
IMPROVED POWER-LAW DETECTION OF TRANSIENTS

Zhen Wang and Peter Willett

U-157, University of Connecticut
Storrs, CT 06269

e-mail: willett@engr.uconn.edu

ABSTRACT

Recently, a power-law statistic operating on DFT data
has emerged as a basis for a remarkably robust detector
of transient signals having unknown structure, location
and strength. In this paper we offer a number of im-
provements to the original power-law detector. Specif-
ically, the power-law detector requires that its data be
pre-normalized and spectrally white; a CFAR and self-
whitening version is developed and analyzed. Further,
it is noted that transient signals tend to be contigu-
ous both in temporal and frequency senses, and conse-
quently new power-law detectors in the frequency and
the wavelet domains are given. The resulting detec-
tors offer exceptional performance and are extremely
easy to implement. There are no parameters to tune,
and they may be considered “plug-in” solutions to the
transient detection problem.

1. INTRODUCTION

There has been significant recent attention to Nuttall’s
power-law detector [3, 4] due to its simple implemen-
tation and good performance. The test is based on the
following formulation. Under the signal-absent hypoth-
esis (H0) – that the time-domain data is complex white
Gaussian noise – pre-processing by the magnitude-square
DFT yields independent and identically distributed (iid)
exponential random variates. Under the signal- present
hypothesis (H1), the DFT observations are no longer
a homogeneous population of exponentials; Nuttall’s
basic assumption is that there are two positive expo-
nential populations:

H0 : f(X) =
N∏

k=1

1
µ0

e−Xk/µ0 (1)

H1 : f(X) =
∏
k �∈S

1
µ0

e−Xk/µ0
∏
k∈S

1
µ1

e−Xk/µ1
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where N is the total number of FFT bins, X are the
magnitude-squared FFT bins and S indicates a subset
with size M . It is assumed that M signal-present bins
are uniformly distributed among the N FFT bins.

Nuttall developed power-law statistics [3] as an ap-
proximation to the optimal detector, and these have
the form:

T (X) =
N∑

k=1

Xk
ν (2)

where ν is an adjustable exponent. Through extensive
computational work it has been found that a good com-
promise value for ν is 2.5 when information about M
is completely unavailable. As an extension of power-
law to unknown noise level (µ0) cases, a constant false-
alarm rate (CFAR) version was introduced [5]:

Tcpl(X) =
∑N

k=1 Xk
ν

(
∑N

k=1 Xk)ν
(3)

Clearly, Tcpl is not affected by a scale factor.
The statistic (2) is remarkably good; this paper has

been written because:

1. The statistic (2) is designed with white noise of
known power in mind; the fact is that the per-
formance of (3) is disappointing in white noise,
while for colored noise it has very little appeal.

2. The statistic (2) is essentially optimal [3] given
its frequency-domain model of (1) when there is
nothing whatever known about the signal-bearing
set S. There is some tendency for real transient
signals to aggregate their energy in a band.

3. There is no reason why a DFT must be the pre-
processing step: we investigate the extension that
a transform other than the DFT be used.

Basically, the power-law detector is as yet neither a
plug-in solution nor is it as good as it can be, and we
offer some remedy here.



2. THE NEW CFAR POWER-LAW DETECTOR

The focus of this section is to detect transients buried in
colored noise with unknown but stationary spectrum.
We write in a matrix a block of NL time domain ob-
servations as x = (x1,x2, ...,xL), where xi is a column
vector of dimension N whose kth element is the time
sample of index (i−1)L+k. We immediately transform
each column to its magnitude-squared frequency do-
main equivalent Xi, and record X = (X1,X2, ...,XL).

