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ABSTRACT

An iterative procedure is discussed to estimate poles and zeros
of arational transfer function from speed signals, which takes
advantage of the individual solutions of AR and MA processes.
Besides geed), analyses of test signals are dso caried ou,
which lead to ogtimal results. In contrast to Prony’s and related
methods, the dgorithm don't presuppacse apair of an input and
output signal. The proposed procedure is gedalised for the
analysis of periodic signals, though it cen be gplied to non
periodic signals, too. The dgorithm combines two known partial
solutions in an iterative way. The etimation d an al-pole
model is obtained by the Burg method and the estimation o
zeros by using the inverted signal in the spedral domain. It can
be shown that the power spedrum of anayzed speed periods
can be better modelled by poles and zeros espedaly with
respect to the gaps in the spectrum.

1 INTRODUCTION

For &al-poe models the linea prediction, redised by the Burg
method a the Levinson-Durbin reaursion, provides a robust and
good estimation [1]. For poezeo models, there ae no
comparable dgorithms. Algorithms for pole zeo estimation exist
with Prony’s and related methods, which assume a inpu and
output signal of the analyzed model. A spedal case of thisis the
blind deconvolution. If theinpu is unknown and ory the output
is avail able, an estimated impulse resporse h'(n) of the analyzed

output signa x(n) can be modeled by the impulse resporse
h(n) of an LTI system having poles and zeros of the rationa
transfer function H(z) = B(z)/ A(2) [2,3]. Therefor the problem
is to minimize the following expression:

Z(h;—hk) -~ min . 1)

Shank’s method, Kaman's method and iterative prefiltering
proposed hy Steiglitz tree the minimization (1) in dfferent ways
[4]. The impulse resporse shoud be estimated at first, if Prony’s
and related methods are used. An ancther approach is based on
Durbin’s method for MA processes, which estimates the zeos by
the solution d an high-order al-pole model. This is used in
Durbin's £ond method for the etimation d poles and zeros.
The implementation d Durbin’'s mnd method can vary [5,6].
In this contribution the proposed procedure is based oninverse
filtering. 1t combines two solutions of an AR processand a MA
process which represent partial solutions in this agorithm. A

first attempt is darted onalrealy in [7], by an aternate use of
these two solutions, and in [8] using the power density spedrum.
In the following an improved iterative procedure is described.

2. ITERATIVE PROCEDURE
2.1  Error Definition

For the estimation d the poles and zeros a reaursive prediction
filter is used.x(n) is the prediction of the analyzed signdin)
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The problem is to minimize the power of the prediction error
&(n) . This can be formulated in the frequency domain:
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A(z) is the denominator of the transfer function H(z) and
represents the poles of the model, respedively B(z) is the
numerator and represents the zeros:

H(Z)_ _zkl - B(Z)
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Generdly £(A,B) canna be minimized drealy. However, if the
zeros or poles are known the remaining coefficients can be
obtained dtraightforward. These two partial solutions are
described in the following section.

1.2 Partial Solution |

If the zeos are known, the optima poles can be determined by
applying the Burg method to the analyzed signal, in which the
known zeros are removed. If the zeos are not removed, the zeos
distort the estimation processbecause the estimated pdes tend to
approximate not only the adua poles but also the zeos of the
model. However, the optimal zeros usualy are unknown.

Therefore an approximation B(z) of the optimal numerator
coefficients is used. The denominator coefficients a, cean be

estimated with aid oB(z) by minimization of the error:
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% Zk =1 % B(e) : For the partial solution Il correspondng to the partial solution |
the numerator B(z) is estimated by using an assumed

) ] _ approximation A(z) of the denominator. Since the etimated
Now the Burg method is applied to the IDFT ¥{z)/B(2), coefficients are now in the denominator, the Burg method cannat
which implies that the assumed zeros are reduced in the spectralpe gplied to this form of the aror. But if the integrand in the
domain and cannot anymore distort the estimation process. The error is inverted, the poles are changed into zeros. This error
better the zeros are approximated the estimation of the poles is definition
improved.
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Fig. 1. Flow chart of the iteration procedure.



alows to estimate the wefficients b, by the Burg method To
minimize ¢, the Burg method is applied to the IDFT of

A z)IX Y(2). The aumed pdes are reduced in the spedral
domain, corresponding to the partial solution I.

2.3 Complete Solution

These two partial solutions are not independent of ead cther,
becaise one partial solution requires the results of the other
partial solution. Therefore the solutions doud be exeauted
aternately. The results of the previous partia solutions are the
asaumptions of the next partial solutions. The successon d the
partial solutions cannat be aranged any way, becaise the results
are different whether the poles are estimated after the estimation
of the zeos or vice versa. Therefore the procedure exeautes two
blocks parallel, in which two partial solutions are caried ou one
after the other. In ore block the poles are estimated after the
zeros and in the another block the order isreverse. In block 1 the
estimated pdes A(z) are used for the following estimation o
B'(z) and correspondng in block 2 the estimated zeros B"(2)
are used for the following estimation d A'(z) . Afterwards the
errors £'(A,B') with the results of block 1 and £"(A",B") with
the results of block 2 are cdculated. If both errors are larger than
the aror of the previous iteration the procedure bre&s and the
final solutionisthe result of the previousiteration. If one eror of
one block is larger and ore is gnaler than the eror of the
previous iteration, the resulting error of thisiteration is the result
of the block with the smaller error. If the two errors of the blocks
are smaller than the eror of the previous iteration, the solution
the iteration is a wmbination d the results of the two blocks.
Thisis redized by the aithmetic mean of two sets of refledion
coefficients, which are obtained from A(z) and A'(z). The
converson d the resulting refledion coefficients into the
polynomial coefficients represents the new estimated coefficients

