SPINE-
2) the Naval Research Laboratory (NRL) evaluated systems on 
the task with support by DARPA.  Participating sites in the 2001 
evaluation included: SRI, IBM, University of Washington, 
University of Colorado (CU), AT&T, the Oregon Graduate 
Institute (OGI), Mississippi State, ATR, and Carnegie Mellon 
University (CMU).   Many of these sites have previously 
reported results on SPINE-1 [2-4] and SPINE-2 tasks [5-8].   
The best performing systems on that task used adaptation in 
either the feature or model-domain and also included the use of 
multiple parallel speech recognizers trained from several feature 
types (e.g., MFCC, PLP, root cepstrum).  Output from each 
recognizer is generally combined through a hypothesis fusion 
method to produce a single output that is lower than the error 
rates of any single recognizer (e.g., see [5,6]).   
 
The University of Colorado participated in both SPINE-1 [4] 
and SPINE-2 evaluations.  Our November 2001 system was for 
the first time based on the University of Colorado speech 
recognizer named Sonic [9].  During that evaluation our single 
best recognizer output had an official error rate of 37.5% at a 
decoding speed of 9 times real-time.   In this paper, we describe 
recent improvements both in terms of general recognizer 

development and task-dependent modeling.  We focus on issues 
related to lowering the error rate of our single-best recognizer 
fielded on the SPINE task and do not consider the issue of 
recognizer fusion in this work. 
 

2. THE SPINE TASK 
 
The SPINE task uses the ARCON Communicability Exercise 
(ACE) that was originally developed to test communication 
systems [10] and consists of collaboration between a pair of 
talkers who participate in a battleship simulation.  One 
participant plays the role of a Firing Officer (e.g., controlling 
weapon systems such as a laser cannon and mines) while the 
other participant plays the role of a Search Officer (e.g., manning 
the radar and sonar equipment).  Each player is situated in a 
separated sound isolated room and use military handsets and 
headsets that are appropriate for the simulated acoustic 
conditions.  During the exercise, the two participants collaborate 
to search and destroy targets by declaring and confirming grid 
locations (x-axis & y-axis coordinates) to fire upon.  The grid 
locations in SPINE-1 consisted of confusable words from the 
Diagnostic Rhyme Test (DRT).  For SPINE-2, the grid points 
consisted of less confusable military words.   For each booth, 
noise indicative of typical military environments is played 
through loud speakers.  The SPINE-1 evaluation data considered 
six noise environments: aircraft carrier control decision center, 
AWACS airplane, a military vehicle, a military field shelter, an 
office environment, and a quiet environment.  SPINE-2 extends 
on SPINE-1 data by considering the six noise types in addition 
to military tank and helicopter environments.  The resulting 
noisy speech from each booth is recorded through head-worn 
microphones before being passed through a simulated 
communications channel.   In this paper we consider only speech 
recognition on the non-coded speech channel. 
 

3. THE SONIC ASR ENGINE 
 

3.1. Current ASR System Architecture 
 

Our most recent fielded evaluation system in November 2001 
(SPINE-2) was designed using Sonic: The University of 
Colorado large vocabulary continuous speech recognition system 
[9]. Sonic is based on continuous density hidden Markov 
(CDHMM) acoustic models. Context dependent triphone 
acoustic models are clustered using decision trees.  Each model 
has three emitting states with gamma probability density 
functions for duration modeling.  Features are extracted as 12 
MFCCs, energy, and the first and second differences of these 
parameters, resulting in a feature vector of dimension 39. The 
search network is a reentrant static tree-lexicon. The recognizer 
implements a two-pass search strategy.  The first pass consists of 
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a time-synchronous, beam-pruned Viterbi token-passing search. 
Crossword acoustic models and 3-gram or 4-gram language 
models (in an approximate and efficient way) are applied in the 
first pass of search.  The first pass creates a lattice of word ends. 
During the second pass, the resulting word-lattice is converted 
into a word-graph.  Advanced language models (e.g. dialog-act 
and concept based, long span) can be used to rescore the word 
graph using an A* algorithm or to compute word-posterior 
probabilities to provide word-level confidence scores. 

 
Sonic provides an integrated environment that incorporates voice 
activity detection (VAD), speech enhancement as well as various 
feature and model-based adaptation and normalization methods.  
The recognition architecture provides support for rapid 
portability to new languages.  In 2002, Sonic was ported from 
English to the Spanish, Turkish, and Japanese languages. 
 
