
POLE ZERO ESTIMATION FROM SPEECH SIGNALS BY
AN ITERATIVE PROCEDURE

K. Schnell, A. Lacroix

Institut für Angewandte Physik, J.W. Goethe-Universität
Robert-Mayer Str. 2-4

D-60325 Frankfurt am Main, Germany
email: Lacroix@iap.uni-frankfurt.de

ABSTRACT
An iterative procedure is discussed to estimate poles and zeros
of a rational transfer function from speech signals, which takes
advantage of the individual solutions of AR and MA processes.
Besides speech, analyses of test signals are also carried out,
which lead to optimal results. In contrast to Prony’s and related
methods, the algorithm don’ t presuppose a pair of an input and
output signal. The proposed procedure is specialised for the
analysis of periodic signals, though it can be applied to non-
periodic signals, too. The algorithm combines two known partial
solutions in an iterative way. The estimation of  an all -pole
model is obtained by the Burg method and the estimation of
zeros by using the inverted signal in the spectral domain. It can
be shown that the power spectrum of analyzed speech periods
can be better modelled by poles and zeros especially with
respect to the gaps in the spectrum.

1. INTRODUCTION

For all -pole models the linear prediction, realised by the Burg
method or the Levinson-Durbin recursion, provides a robust and
good estimation [1]. For pole-zero models, there are no
comparable algorithms. Algorithms for pole zero estimation exist
with Prony’s and related methods, which assume an input and
output signal of the analyzed model. A special case of this is the
blind deconvolution. If the input is unknown and only the output
is available, an estimated impulse response ( )h n′  of the analyzed

output signal x n( )  can be modeled by the impulse response

( )h n  of an LTI system having poles and zeros of the rational

transfer function ( ) ( ) / ( )H z B z A z=  [2,3]. Therefor the problem
is to minimize the following expression:
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Shank’s method, Kalman’s method and iterative prefiltering
proposed by Steiglitz treat the minimization (1) in different ways
[4]. The impulse response should be estimated at first, if Prony’s
and related methods are used. An another approach is based on
Durbin’s method for MA processes, which estimates the zeros by
the solution of an high-order all -pole model. This is used in
Durbin’s second method for the estimation of poles and zeros.
The implementation of Durbin’s second method can vary [5,6].
In this contribution the proposed procedure is based on inverse
filtering. It combines two solutions of an AR process and a MA
process, which represent partial solutions in this algorithm. A

first attempt is started on already in [7], by an alternate use of
these two solutions, and in [8] using the power density spectrum.
In the following an improved iterative procedure is described.

2. ITERATIVE PROCEDURE

2.1      Error Definition

For the  estimation of the poles and zeros a recursive prediction
filter is used. ̂ ( )x n  is the prediction of the analyzed signal x n( )
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The problem is to minimize the power of the prediction error
e n( ) . This can be formulated in the frequency domain:
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A z( )  is the denominator of the transfer function H z( )  and

represents the poles of the model, respectively B z( )  is the
numerator and represents the zeros:
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Generally ( , )A Bε  cannot be minimized directly. However, if the
zeros or poles are known the remaining coeff icients can be
obtained straightforward. These two partial solutions are
described in the following section.

1.2      Partial Solution I

If the zeros are known, the optimal poles can be determined by
applying the Burg method to the analyzed signal, in which the
known zeros are removed. If the zeros are not removed, the zeros
distort the estimation process because the estimated poles tend to
approximate not only the actual poles but also the zeros of the
model. However, the optimal zeros usually are unknown.

Therefore an approximation B z( )  of the optimal numerator

coeff icients is used. The denominator coeff icients ak   can be

estimated with aid of B z( )  by minimization of the error:
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Now the Burg method is applied to the IDFT of X z B z( ) ( ) ,

which implies that the assumed zeros are reduced in the spectral
domain and cannot anymore distort the estimation process. The
better the zeros are approximated the estimation of the poles is
improved.

Fig. 1. Flow chart of the iteration procedure.