4, . Correspondng operations are caried ou for the Bk
Because of the use of the refledion coefficients, the stability of

the resulting system is guaranteal. Eventualy the iteration
finishes, when a number N of iterations is excealed. The

iterative procedure begins with the start configuration A( z)=1

and é(z) =1, which implies no knowledge &ou the poles and

zeros of the system. The flow chart of the whale dgorithm is
depicted in figure 1.

24 Burg Method used for Periodic Signals

For periodic signals a speda modificaion o the Burg method
has been developed. The caculation d the crrelation function
for the Burg coefficient requires values, which are outside of the
analyzed segment. These values can be dedared to zeo. If a
periodic signal is assumed, the outside value can be described
with a value, which is inside of the anayzed segment, by
considering the periodicity. Therefor it is favorable, that the
segment is one period of the analyzed signal.

3. EXAMPLES
3.1 Examplesfrom Test Signals

To demonstrate the caability of the procedure, test signals are
generated, which are produced by prescribed systems. E.g. a
system with 10 pdes and 4 zeros is excited by an impulse train.
A period d the output signa is anayzed. For the transfer
function duing the iteration the same number of poles and zeros
is chasen, so that it is possble that the procedure can describe
the analyzed model predsely. Figure 2 shows the result after the

first iteration. The line spectrum is the DFT of the analyzed test
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Fig. 2. Analysis of test signal after the first iteration.

signa and the solid line is the magnitude resporse of the
estimated transfer function. After the first iteration the
magnitude resporse is an inadequate gproximation o the DFT
spedrum of the test signal. The procedure finishes after 15
iterations. After that iteration the estimated magnitude response
in figure 3 gives a perfect match to the DFT spectrum of the
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Fig. 3. Analysis of test signal after 15 iterations. Q
analyzed period. More test signals have been analyzed showing
comparable results.

3.2 Examplesfrom Speech Signals

In pradice speed signals canna be perfedly modeled in contrast
to the test signals due to the imperfedions of the model.
However, the dominant resonances and existing antiresonances
in the speed spedrum shoud be modelled. In figure 4 results of

the analysis of one period of the nasal /n/ is shown. The order of
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Fig. 4. Analyzed period of /n/ by 20 poles and 10 zeros.
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the analyzed system is 20 for the poles in combination with 10
zeros. The line spedrum represents the DFT of the analyzed
speed period and the solid lines are the estimated magnitude
resporses. The zeo at 1500Hz can be well observed in figure 4,
which is caused by the muping of the mouth cavity with the
nasal trad. Due to the fluctuations of the glottal source and aher
effeds dngle periods of vowels ow also gaps in the magnitude
spedrum. This fad can be seen in figure 5 showing the result of
the analysis of one period d the vowel /i:/; the estimated system
has 20 pdes and 10zeros. For comparison figure 6 shows the
analysis of the same speed period /i:/ with 30 pdes but no zeros.
Althowgh more paes have been spent, the gaps in the spedrum

cannot bemodelled by an all-pole system, because of the missing

[dB]

80
70;
60;
50;

40|

30+

204
T
1

3 4
[kHZ]
Fig. 5. Analyzed period ofi:/ by 20 poles and 10 zeros.
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Fig. 6. Analyzed period of /i:/ by 30 poles but no zeros.

zeros. Figure 7 shows an example /z/ of a voiced fricaive. The
fluctuations of the aljacent periods of /z/ are espedaly strong
due to the additional noisy excitation of this sound. For the
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Fig. 7. Analyzed period of /z/ by 20 poles and 10 zeros.

subsequent analysis of voiced speed periods, the order of the
analysis canna be aapted automaticdly to the mrrespondng
speed segments, so that afixed number of poles and zeros for all
sounds is preferable, espedaly during the transition d one
sound to ancther. Figure 8 shows that the procedure can  be

applied to nonperiodic signals, too. A segment of the fricaive /[/
is analyzed with 20 pdes and 10zeros after a von Hann window
has to been applied to the signa. All speedh examples are
recorded at a sampling rate of 16 kHz and the number of
iterations for the algorithm was about 10.
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Fig. 8. Analyzed segment off/ by 20 poles and 10 zeros.

4. SUMMARY

The proposed agorithm is able to minimize the power of the
error signal of agenera pole zeo system by the use of iterations
based on partid solutions. Therefore the dgorithm is able to
estimate poles and zeros of linea systems from time signals. To
study the performance of the procedure analyses of test signals
are caried ou, which yield a perfed match o the DFT spedra of
these signals with the estimated magnitude responses. Examples
of analyzed speed signals ow, that the procedure is also able
to approximate the DFT spedra of speed signals adequately
especially with respect to gaps in the speech spectrum.
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