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ABSTRACT

In this paper we report on recent improvements in the University
of Colorado system for the DARPA/NRL Speech in Noisy
Environments (SPINE) task. In particular, we describe our
efforts on improving acoustic and language modeling for the task
and investigate methods for unsupervised spesker and
environment adaptation from limited data. We show that the
MAPLR adaptation method outperforms single and multiple
regression class MLLR on the SPINE task. Our current SPINE
system uses the Sonic speech recognition engine that was
recently developed at the University of Colorado. This systemis
shown to have a word error rate of 31.5% on the SPINE-2
evaluation data. These improvements amount to a 16% reduction
in relative word error rate compared to our previous SPINE-2
system fielded in the Nov. 2001 DARPA/NRL evaluation.

1. INTRODUCTION

The Speech in Noisy Environments (SPINE) task attempts to
measure and inspire improvements in state-of-the-art processing
for robust continuous speech recognition [1]. The task has
several chalenges: limited task-dependent training data (~20
hours), multiple military noise environments in both training and
testing, unsegmented audio streams as well as a limited amount
of speech per task session for recognizer adaptation.

In November of 2000 (SPINE-1) and November 2001 (SPINE-
2) the Naval Research Laboratory (NRL) evaluated systems on
the task with support by DARPA. Participating sitesin the 2001
evaluation included: SRI, IBM, University of Washington,
University of Colorado (CU), AT&T, the Oregon Graduate
Ingtitute (OGI), Mississippi State, ATR, and Carnegie Mellon
University (CMU). Many of these sites have previously
reported results on SPINE-1 [2-4] and SPINE-2 tasks [5-8].
The best performing systems on that task used adaptation in
either the feature or model-domain and aso included the use of
multiple parallel speech recognizers trained from several feature
types (e.g., MFCC, PLP, root cepstrum). Output from each
recognizer is generally combined through a hypothesis fusion
method to produce a single output that is lower than the error
rates of any single recognizer (e.g., see[5,6]).

The University of Colorado participated in both SPINE-1 [4]
and SPINE-2 evaluations. Our November 2001 system was for
the first time based on the University of Colorado speech
recognizer named Sonic [9]. During that evaluation our single
best recognizer output had an official error rate of 37.5% at a
decoding speed of 9 times real-time.  In this paper, we describe
recent improvements both in terms of genera recognizer
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development and task-dependent modeling. We focus on issues
related to lowering the error rate of our single-best recognizer
fielded on the SPINE task and do not consider the issue of
recognizer fusion in this work.

2. THE SPINE TASK

The SPINE task uses the ARCON Communicability Exercise
(ACE) that was originaly developed to test communication
systems [10] and consists of collaboration between a pair of
takers who participate in a battleship simulation.  One
participant plays the role of a Firing Officer (e.g., controlling
weapon systems such as a laser cannon and mines) while the
other participant plays the role of a Search Officer (e.g., manning
the radar and sonar equipment). Each player is situated in a
separated sound isolated room and use military handsets and
headsets that are appropriate for the simulated acoustic
conditions. During the exercise, the two participants collaborate
to search and destroy targets by declaring and confirming grid
locations (x-axis & y-axis coordinates) to fire upon. The grid
locations in SPINE-1 consisted of confusable words from the
Diagnostic Rhyme Test (DRT). For SPINE-2, the grid points
consisted of less confusable military words.  For each booth,
noise indicative of typica military environments is played
through loud speakers. The SPINE-1 evaluation data considered
siX noise environments: aircraft carrier control decision center,
AWACS airplane, a military vehicle, a military field shelter, an
office environment, and a quiet environment. SPINE-2 extends
on SPINE-1 data by considering the six noise types in addition
to military tank and helicopter environments. The resulting
noisy speech from each booth is recorded through head-worn
microphones before being passed through a simulated
communications channel. In this paper we consider only speech
recognition on the non-coded speech channel.

3. THE SONIC ASR ENGINE

3.1. Current ASR System Architecture

Our most recent fielded evaluation system in November 2001
(SPINE-2) was designed using Sonic: The University of
Colorado large vocabulary continuous speech recognition system
[9]. Sonic is based on continuous density hidden Markov
(CDHMM) acoustic models. Context dependent triphone
acoustic models are clustered using decision trees. Each model
has three emitting states with gamma probability density
functions for duration modeling. Features are extracted as 12
MFCCs, energy, and the first and second differences of these
parameters, resulting in a feature vector of dimension 39. The
search network is a reentrant static tree-lexicon. The recognizer
implements a two-pass search strategy. The first pass consists of
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a time-synchronous, beam-pruned Viterbi token-passing search.
Crossword acoustic models and 3-gram or 4-gram language
models (in an approximate and efficient way) are applied in the
first pass of search. The first pass creates a lattice of word ends.
During the second pass, the resulting word-lattice is converted
into a word-graph. Advanced language models (e.g. dialog-act
and concept based, long span) can be used to rescore the word
graph using an A* agorithm or to compute word-posterior
probabilities to provide word-level confidence scores.