2.2      Partial Solution II

For the partial solution II corresponding to the partial solution I
the numerator B z( )  is estimated by using an assumed

approximation A z( )  of the denominator. Since the estimated
coeff icients are now in the denominator, the Burg method cannot
be applied to this form of the error. But if the integrand in the
error is inverted, the poles are changed into zeros. This error
definition
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allows to estimate the coeff icients bk  by the Burg method. To

minimize 2ε  the Burg method is applied to the IDFT of

A z X z− −⋅1 1( ) ( ) . The assumed poles are reduced in the spectral
domain, corresponding to the partial solution I.

2.3      Complete Solution

These two partial solutions are not independent of each other,
because one partial solution requires the results of the other
partial solution. Therefore the solutions should be executed
alternately. The results of the previous partial solutions are the
assumptions of the next partial solutions. The succession of the
partial solutions cannot be arranged any way, because the results
are different whether the poles are estimated after the estimation
of the zeros or vice versa. Therefore the procedure executes two
blocks parallel, in which two partial solutions are carried out one
after the other. In one block the poles are estimated after the
zeros and in the another block the order is reverse. In block 1 the
estimated poles ( )A z′  are used for the following estimation of

( )B z′  and corresponding in block 2 the estimated zeros ( )B z′′
are used for the following estimation of ( )A z′′ . Afterwards the

errors ( , )A Bε′ ′ ′  with the results of block 1 and ( , )A Bε′′ ′′ ′′  with
the results of block 2 are calculated. If both errors are larger than
the error of the previous iteration the procedure breaks and the
final solution is the result of the previous iteration. If one error of
one block is larger and one is smaller than the error of the
previous iteration, the resulting error of this iteration is the result
of the block with the smaller error. If the two errors of the blocks
are smaller than the error of the previous iteration, the solution of
the iteration is a combination of the results of the two blocks.
This is realized by the arithmetic mean of two sets of reflection
coeff icients, which are obtained from ( )A z′  and ( )A z′′ . The
conversion of the resulting reflection coeff icients into the
polynomial coeff icients represents the new estimated coeff icients

ˆka . Corresponding operations are carried out for the k̂b .

Because of the use of the reflection coeff icients, the stabilit y of
the resulting system is guaranteed. Eventually the iteration
finishes, when a number N  of iterations is exceeded. The

iterative procedure begins with the start configuration 
�
( )A z = 1

and 
�
( )B z =1, which implies no knowledge about the poles and

zeros of the system. The flow chart of the whole algorithm is
depicted in figure 1.

2.4 Burg Method used for Periodic Signals

For periodic signals a special modification of the Burg method
has been developed. The calculation of the correlation function
for the Burg coeff icient requires values, which are outside of the
analyzed segment. These values can be declared to zero. If a
periodic signal is assumed, the outside value can be described
with a value, which is inside of the analyzed segment, by
considering the periodicity. Therefor it is favorable, that the
segment is one period of the analyzed signal.

3. EXAMPLES

3.1      Examples from Test Signals

To demonstrate the capabilit y of the procedure, test signals are
generated, which are produced by prescribed systems. E.g. a
system with 10 poles and 4 zeros is excited by an impulse train.
A period of the output signal is analyzed. For the transfer
function during the iteration the same number of poles and zeros
is chosen, so that it is possible that the procedure can describe
the analyzed model precisely. Figure 2 shows the result after the
first iteration. The line spectrum is the DFT of the analyzed test
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Fig. 2. Analysis of test signal after the first iteration.

signal and the solid line is the magnitude response of the
estimated transfer function. After the  first iteration the
magnitude response is an inadequate approximation of the DFT
spectrum of the test signal. The procedure finishes after 15
iterations. After that iteration the estimated magnitude response
in figure 3 gives a perfect match to the DFT spectrum of the
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Fig. 3. Analysis of test signal after 15 iterations.

analyzed period. More test signals have been analyzed showing
comparable results. 