Following ideas similar to those frequently used in
radar CFAR processing (e.g. [2]) we define the new
power-law statistic as

Tfc(X) =
N∑

j=1

zν
j , where zj =

XjL

1
L−1

∑L−1
i=1 Xji

(4)

where ν is a real exponent.
The best value for the power ν in (4) is in general

strongly dependent on M , the number of signal-present
bins – this is not at all desirable, since our goal is to find
a detection structure which does not depend on knowl-
edge of such signal qualities. Now, given a statistic T ,
its output SNR can be expressed as

SNRT =
(E(T |H1)− E(T |H0))2

var(T |H0)
(5)

We define the SNR loss as

ISL(ν, M) = St(ν, M)− Stopt(M)

where Stopt(M) =
√

SNR.M indicates the required
input aggregate SNR for the optimal statistic at a par-
ticular bandwidth M . The ISL measures the input ag-
gregate SNR which is sacrificed through use of a fixed
exponent ν, as compared to the best possible exponent
ν for that M or the corresponding optimal statistic. In
[7] it is found from examination of the ISL that ν = 2.5
is the best choice, a result corroborating that in [3].
We apply the input SNR-loss analysis to the detector
in (4), to select ν. Example results are shown in fig-
ure 1. Generally, 1.5 < ν < 2 is a good choice when
information of M is completely unknown.

3. DETECTORS BASED ON CONTIGUITY IN
THE FREQUENCY DOMAIN

There is often a tendency for transient signal energy
to aggregate itself in the frequency domain; that is, to
be at least somewhat bandlimited. We thus modify
Nuttall’s assumption that the M signal-present bins
are uniformly and independently distributed amongst
the record of N .

0 2 4 6 8
0

5

10

15

20

25

30

35

40

45

50

55

log
2
(M)

in
pu

t S
N

R
 lo

ss

0 2 4 6 8
0

20

40

60

80

100

120

140

160

180

200

220

in
pu

t a
gg

re
ga

te
 S

N
R

log
2
(M)

ν=1  
ν=1.5
ν=1.7
ν=2  
ν=2.5
ν=3  
ν=3.5
ν=4  

Fig. 1. SNR for CFAR power-law statistics, with
settings the output SNR = 6, N = 256. Left figure:
SNR for different ν; right figure: the input SNR-loss
for different ν.

3.1. The Prenormalized Case

New random variables are obtained by combining two
contiguous frequency bins, and we define new power-
law detectors

Tf2(U) =
N∑

j=2

Uj
ν =

N∑
j=1

(Xj−1 + Xj)ν (6)

where {Xj} and N have same meanings as in (1). The
statistic of (6) is easily extended as

Tf3(U) =
N∑

j=3

Uj
ν =

N∑
j=1

(Xj−2 + Xj−1 + Xj)ν (7)

to the case of three contiguous bins, and further exten-
sion is straightforward.

3.2. The Self-Normalizing Case

A similar combining process was adopted in the colored
noise case by letting Uji = Xj−1,i +Xj,i. This combin-
ing approach results in modified model and generates
new CFAR power-law detector in the frequency domain
as

Tfc2(U) =
N∑

j=2

(
UjL

1
L−1

∑L−1
i=1 Uji

)ν

(8)

The similar detector Tfc3 combines 3 contiguous bins.

4. DETECTORS IN THE WAVELET DOMAIN

For time-domain observations, the DFT transforms a
pure “time description” into a pure “frequency descrip-
tion” and thus clearly cannot take advantage of time
contiguity. The wavelet transform (WT) finds a good



compromise. The original work of Nuttall explored
only the case that the pre-processing transformation
was the DFT – the extension to other transforms, es-
pecially the wavelet transform, is natural. The Haar
wavelet [6] is explored due to the fact that a statis-
tic which assumes as little as possible about the tran-
sient to be detected is preferable. Analogous to the
frequency domain detectors T (the original power-law
detector), Tf3, Tcf and Tcf3, we define Tw, Tw3, Tcw

and Tcw3. These are essentially the same detectors,
with the exception that the pre-processing transform
is in a multi-resolution decomposition. Combinations
of wavelet coefficients are according to the tree struc-
ture of the filter-bank (see [7] for details); due to this,
combining two wavelet coefficients (i.e. Tw2 and Tcw2)
is inappropriate.