Sonic provides an integrated environment that incorporates voice
activity detection (VAD), speech enhancement as well as various
feature and model-based adaptation and normalization methods.
The recognition architecture provides support for rapid
portability to new languages. In 2002, Sonic was ported from
English to the Spanish, Turkish, and Japanese languages.

3.1. General Recent | mprovements

Our SPINE-2 system in Nov. 2001 represented our initial
implementation of the Sonic speech recognizer. The fielded
system used a flat structured lexicon, class-based trigram
language model consisting of manualy determined word
compounds, single regression iterative MLLR mean and global
variance scaling transform, and generalized triphone acoustic
models. Since Nov 2001, we included an efficient lexical tree
search, integrated a decision tree triphone acoustic model trainer,
added support for 4-grams into our first-pass search,
implemented data-driven word compounding, and incorporated
additional feature  normalization  (cepstral  variance
normdization, VTLN) and speaker adaptation (MAPLR
adaptation) methods.

4. SPINE SYSTEM OVERVIEW

Our SPINE system consists of a novel integrated speech
detection and multiple pass recognition search as shown in
Figure 1. During each recognition pass, a voice activity detector
(VAD) is dynamicaly constructed from the current adapted
system acoustic models. The VAD generates a segmentation of
the noisy audio into utterance units and LVCSR is performed on
each detected speech region. The resulting output (a confidence
tagged lattice or word string) is then used to adapt the acoustic
model means and variances in an unsupervised fashion. The
adapted acoustic models are then respplied to obtain an
improved segmentation, recognition hypothesis, and new set of
adapted system parameters. The integrated adaptation procedure
can be repeated several times resulting in  sequentia
improvements to both segmentation and recognition hypotheses.
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Figure 1: Diagram of SPINE multi-pass recognition search.

For the SPINE task, we have found that tight coupling between
the segmentation and recognition system is essential for robust

performance. Furthermore we illustrate how this integrated
approach leads to simpler methods for voice activity detection
for noisy environments. The following sections describe our
current system for the SPINE task in detail.

4.1. Training Data

Acoustic and language model training data for the SPINE-2
evaluation consisted of conversations that were used for both
training and testing in the previous SPINE-1 evauation and
conversation sides listed as training and devel opment test for the
SPINE-2 evaluation. For the SPINE-2 evauation we optimized
our recognizer settings on the provided 1.1-hour development
test data before incorporating both the data and recognizer
settings into our final system. Table 1 summarizes the training
data used in the experiments described in this paper.

Training Number of Total Hours
Data Source Utterances (Talk-Time)
SPINE-1 train 11,973 8.7
SPINE-1 eval. 12,079 7.3
SPINE-2 train 6,129 34
SPINE-2 dev. 1,941 1.1
Total 32,122 20.5

Table 1: SPINE-2 evaluation system training data

4.2. Acoustic M odel

The acoustic trainer for Sonic is based on sequential estimation
using Viterbi forced alignment and phonetic decision tree state
clustering [12]. Alignments were initially boot-strapped using
Wall Street Journal acoustic models. During Viterbi forced
alignment we used a single MLLR mean and variance transform
on the gender-dependent models to improve the alignment
quality for each speaker session. After alignment, the models are
estimated using decision tree state clustering and the procedure
is repeated to obtain improved alignments and model parameter
estimates. Our first-pass acoustic models consist of gender-
dependent  (within-word and cross-word) triphones using
standard 39-dimensional MFCC features. Our second-pass
(adaptation pass) acoustic models are normalized by both
cepstral variance and vocal tract length [13].

4.3. Language M odel

For the SPINE-2 evaluation in Nov. 2001 we developed a class
N-gram language model trained from the 32k utterances shown
in Table 1. This work was motivated by the fact that the grid-
point labels were changed from SPINE-1 to SPINE-2 and class
language models provided a convenient means for capturing the
task specific word usage for targeting objects in the battleship
game. Our class language model was based on 3 word classes:
row (x-axis), column (y-axis), and name (user name). Words
were grouped into row and column classes through inspection of
the training data for SPINE-2. In this task there are severa
words that can be modeled as belonging to multiple classes. For
example, the spoken words in the spelling of “VON” (read as
“Victor Oscar Nancy”) overlap with elements of the row grid
axis class (‘Victor' and ‘Oscar’ are part of the row class in
SPINE-2). To dea with these ambiguities, we utilized a semi-
automated tagging system originally developed for training class
N-gram models for the DARPA Communicator task.