3.2      Examples from Speech Signals

In practice speech signals cannot be perfectly modeled in contrast
to the test signals due to the imperfections of the model.
However, the dominant resonances and existing antiresonances
in the speech spectrum should be modelled. In figure 4 results of
the analysis of one period of the nasal /n/ is shown. The order of
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Fig. 4. Analyzed period of  /n/ by 20 poles and 10 zeros.
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the analyzed system is 20 for the poles in combination with 10
zeros. The line spectrum represents the DFT of the analyzed
speech period and the solid lines are the estimated magnitude
responses. The zero at 1500 Hz can be well observed in figure 4,
which is caused by the coupling of the mouth cavity with the
nasal tract. Due to the fluctuations of the glottal source and other
effects single periods of vowels show also gaps in the magnitude
spectrum. This fact can be seen in figure 5 showing the result of
the analysis of one period of the vowel /i:/; the estimated system
has 20 poles and 10 zeros. For comparison figure 6 shows the
analysis of the same speech period /i:/ with 30 poles but no zeros.
Although more poles have been spent, the gaps in the spectrum
cannot be modelled by an all-pole system, because of the missing
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Fig. 5.  Analyzed period of  /i:/ by 20 poles and 10 zeros.
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Fig. 6.  Analyzed period of  /i:/ by 30 poles but no zeros.

zeros. Figure 7 shows an example /z/ of a voiced fricative. The
fluctuations of the adjacent periods of /z/ are especially strong
due to the additional noisy excitation of this sound. For the
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Fig. 7.  Analyzed period of  /z/ by 20 poles and 10 zeros.

subsequent analysis of voiced speech periods, the order of the
analysis cannot be adapted automatically to the corresponding
speech segments, so that a fixed number of poles and zeros for all
sounds is preferable, especially during the transition of one
sound to another. Figure 8 shows that the procedure can  be

applied to non-periodic signals, too. A segment of the fricative /∫/
is analyzed with 20 poles and 10 zeros after a von Hann window
has to been applied to the signal. All speech examples are
recorded at a sampling rate of 16 kHz and the number of
iterations for the algorithm was about 10.

Fig. 8.  Analyzed segment of  /∫/ by 20 poles and 10 zeros.

4. SUMMARY
The proposed algorithm is able to minimize the power of the
error signal of a general pole zero system by the use of iterations
based on partial solutions. Therefore the algorithm is able to
estimate poles and zeros of linear systems from time signals. To
study the performance of the procedure analyses of test signals
are carried out, which yield a perfect match of the DFT spectra of
these signals with the estimated magnitude responses. Examples
of analyzed speech signals show, that the procedure is also able
to approximate the DFT spectra of speech signals adequately
especially with respect to gaps in the speech spectrum.

5. REFERENCES
[1] Burg, J.: “A new analysis technique for time series data” ,

NATO Advanced Study Institute on Signal Processing,
Enschede 1968.

[2] Prony, R.: “Essai éxperimental et analytique ... ” , Journal de
l’École Polytechnique ou Bulletin du Travail fait a cette
École, 2. Cahier, Paris an IV (1795) pp. 24-76.

[3] Kumaresan, R, Tufts, D.W.: “Estimation the Parameters of
Exponentially Damped Sinusoids and Pole-Zero Modeling in
Noise”, IEEE Trans.  ASSP-30 (1982), pp. 833-840 .

[4] Steiglitz, K.: “On the Simultaneous Estimation of Poles and
Zeros in Speech Analysis” , IEEE Trans. ASSP-25 (1977),
pp. 229-234.

[5] Song, K.H.; Un, C. K.: “On Pole-Zero Modelli ng of Speech”,
Proc. ICASSP-80, pp. 162-165.

[6] Broersen P.M.T.: “Accurate ARMA Models with Durbin’s
Second Method”, Proc. ICASSP-99 (CD-ROM).

[7]  Schnell, K.; Lacroix A.: “Parameterbestimmung für Pol-
      Nullstellen-Modelle”, 10th Conf.: ‘Elektronische
      Sprachsignalverarbeitung' ESSV-99, Görlitz (Germany)
      1999, pp. 64-71.
[8] den Brinker, A.C.; Oomen A.W.J.: “Fast ARMA modelling
     of power spectral density functions”, Proc. EUSIPCO-2000,
     Tampere, pp. 1229-1232.