3.1. General Recent Improvements 
 

Our SPINE-2 system in Nov. 2001 represented our initial 
implementation of the Sonic speech recognizer.  The fielded 
system used a flat structured lexicon, class-based trigram 
language model consisting of manually determined word 
compounds, single regression iterative MLLR mean and global 
variance scaling transform, and generalized triphone acoustic 
models.  Since Nov 2001, we included an efficient lexical tree 
search, integrated a decision tree triphone acoustic model trainer, 
added support for 4-grams into our first-pass search, 
implemented data-driven word compounding, and incorporated 
additional feature normalization (cepstral variance 
normalization, VTLN) and speaker adaptation (MAPLR 
adaptation) methods.  
 

4. SPINE SYSTEM OVERVIEW 
 
Our SPINE system consists of a novel integrated speech 
detection and multiple pass recognition search as shown in 
Figure 1.  During each recognition pass, a voice activity detector 
(VAD) is dynamically constructed from the current adapted 
system acoustic models.  The VAD generates a segmentation of 
the noisy audio into utterance units and LVCSR is performed on 
each detected speech region.   The resulting output (a confidence 
tagged lattice or word string) is then used to adapt the acoustic 
model means and variances in an unsupervised fashion.  The 
adapted acoustic models are then reapplied to obtain an 
improved segmentation, recognition hypothesis, and new set of 
adapted system parameters.  The integrated adaptation procedure 
can be repeated several times resulting in sequential 
improvements to both segmentation and recognition hypotheses. 
 

 

 
 
 
 
 
 
 

Figure 1: Diagram of SPINE multi-pass recognition search. 
 
For the SPINE task, we have found that tight coupling between 
the segmentation and recognition system is essential for robust 

performance.  Furthermore we illustrate how this integrated 
approach leads to simpler methods for voice activity detection 
for noisy environments.  The following sections describe our 
current system for the SPINE task in detail. 
 
4.1. Training Data 
 

Acoustic and language model training data for the SPINE-2 
evaluation consisted of conversations that were used for both 
training and testing in the previous SPINE-1 evaluation and 
conversation sides listed as training and development test for the 
SPINE-2 evaluation.  For the SPINE-2 evaluation we optimized 
our recognizer settings on the provided 1.1-hour development 
test data before incorporating both the data and recognizer 
settings into our final system.  Table 1 summarizes the training 
data used in the experiments described in this paper. 
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Table 1: SPINE-2 evaluation system training data 
 
4.2. Acoustic Model 
 

The acoustic trainer for Sonic is based on sequential estimation 
using Viterbi forced alignment and phonetic decision tree state 
clustering [12].  Alignments were initially boot-strapped using 
Wall Street Journal acoustic models.  During Viterbi forced 
alignment we used a single MLLR mean and variance transform 
on the gender-dependent models to improve the alignment 
quality for each speaker session.  After alignment, the models are 
estimated using decision tree state clustering and the procedure 
is repeated to obtain improved alignments and model parameter 
estimates.  Our first-pass acoustic models consist of gender-
dependent (within-word and cross-word) triphones using 
standard 39-dimensional MFCC features.  Our second-pass 
(adaptation pass) acoustic models are normalized by both 
cepstral variance and vocal tract length [13]. 
.   
4.3. Language Model 
 

For the SPINE-2 evaluation in Nov. 2001 we developed a class 
N-gram language model trained from the 32k utterances shown 
in Table 1. This work was motivated by the fact that the grid-
point labels were changed from SPINE-1 to SPINE-2 and class 
language models provided a convenient means for capturing the 
task specific word usage for targeting objects in the battleship 
game.  Our class language model was based on 3 word classes: 
row (x-axis), column (y-axis), and name (user name).   Words 
were grouped into row and column classes through inspection of 
the training data for SPINE-2.   In this task there are several 
words that can be modeled as belonging to multiple classes.  For 
example, the spoken words in the spelling of  “VON” (read as 
“Victor Oscar Nancy”) overlap with elements of the row grid 
axis class (‘Victor’ and ‘Oscar’ are part of the row class in 
SPINE-2). To deal with these ambiguities, we utilized a semi-
automated tagging system originally developed for training class 
N-gram models for the DARPA Communicator task.   