The task language model also contains word compounds for
improved recognition. Our language model fielded in Nov. 2001
contained 115 compounds determined by manual inspection of
the training data. In this paper we considered improving the
existing SPINE language model by using the data driven method
proposed in [14] for determining word compounds. This method
uses the geometrical average of the direct and reverse-bigrams to
determine candidate word compounds. Our current language
model using data driven word compound clustering has a
vocabulary of 1664 words and includes 180 word compounds.

4.4. Audio Segmentation

Our audio segmentation method iteratively estimates segment
boundaries between adaptation passes and uses the adapted
system acoustic models in decision-making. The segmenter
consists of a 2-state (speech/non-speech) hidden Markov model
that is dynamically constructed on each ASR adaptation pass. A
speech state is constructed by combining the top 4 mixture
components (by mixture weight) from the context-independent
speech states of our decision tree clustered models. A silence
state is constructed from al mixture components of non-speech
context-independent states (e.g., breath, laughter, garbage,
silence). The resulting HMM states (600 mixture components for
speech, 288 mixture components for silence) are normalized
such that the mixture weights sum to one. A Viterbi search is
performed over each session using the 2-state HMM moddl. The
speech / silence boundaries are determined through back-tracing
the best path through the network. The segmentations are
improved using 2 heuristics: (i) speech segments separated by
less than 0.25 are merged, (ii) speech segments that are less than
0.10 seconds in duration are deleted. Finally, all speech
segments are dilated by 0.25 seconds to avoid cutoff of weak
fricatives and other low-energy sounds. We point out that this
audio segmentation approach avoids the necessity of training
separate speech/non-speech models and aso avoids acoustic
mismatch between VAD and system acoustic models in
subsequent adaptation passes.

4.5. Acoustic Adaptation

In the SPINE task both speaker and environment variability are
quite large. So, the adaptation of the speech recognizer to better
match the test condition is crucial. To cope with such variability
we have implemented several techniques that can be considered
in two broad classes: feature-based and model-based techniques.
In feature-based methods the observations, i.e. the feature
vectors input to the speech recognizer, and in model-based
methods the parameters of the acoustic models, i.e. HMM means
and variances, are modified. Examples of feature-based
normalization are cepstra mean subtraction (CMS), vocal tract
length normalization (VTLN) and cepstra variance
normalization. In CMS the long-term average of cepstral feature
vectors is estimated and subtracted from the computed cepstral
feature vectors. In VTLN, the best warping factor is determined
by line searching over a range of values to maximize the
likelihood of the adaptation data, given the recognized
transcription. These processes are followed by feature variance
normalization. These methods have been applied during both
training and decoding in our SPINE system.

Model-based adaptation methods can be further categorized into
two broad classes: direct and indirect. In direct adaptation, the
HMM model parameters are directly adapted. However, in the
indirect method a set of shared transformations are first
estimated and then applied to the respective HMM models.
Usually the maximum a posteriori (MAP) estimation is used for
the direct method by incorporating some a priori knowledge to
overcome data sparseness. In the indirect method the
transformations are usually estimated in the maximum likelihood
(ML) sense. A recent work in [15,16] unifies both methods in
the MAP sense and demonstrates improved performance.

Several modes of adaptation are possible; supervised vs.
unsupervised and block vs. incremental. In the unsupervised
case, the transcription is not known and should be estimated in
some form; either as a single best string or a word lattice. In
incremental adaptation the models are adapted as enough data
becomes available, and the new models are used to decode the
incoming data, which, in turn, is used to readapt the models. In
block adaptation, the adaptation is started after all data is
available. We consider several adaptation schemes:

e Maximum likelihood linear regression (MLLR):
(i) incremental / block, (ii) single class/ multiple class,
(i) best string / word lattice
e  Maximum aposterior linear regression (MAPLR):
(i) block (ii) best string / word lattice
(i) regression classtree.

Our initial SPINE-2 system used a single class, block MLLR
mean and variance transform using the best string from the
speech recognizer tagged with confidence scores (word posterior
probabilities) derived from a word graph. Despite some
improvement in the Hub-5 task, extending from a single
regression class to 6 classes degrades performance in the SPINE
task. We believe this is due to the smaller amount of adaptation
datain SPINE compared with Hub-5. This motivated us to work
with a dynamic version of multiple class MAP adaptation using
regression class trees. In the next section, we report performance
gains obtained with more sophisticated adaptation techniques.

