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ABSTRACT

In this paper, we present a neural network architecture
that belongs to the multi-layer perceptron family, as-
sociated with two different algorithms: the ordinary
gradient and the natural gradient, we compare perfor-
mances of those algorithms. The identification of a
non-normalized power amplifier yielded to the intro-
duction of an additional weight in the classical multi-
layer perceptron structure. The application of this net-
work is space telecommunications: identification of
satellite communication channels, and especially the
down link. This link is made up with two elements.
The first one is a high power amplifier (non-linearity).
The second one is a filter (memory).

1. INTRODUCTION

Neural networks (NN) application in space communications
is becoming more and more important[4][1]. The non-
linear computation of NN, their learning ability, their auto-
organization and their parallel implementation allow them
to be well adapt to solve complicated problems in telecom-
munications. Differents authors have used NN to solve non-
linear problems in digital communications. For example,
the multi-layer perceptron (MLP) has been used to identify
non-linear channels[3]. This work has been motivated by
the fact that the MLP is known as the ’universal approxima-
tion theorem’: it has been simultaneously shown by several
researchers in 1989 that an MLP with one hidden layer
was able to uniformly approximate any function defined
on a compact space if it has enough neurons on the hid-
den layer[2]. Another kind of NN is the radial basis func-
tion network (RBF). Many fundamental theoretical results
about RBF were proved such as the ’universal approxima-
tion’ property. Those networks have been used in UMTS
channels equalization[1]. In this paper we realize the iden-
tification of a down link channel that is made up with a solid
state power amplifier (SSPA) followed by a filter. The SSPA

is not normalized, so that the input is not of the same order
as the output.

We use a NN that belongs to the MLP family to identify
separately each element of the channel. Two different algo-
rithms are associated to that NN : the ordinary gradient and
the natural gradient. In section 2 we present the system to
identify. In section 3, we present the NN structure and its
associated algorithms. The simulations results are shown in
section 4.

2. THE SYSTEM TO IDENTIFY

The system to identify is the cascade of two elements: the
SSPA and the filter. The main goal of communication satel-
lite payloads is to provide a radio relay for links between
earth stations. In order to exploit on-board resources with
maximal efficiency, the payload equipments are often oper-
ated near their saturation points. This is particularly true for
active components such as high power amplifiers (HPA).
Various models have been applied for the characterization
of HPA non-linear behaviors. HPA usually have finite band-
width. If this bandwidth is larger than the signal bandwidth,
then the non-linearity is memoryless and can be written as
a complex voltage gain depending on the signal amplitude
���� � ������m�+�,� In our case the HPA is a SSPA. When
using an SSPA aboard the satellite, it occurs two kinds of
distortions: amplitude distortion (AM/AM conversion) and
phase distortion (AM/PM conversion). Those two distor-
tions are shown respectively on Fig. 1a and Fig. 1b. The
”Centre National d’Etudes Spatiales” (CNES) gave us those
data.

The main goal of the filter is to eliminate inter-
modulation products created by the SSPA. Filter character-
istics are as follow: it is a band pass filter with 6 poles, cen-
tered on the carrier frequency �3 � ������	, the band
pass is ����	. Our simulations are made in base band so
we work with the equivalent low pass filter.
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Fig. 1. AM/AM and AM/PM Conversion

3. THE NN STRUCTURE AND ITS ASSOCIATED
ALGORITHMS

3.1. Structure

The NN is made up two parts (Fig. 2). It is a mimetic
structure. The first one has the same architecture than the
SSPA, it is non-linear (NLN) and computes the AM/AM
and AM/PM conversion with two sub-networks. Each sub-
network has 15 neurons in the hidden layer and one neuron
in the output layer. The second part presents the architecture
of a linear filter (LN). It is a FIR filter with 60 complex
coefficients . The weight 
3 is a simple gain. The goal of
that weight is to normalize the SSPA (i.e. input and output
amplitudes for the AM/AM conversion of the SSPA are of
the same order). All the weights of the NN are initialized
with random values around zero.
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Fig. 2. NN architecture

3.2. Ordinary gradient algorithm

The learning ordinary gradient (OGD) algorithm is given
by:

�Forward phase:

���� �
3 � 
���
� ��� �

QJ�
n@4

�J5n � ���J4n � �� �J4n� � �J5

���� �
QS�
n@4

�S5n � ���S4n � �� �S4n� � �S5

The NLN output is:

	 � ���� � �l!+�, � �

where ���� � 	
�����, is the non-linearity of one neuron
and � � ��� �

We present to the LN the vector:

���� � 
	���� 	��� ��� ���� 	��� �� ���W �

where �W is the transpose vector and � is the size of the
LN. The LN output is as follows:

���� �
s�
l@4
�5l��� � 	��� �� ��

with complex coefficients �5l, because of the complex
impulse response.

The learning criterion to minimize is the square error cri-
terion (where d is the desired output).