)1( +i
nλ  

!"# $!%�& "���������

'
��

(����)

I - 5

➡ ➡



 
The task language model also contains word compounds for 
improved recognition.  Our language model fielded in Nov. 2001 
contained 115 compounds determined by manual inspection of 
the training data.  In this paper we considered improving the 
existing SPINE language model by using the data driven method 
proposed in [14] for determining word compounds.  This method 
uses the geometrical average of the direct and reverse-bigrams to 
determine candidate word compounds.  Our current language 
model using data driven word compound clustering has a 
vocabulary of 1664 words and includes 180 word compounds. 
 
4.4. Audio Segmentation  
 

Our audio segmentation method iteratively estimates segment 
boundaries between adaptation passes and uses the adapted 
system acoustic models in decision-making.  The segmenter 
consists of a 2-state (speech/non-speech) hidden Markov model 
that is dynamically constructed on each ASR adaptation pass.  A 
speech state is constructed by combining the top 4 mixture 
components (by mixture weight) from the context-independent 
speech states of our decision tree clustered models. A silence 
state is constructed from all mixture components of non-speech 
context-independent states (e.g., breath, laughter, garbage, 
silence). The resulting HMM states (600 mixture components for 
speech, 288 mixture components for silence) are normalized 
such that the mixture weights sum to one.  A Viterbi search is 
performed over each session using the 2-state HMM model. The 
speech / silence boundaries are determined through back-tracing 
the best path through the network.  The segmentations are 
improved using 2 heuristics: (i) speech segments separated by 
less than 0.25 are merged, (ii) speech segments that are less than 
0.10 seconds in duration are deleted.  Finally, all speech 
segments are dilated by 0.25 seconds to avoid cutoff of weak 
fricatives and other low-energy sounds.  We point out that this 
audio segmentation approach avoids the necessity of training 
separate speech/non-speech models and also avoids acoustic 
mismatch between VAD and system acoustic models in 
subsequent adaptation passes. 
 
4.5. Acoustic Adaptation 
 

In the SPINE task both speaker and environment variability are 
quite large. So, the adaptation of the speech recognizer to better 
match the test condition is crucial. To cope with such variability 
we have implemented several techniques that can be considered 
in two broad classes: feature-based and model-based techniques. 
In feature-based methods the observations, i.e. the feature 
vectors input to the speech recognizer, and in model-based 
methods the parameters of the acoustic models, i.e. HMM means 
and variances, are modified. Examples of feature-based 
normalization are cepstral mean subtraction (CMS), vocal tract 
length normalization (VTLN) and cepstral variance 
normalization. In CMS the long-term average of cepstral feature 
vectors is estimated and subtracted from the computed cepstral 
feature vectors. In VTLN, the best warping factor is determined 
by line searching over a range of values to maximize the 
likelihood of the adaptation data, given the recognized 
transcription. These processes are followed by feature variance 
normalization. These methods have been applied during both 
training and decoding in our SPINE system.    
 

Model-based adaptation methods can be further categorized into 
two broad classes: direct and indirect.  In direct adaptation, the 
HMM model parameters are directly adapted. However, in the 
indirect method a set of shared transformations are first 
estimated and then applied to the respective HMM models. 
Usually the maximum a posteriori (MAP) estimation is used for 
the direct method by incorporating some a priori knowledge to 
overcome data sparseness.  In the indirect method the 
transformations are usually estimated in the maximum likelihood 
(ML) sense. A recent work in [15,16] unifies both methods in 
the MAP sense and demonstrates improved performance.   
 
Several modes of adaptation are possible; supervised vs. 
unsupervised and block vs. incremental. In the unsupervised 
case, the transcription is not known and should be estimated in 
some form; either as a single best string or a word lattice. In 
incremental adaptation the models are adapted as enough data 
becomes available, and the new models are used to decode the 
incoming data, which, in turn, is used to readapt the models. In 
block adaptation, the adaptation is started after all data is 
available. We consider several adaptation schemes: 
 

• Maximum likelihood linear regression (MLLR):  
(i) incremental / block, (ii) single class / multiple class,  
(iii) best string / word lattice 

• Maximum a posterior linear regression (MAPLR):  
(i) block  (ii) best string / word lattice  
(iii) regression class tree. 

 

Our initial SPINE-2 system used a single class, block MLLR 
mean and variance transform using the best string from the 
speech recognizer tagged with confidence scores (word posterior 
probabilities) derived from a word graph. Despite some 
improvement in the Hub-5 task, extending from a single 
regression class to 6 classes degrades performance in the SPINE 
task. We believe this is due to the smaller amount of adaptation 
data in SPINE compared with Hub-5. This motivated us to work 
with a dynamic version of multiple class MAP adaptation using 
regression class trees. In the next section, we report performance 
gains obtained with more sophisticated adaptation techniques. 
 