5. EVALUATION

The November 2001 SPINE-2 evaluation data consisted of 64
talker-pair conversations totaling 3.5 hours of stereo audio (2.8
hours of talk-time). On average, each of the 128 conversation
sides contains 1.3 minutes (78 seconds) of speech activity.

5.1. Segmentation

Audio segmentation was evaluated by measuring the frame
classification and word error rates for our baseline SPINE
system when automatic and hand-labeled speech segments were
used. Our baseline system uses single regression class MLLR
mean and diagonal covariance transform. Results are shown in
Table 1. We see that the voice activity detection method has an
initial frame classification rate of 7.44% (Table 1a). After the
first adaptation pass the segmenter produces fewer errors (fina
frame classification error rate of 6.93%) and the recognizer is
better able to reject silence regions that have been misclassified
as speech (e.g., the number of inserted words drops from 172 to
108). The word error rate difference between automatic and
hand-segmented datais negligible (0.5% absol ute).




Processing Automatic Hand
Stage (a) (b) (€) (d)
First-Pass 7.44% 172 | 41.8% 41.0%
MLLR-1 6.95% 108 | 33.9% 33.4%
MLLR-2 6.93% 112 | 33.2% 32.7%
Table 2: Segmentation performance summary. Results are

shown for (a) speech/silence frame classification error rate; (b)
number of inserted words during silence regions; (c) word error
rate for automatic segmentation; (d) word error rate for hand-
|abeled segmentation.

5.2.Word Error Analysis

Table 3 summarizes word error rates (WER) across iterative
adaptation passes and total rea-time processing factors for
several SPINE-2 system configurations. Iteration “0” in Table 3
refers to first-pass recognition. Real-time factors are measured
on a single processor 1.7 GHz Intel Pentium 4 and include
processing time incurred through automatic segmentation. Our
baseline system without adaptation was found to have a 41.8%
WER a 1.8x real-time. Furthermore incremental online
adaptation based only on MLLR mean transformation provides
nearly a 10% relative reduction in error with a modest cost in
terms of processing speed. In fact, based on the genera
improvements listed in Section 3.1, this 1-pass incremental
adaptation system compares favorably with our multiple pass
Nov. 2001 system which has a 37.5% WER at 9x real-time.

The use of single regression class MLLR mean and diagona
covariance transforms iterated over 2 adaptation passes provides
a considerable reduction in error (error drops from 41.8% to
33.2%). However, as many sites reported in both the 2000 and
2001 workshops, increasing to more than one transform
generaly degrades system performance perhaps due to lack of
sufficient adaptation data (33.8% WER compared with 33.2%
WER in Table 3d). Finaly, the MAPLR algorithm using the
single-best word-posterior probability weighted output provides
a measurable reduction in error compared to the baseline of a
single regression MLLR mean and variance transform. Further,
the generalization of the technique to operate on the word-lattice
representation provides an additional gain of 0.4% absolute.
However, we point out that this improvement comes at a higher
computational cost (e.g., 16.4x real-time compared with 6.4x).

Word Error Rate (%) | Real

System Description lter0 Iter1 lter2 | Time
(a) |Baseline, No Adapt. 41.8 - - 1.8
(b) [Single Pass Inc. Adapt | 37.7 - - 2.0
(c) |1 Reg. Class MLLR 418 | 33.9 | 33.2 5.2
(d) |6 Reg. Class MLLR 41.8 | 34.2 | 33.8 4.6
(e) [Single-Best MAPLR 418 | 33.3 | 319 6.4
(f) [Lattice MAPLR 41.8 | 32.7 | 315 | 164

Table 3: Word error rate and real-time factor for SPINE-2
evaluation systems: (a): Baseline system without speaker
adaptation; (b): system incorporating online incrementa
adaptation in a single pass; (c): single regression class MLLR
with globa variance scaling; (d): system using 6 MLLR
regression classes, (€): word-posterior weighted single-best
hypothesis MAPLR adaptation; (f): Lattice-based MAPLR.

6. CONCLUSIONS

The paper has presented severa recent improvements to the
University of Colorado (CU) SPINE-2 evaluation system. Our
current implementation uses the newly developed CU Sonic
ASR system. Our current best single recognizer system has an
overall error rate of 31.5% a a rea-time factor of 16.4.
Comparatively, the single best recognizer based on MFCC
features in [5] had a word error rate of 32.5% on the same
evaluation set. We point out that the two best systems fielded in
the 2001 evauation had a rea-time factor of 88 and 121
respectively.  Based on these comparisons, we fed that the
system presented in this paper represents the state-of-the-art in
single recognizer performance on the SPINE-2 task.
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