���5 � ��� ��5

�Backpropagation:
�4 � �L � ���T
�5 � �54L ��L ��54T��T � �����54T��L ��54L ��T�
�J � � � ��5L � ���������� � �L � ��������� � �T� � �5T �

���������� � �L � ��������� � �T��
�S � � ����� � ��5L � �� ��������� ��L���������� ��T��

�5T � ���������� � �L � ��������� � �T��
�Update of the coefficients:

�5l��� �� � �5l��� � �z5
��� � ���� � 	���� �� ��

�J5n����� � �J5n��� � �zJ5��� � 
J4n��� � �J5���
�S5n����� � �S5n��� � �zS5��� � 
S4n��� � �S5���
�J4n����� � �J4n�����zJ4��� ��J5n��� ��J5��� �

���� � � 3��J4n��� � � � �J4n����
�S4n����� � �S4n�����zS4��� ��S5n��� ��S5��� �

���� � � 3���S4n��� � � � �S4n����
�J4n et �S4n are respectively the bias of the first layer of

gain (����) and phase (����) sub layers.
�Iteration until convergence.

3.3. Natural gradient algorithm

The learning of the linear part has the same scheme as
above. The NLN is learned by the natural gradient which
is a natural choice in a neural network manifold[5]. In this
paper we consider the neural network (NN) as two sub-NNs.
So we train each sub-NN separately in order to reduce the
complexity of computation.

Natural gradient (NGD) for training NNs can be done by
two methods: global and behavioral methods. It has been
proven by simulation that using the natural gradient accel-
erates the convergence and reduces the residual mean square
error (MSE) significantly.



The natural gradient rule takes into account the geomet-
rical property of the NLN manifold which is a Riemannian
Manifold. It has the forme

��� � ��4��

where ��4 is the inverse of the Fisher Information Ma-
trix (FIM) and �� is the ordinary gradient descent of the
cost function � � ������5. In the case of Euclidean mani-
folds � � �g (the identity matrix), so ��� � ��. The FIM
can be calculated from �� by the rule:

� � �

�
��
��

���
��

�W
�

where � is the vector of the sub-network coefficients � ��

W

4 � �
W �
W

5

�W
.

4. SIMULATION RESULTS

In this section we present identification results of the con-
sidered downlink channel (Fig. 3). Those simulations are
made in base band. The learning signal is a uniformly dis-
tributed white noise.
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Fig. 3. Identification of a down link channel

We have observe experimentally that it is possible to
identify this system only if we normalize the SSPA with
the weight
3. This is true for both used algorithms (OGD
or NGD). Fig. 4 shows the mean square error (MSE) evo-
lution of the I component with and without the weight 
3

for OGD� If we use that weight (
3 � ��) we obtain at the
end of convergence an �� � �� dB between the learning
and the error signals. If we do not use it (W3 � �) then
�� � �� dB� So, the weight
3 decreases the MSE con-
vergence by �� dB and increases the convergence speed eff
iciency.
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Fig. 5 shows the MSE evolution (
3 � ��) of the I
component for both algorithms: the OGD and the NGD. At
the end of the learning sequence we obtain for the OGD:
�� � �� dB. With the NGD, we obtain: �� � �� dB.
So, the NGD decreases the MSE by 24 dB. This is the first
advantage of the NGD.

The second advantage of the NGD is the convergence
speed. Indeed, on Fig. 5 we see that OGD need around
������7 iterations to converge whereas the NGD has nearly
converge in around �����7 iterations.
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Fig. 5. Mean square error evolution with OGD and NGD

Fig. 6 shows the normalized AM/AM conversion. In
Fig. 6a (Fig. 6b), we superpose the SSPA and the NN with
NGD (OGD). It is clear when we look both figures that the
identification is better with the NGD algorithm.
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Fig. 7 shows the AM/PM conversion. It is also clear
that the identification is better with the NGD algorithm (Fig.
7a).
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Fig. 8a and 8b present respectively the module and phase
of the transfer function filter and LN with NGD (the same
result is obtained by applying the OGD algorithm). The LN
is well fitted to the filter especially between ���� MHz and
100 MHz.
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Fig. 8. Identification of the filter

5. CONCLUSION

We have identified a non-linearity (SSPA) followed by a
memory (filter) with a NN that belongs to the MLP family,
associated with two different algorithms (OGD and NGD).
We have shown that for all algorithm used, the NN converge
only if the SSPA is normalized by the weight
3.

Moreover, we have shown that the NGD presents best re-
sults than OGD on two points: the SNR after convergence
and the convergence speed. For the first point we get ��
dB with the NGD and �� dB with the OGD. So, the iden-
tification of the SSPA is highly efficient with the NGD al-
gorithm (Fig. 6 an Fig. 7). For the second point, the con-
vergence speed of the NGD is around five times better than
the OGD (Fig. 5).

Finally we identify separately each element of the chan-
nel. The NLN identify the SSPA and the LN identify the
filter.
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