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ABSTRACT

In this paper, we present aneural network architecture
that belongs to the multi-layer perceptron family, as-
sociated with two different algorithms: the ordinary
gradient and the natural gradient, we compare perfor-
mances of those algorithms. The identification of a
non-normalized power amplifier yielded to the intro-
duction of an additional weight in the classical multi-
layer perceptron structure. The application of this net-
work is space telecommunications. identification of
satellite communication channels, and especially the
down link. This link is made up with two elements.
Thefirst oneis ahigh power amplifier (non-linearity).
The second oneis afilter (memory).

1. INTRODUCTION

Neural networks (NN) application in space communications
is becoming more and more important[4][1]. The non-
linear computation of NN, their learning ability, their auto-
organization and their parallel implementation allow them
to be well adapt to solve complicated problemsin telecom-
munications. Differents authors have used NN to solve non-
linear problems in digital communications. For example,
the multi-layer perceptron (MLP) has been used to identify
non-linear channel§/3]. This work has been motivated by
thefact that the MLP isknown asthe’ universal approxima
tion theorem'’: it has been simultaneously shown by severd
researchers in 1989 that an MLP with one hidden layer
was able to uniformly approximate any function defined
on a compact space if it has enough neurons on the hid-
den layer[2]. Another kind of NN is the radial basis func-
tion network (RBF). Many fundamental theoretical results
about RBF were proved such as the 'universal approxima-
tion’ property. Those networks have been used in UMTS
channels equalization[1]. In this paper we realize the iden-
tification of adown link channel that is made up with asolid
state power amplifier (SSPA) followed by afilter. The SSPA

is not normalized, so that the input is not of the same order
asthe output.

We use aNN that belongs to the MLP family to identify
separately each element of the channel. Two different algo-
rithms are associated to that NN : the ordinary gradient and
the natural gradient. In section 2 we present the system to
identify. In section 3, we present the NN structure and its
associated algorithms. The simulations results are shown in
section 4.

2. THE SYSTEM TO IDENTIFY

The system to identify is the cascade of two elements: the
SSPA and the filter. The main goal of communication satel-
lite payloads is to provide a radio relay for links between
earth stations. In order to exploit on-board resources with
maximal efficiency, the payload equipments are often oper-
ated near their saturation points. Thisis particularly true for
active components such as high power amplifiers (HPA).
Various mode s have been applied for the characterization
of HPA non-linear behaviors. HPA usually havefinite band-
width. If thisbandwidth islarger than the signal bandwidth,
then the non-linearity is memoryless and can be written as
a complex voltage gain depending on the signal amplitude
G(p) = A(p).¢’®®) . In our casethe HPA isa SSPA. When
using an SSPA aboard the satellite, it occurs two kinds of
distortions: amplitude distortion (AM/AM conversion) and
phase distortion (AM/PM conversion). Those two distor-
tions are shown respectively on Fig. laand Fig. 1b. The
" Centre National d’ Etudes Spatiales’ (CNES) gave usthose
data.

The main goa of the filter is to eiminate inter-
modulation products created by the SSPA. Filter character-
isticsare asfollow: it isaband passfilter with 6 poles, cen-
tered on the carrier frequency fo = 8200M H z, the band
passis 60M H z. Our simulations are made in base band so
we work with the equivalent low pass filter.
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Fig. 1. AM/AM and AM/PM Conversion

3. THE NN STRUCTURE AND ITSASSOCIATED
ALGORITHMS

3.1. Structure

The NN is made up two parts (Fig. 2). It is a mimetic
structure. The first one has the same architecture than the
SSPA, it is non-linear (NLN) and computes the AM/AM
and AM/PM conversion with two sub-networks. Each sub-
network has 15 neurons in the hidden layer and one neuron
inthe output layer. The second part presentsthe architecture
of alinear filter (LN). It is a FIR filter with 60 complex
coefficients . The weight W, isasimple gain. The goa of
that weight isto normalize the SSPA (i.e. input and output
amplitudes for the AM/AM conversion of the SSPA are of
the same order). All the weights of the NN are initialized
with random values around zero.

NON-LINEAR NETWORK (NLN)

LINEAR NETWORK (L

Y

Fig. 2. NN architecture

3.2. Ordinary gradient algorithm

The learning ordinary gradient (OGD) algorithm is given
by:
-Forward phase:

y(n) = Wo - z(n)

Ng
G(p) = > weark - f(waik - p+ baik) + baz
=1

Np
d(p) = > wpar - f(wpik - p+bpik) + bp2
=1

The NLN output is:
z = G(p) . e“‘b(p) . y

where f(.) = tanh(.), isthe non-linearity of one neuron
and p = ||yl
We present to the LN the vector:

z(n) = [z(n),z(n — 1),...,2(n — p+ 1)]T,

where X 7' isthe transpose vector and p is the size of the
LN. The LN output isasfollows:

s(n) = éwgi(n) cz(n—i+4+1)

with complex coefficients ws;, because of the complex
impul se response.

Thelearning criterion to minimizeisthe square error cri-
terion (where d is the desired output).