5. EVALUATION 
 
The November 2001 SPINE-2 evaluation data consisted of 64 
talker-pair conversations totaling 3.5 hours of stereo audio (2.8 
hours of talk-time).  On average, each of the 128 conversation 
sides contains 1.3 minutes (78 seconds) of speech activity. 
 

5.1. Segmentation 
 

Audio segmentation was evaluated by measuring the frame 
classification and word error rates for our baseline SPINE 
system when automatic and hand-labeled speech segments were 
used.  Our baseline system uses single regression class MLLR 
mean and diagonal covariance transform.   Results are shown in 
Table 1.  We see that the voice activity detection method has an 
initial frame classification rate of 7.44% (Table 1a).  After the 
first adaptation pass the segmenter produces fewer errors (final 
frame classification error rate of 6.93%) and the recognizer is 
better able to reject silence regions that have been misclassified 
as speech (e.g., the number of inserted words drops from 172 to 
108).  The word error rate difference between automatic and 
hand-segmented data is negligible (0.5% absolute).   

I - 6

➡ ➡



 ������������������ ����������������������������


����
����
*�+ *,+ *�+ *�+

-�
)�
��)) ����. ��� ����. ����.

($$&
� ��� . ��� ����. ����.

($$&
� ����. ��� ����. ����.

Table 2: Segmentation performance summary.  Results are 
shown for (a) speech/silence frame classification error rate; (b) 
number of inserted words during silence regions; (c) word error 
rate for automatic segmentation; (d) word error rate for hand-
labeled segmentation. 
 

5.2. Word Error Analysis 
 

Table 3 summarizes word error rates (WER) across iterative 
adaptation passes and total real-time processing factors for 
several SPINE-2 system configurations.   Iteration “0” in Table 3 
refers to first-pass recognition.  Real-time factors are measured 
on a single processor 1.7 GHz Intel Pentium 4 and include 
processing time incurred through automatic segmentation.  Our 
baseline system without adaptation was found to have a 41.8% 
WER at 1.8x real-time.  Furthermore incremental online 
adaptation based only on MLLR mean transformation provides 
nearly a 10% relative reduction in error with a modest cost in 
terms of processing speed.   In fact, based on the general 
improvements listed in Section 3.1, this 1-pass incremental 
adaptation system compares favorably with our multiple pass 
Nov. 2001 system which has a 37.5% WER at 9x real-time.   
 
The use of single regression class MLLR mean and diagonal 
covariance transforms iterated over 2 adaptation passes provides 
a considerable reduction in error (error drops from 41.8% to 
33.2%).  However, as many sites reported in both the 2000 and 
2001 workshops, increasing to more than one transform 
generally degrades system performance perhaps due to lack of 
sufficient adaptation data (33.8% WER compared with 33.2% 
WER in Table 3d).  Finally, the MAPLR algorithm using the 
single-best word-posterior probability weighted output provides 
a measurable reduction in error compared to the baseline of a 
single regression MLLR mean and variance transform.  Further, 
the generalization of the technique to operate on the word-lattice 
representation provides an additional gain of 0.4% absolute.  
However, we point out that this improvement comes at a higher 
computational cost (e.g., 16.4x real-time compared with 6.4x). 
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Table 3: Word error rate and real-time factor for SPINE-2 
evaluation systems: (a): Baseline system without speaker 
adaptation; (b): system incorporating online incremental 
adaptation in a single pass; (c): single regression class MLLR 
with global variance scaling; (d): system using 6 MLLR 
regression classes; (e): word-posterior weighted single-best 
hypothesis MAPLR adaptation; (f): Lattice-based MAPLR. 

6. CONCLUSIONS 
 
The paper has presented several recent improvements to the 
University of Colorado (CU) SPINE-2 evaluation system.  Our 
current implementation uses the newly developed CU Sonic 
ASR system.  Our current best single recognizer system has an 
overall error rate of 31.5% at a real-time factor of 16.4.  
Comparatively, the single best recognizer based on MFCC 
features in [5] had a word error rate of 32.5% on the same 
evaluation set.  We point out that the two best systems fielded in 
the 2001 evaluation had a real-time factor of 88 and 121 
respectively.   Based on these comparisons, we feel that the 
system presented in this paper represents the state-of-the-art in 
single recognizer performance on the SPINE-2 task. 
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