5. PERFORMANCE COMPARISON

5.1. Prenormalized Data

The detection performance of the improved detectors in
the frequency and the wavelet domains are compared
to the power-law in [3] with power ν = 2.5. We set
N = 256 and St = 100 where St is the aggregate SNR of
transients. The results are shown in figure 2, where the
transient signal was created by passing white Gaussian
noise through a bandpass FIR filter (the number of
signal-energy-containing FFT bins M ≈ 25). From fig-
ures 2 and 3, it is clear that combining 2 or 3 contigu-
ous FFT or wavelet bins together does indeed improve
detection performance.

5.2. Self-Normalizing Case.

Results for the self-normalizing case are shown in figure
4 for different values of M , where colored ambient noise
is created by passing white Gaussian noise through an
FIR filter. The transient, of duration 50, has the same
PSD as the noise. The exponent ν = 1.5 is used for all
power-law detectors. We further plot Pd vs. aggregate
SNR in figures 5 with M ≈ 10. Clearly, for each ν,
combining contiguous FFT or wavelet bins will improve
the performance over St.

6. SUMMARY

In [3] Nuttall derived and justified a new and easy-to-
implement statistic for the detection of short-duration
(transient) signals: the sum of magnitude-square DFT
outputs from a block of N time domain data, each
raised to a power typically in the range 2-3. This test
has been found to be very effective indeed.

detector provenance pre-proc. comb. CFAR

T Nuttall DFT 1 no

Tcpl Nuttall DFT 1 partial

Tf2 new DFT 2 no

Tf3 new DFT 3 no

Tfc new DFT 1 yes

Tfc2 new DFT 2 yes

Tfc3 new DFT 3 yes

Tw new wavelet 1 no

Tw3 new wavelet 3 no

Twc new wavelet 1 yes

Twc3 new wavelet 3 yes

Table 1. Categorization of various transient detectors
discussed in this paper.

The power-law detector is almost a plug-in transient
detector for all purposes, but not quite: pre-whitened
and pre-normalized data is required. We have thus ex-
tended the power-law detector to be self-normalizing
by raising to an exponent not the DFT data directly,
but instead the power in each DFT bin relative to the
average power in previous DFTs. In this case a some-
what smaller exponent, in the range 1.5-2, should be
used. It has been noted that there is a tendency among
real transient signals to be bandlimited to some degree,
and hence a combined-bin power-law detector is pro-
posed. It was additionally noted that the power-law
dogma of pre-processing via the DFT is open to chal-
lenge, and indeed a power-law processor operating on
(Haar) wavelets is developed, made self-normalizing,
and augmented to use combined bins (since transient
signals most transient signals are aggregated not just
in frequency, but also in time/scale).

We give a taxonomy in table 1. Our overall conclu-
sion is that although all of these tests work well, the
combined/wavelet power-law detector is perhaps the
finest of all.
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Fig. 2. Receiver operating characteristic (ROC)
of new power-law statistics in the frequency and the
wavelet domains versus that of Nuttall’s power-law de-
tector with ν = 2.5. The upper plots illustrate an
example of the transient signal.
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Fig. 3. Similar to figure 2, Detection performances
of new power-law statistics in the frequency and the
wavelet domains; St denotes the aggregate SNR.
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Fig. 4. Receiver operating characteristic (ROC) of
statistics in the frequency and the wavelet domains for
transient detection in colored noise. TLO is the locally-
optimum detector (see [7]).
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Fig. 5. Detection performance of power-law detectors
in the frequency and the wavelet domains for transient
detection in colored noise with different ν. Here St
means the aggregate SNR, N = 256 and M = 10. The
same noise model as in figure 4 is applied, and the same
terms as in figure 4 are used.