2 2
lefl™ = [|d — s]|

-Backpropagation:
61 =er+ i.eQ
82 = woir.€y + w21Q.eQ + i.(—wle.ej + w21j.€Q)
89 =2 (67 - (cos(p(p)) - yr — sin(b(p)) - Q) + 65 -
(sin(¢(p)) - yr + cos(d(p)) - yo))
67 =2-G(p)- (87 (—sin(p(p)) - yr — cos(b(p)) -yQ) +
62 - (cos((p)) - yr — sin(6(p)) - ¥0))
-Update of the coefficients:
wai(n + 1) = wai(n) + fy,,(n) - e(n) - 2" (n —i+1)
waok(n + 1) = waar(n) + oy, (1) - Ta1r(n) - 6a2(n)
wpak(n +1) = wpak(n) + py ., (1) - Tp1k(n) - 6p2(n)
waik(n+1) = we1k(n) + flw,, (1) - we2k(n) -dg2(n) -
p(n) - f'(weik(n) - p - baik(n))
wpik(n+1) = wp1k(n) + iy, (1) -wpar(n) -6 pa(n) -
p(n) - f'((wpik(n) - p- bpik(n))
bg1k € bpyy are respectively the bias of thefirst layer of
gain (G(p)) and phase (¢(p)) sub layers.
-Iteration until convergence.

3.3. Natural gradient algorithm

The learning of the linear part has the same scheme as
above. The NLN is learned by the natural gradient which
isanatura choice in a neural network manifold[5]. In this
paper we consider the neural network (NN) astwo sub-NNs.
So we train each sub-NN separately in order to reduce the
complexity of computation.

Natura gradient (NGD) for training NNs can be done by
two methods: globa and behavioral methods. It has been
proven by simulation that using the natural gradient accel-
eratesthe convergence and reducesthe residual mean square
error (MSE) significantly.



The natural gradient rule takes into account the geomet-
rical property of the NLN manifold which is a Riemannian
Manifold. It has the forme

VL = A"'VL

where A~ is the inverse of the Fisher Information Ma-
trix (FIM) and VL is the ordinary gradient descent of the
cost function L = [|e(n)||?. In the case of Euclidean mani-

folds A = I, (theidentity matrix), so VL = VL. The FIM
can be calculated from V L by therule:

VL (VL)'
Vo \ Vo

where § isthe Tvector of the sub-network coefficients 0 =
(Wi, BT, W]

A=FE

4. SSIMULATION RESULTS

In this section we present identification results of the con-
sidered downlink channel (Fig. 3). Those simulations are
made in base band. The learning signal isauniformly dis-
tributed white noise.
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Fig. 3. Identification of adown link channel

We have observe experimentally that it is possible to
identify this system only if we normalize the SSPA with
the weight ;. Thisistrue for both used algorithms (OGD
or NGD). Fig. 4 shows the mean square error (MSE) evo-
[ution of the I component with and without the weight W
for OGD. If we usethat weight (W, = 80) we obtain at the
end of convergencean SN R = 30 dB between the learning
and the error signals. If we do not use it (Wop = 1) then
SNR = 11 dB. So, theweight 1, decreasesthe MSE con-
vergence by 19 dB and increases the convergence speed eff
iciency.
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Fig. 4. Mean sguare error evolution with and without W,

Fig. 5 shows the MSE evolution (W, = 80) of the |
component for both algorithms. the OGD and the NGD. At
the end of the learning sequence we obtain for the OGD:
SNR = 30 dB. Withthe NGD, we obtain: SN R = 54 dB.
So, the NGD decreases the MSE by 24 dB. Thisisthe first
advantage of the NGD.

The second advantage of the NGD is the convergence
speed. Indeed, on Fig. 5 we see that OGD need around
250.10% iterations to converge whereas the NGD has nearly
converge in around 50.10* iterations.
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Fig. 5. Mean square error evolution with OGD and NGD

Fig. 6 shows the normalized AM/AM corversion. In
Fig. 6a(Fig. 6b), we superpose the SSPA and the NN with
NGD (OGD). It is clear when we look both figures that the
identification is better with the NGD algorithm.
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Fig. 6. Comparison of the AM/AM Identification with
OGD and NGD



Fig. 7 shows the AM/PM conversion. It is also clear
that theidentification isbetter with the NGD algorithm (Fig.
78).
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Fig. 7. Comparison of the AM/PM ldentification with
OGD and NGD

Fig. 8aand 8b present respectively the module and phase
of the transfer function filter and LN with NGD (the same
result is obtained by applying the OGD agorithm). The LN
iswell fitted to thefilter especially between —100 MHz and
100 MHz.
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Fig. 8. Identification of the filter

5. CONCLUSION

We have identified a non-linearity (SSPA) followed by a
memory (filter) with aNN that belongs to the MLP family,
associated with two different algorithms (OGD and NGD).
We have shown that for all agorithm used, the NN converge
only if the SSPA is normalized by the weight 1.

Moreover, we have shown that the NGD presents best re-
sults than OGD on two points: the SNR after convergence
and the convergence speed. For the first point we get 54
dB with the NGD and 30 dB with the OGD. So, the iden-
tification of the SSPA is highly efficient with the NGD al-
gorithm (Fig. 6 an Fig. 7). For the second point, the con-
vergence speed of the NGD is around five times better than
the OGD (Fig. 5).

Finally we identify separately each element of the chan-
nel. The NLN identify the SSPA and the LN identify the
filter.
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