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ABSTRACT
Vector rotation is the key operation employed extensively in many
digital signal processing applications. In this paper, we intro-
duce a new design concept called Angle Quantization (AQ). It can
be used as a design index for vector rotational operation, where
the rotational angle is known in advance. Based on the AQ pro-
cess, we establish a unified design framework for cost-effective
low-latency rotational algorithms and architectures. Several exist-
ing works, such as conventional CORDIC, AR-CORDIC, MVR-
CORDIC, and EEAS-based CORDIC, can be fitted into the design
framework, forming a Vector Rotational CORDIC Family. Based
on the new design framework, we can realize high-speed / low-
complexity rotational VLSI circuits, whereas without degrading
the precision performance in fixed-point implementations.

1. INTRODUCTION

Vector rotation plays an important role in many digital signal pro-
cessing (DSP) applications. It is extensively employed as the pro-
cessing kernel in discrete orthogonal transformations (DCT, DST,
and DFT), lattice-based (rotation-based) digital filtering, sinewave
generation, and digital modulation/demodulation in communica-
tion systems. Let [xin yin]

T and [xout yout]
T denote the input

and output vectors, respectively. Vector rotation of [xin yin]
T by

a rotational angle � can be formulated as�
xout

yout

�
=

�
cos � � sin �
sin � cos �

�
�

�
xin

yin

�
; (1)

Figure 1 shows the direct implementation of Eq. (1). As one can
see, the direct implementation is very area-consuming and low-
speed when rotational operations are heavily utilized in VLSI cir-
cuits.

In this paper, we propose a novel framework to design high-
speed/low-cost vector rotational VLSI circuits. Instead of per-
forming quantization on the coefficient parameters (cos � and sin �)
in fixed-point implementation, the proposed design framework orig-
inates from the concept of Angle Quantization (AQ). The AQ de-
rives the name from the fact that we perform the quantization pro-
cess on the rotational angle, �, directly. That is, we decompose the
original rotational angle � into several sub-angles, �i’s. Then, we
try to sum up those sub-angles to approximate the original angle
as close as possible; or equivalently, we try to minimize the angle
quantization error

�m
4

= � �

NA�1X
i=0

�i; (2)

where NA denotes the number of sub-angles. The AQ process is
demonstrated in Fig. 2(a). Based on the AQ process, The vector
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Figure 1: Direct implementation of rotational circuit.
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Figure 2: (a) Concept of Angle Quantization, where � =
(�0 + �1 + � � � + �NA�1) + �m, (b)Realization of fast vector ro-
tation operation based on the AQ process.

rotation operation can be realized as shown in Fig. 2(b). Each
rotation module is dedicated to performing a particular rotation
of sub-angle �i. Then, the rotation of � can be accomplished by
cascading these NA rotation modules.

In the AQ process, there are two key design issues:

1. Firstly, we need to determine (or construct) the sub-angles,
and each �i needs to be easy-to-implement in practical VLSI
circuits.

2. Secondly, we have to find out how to select and combine
these sub-angles such that the angle quantization error �m
can be suppressed.

In fact, the well-known COordinate Rotational DIgital Computer
(CORDIC) algorithm [1] can be considered as an approach to per-
form the AQ process. Recall that in the CORDIC algorithm, the
rotation of angle � is performed by sequentially rotating elemen-
tary angle of a(i) = tan�1(2�i), for 0 � i � W � 1, where
W denotes the wordlength. The advantageous feature of the ele-
mentary angle is that rotation of a(i) requires only two shift-and-



add operators. The easy-to-implement feature of a(i) conforms
to the requirements of aforementioned AQ process. In addition,
the sequential rotating operation of a(i)’s is the way to select and
combine those sub-angles in conventional CORDIC.

Next, we can link the AQ process with several existing vec-
tor rotation schemes such as Angle Recoding (AR) technique [2],
Modified Vector Rotational CORDIC (MVR-CORDIC) algorithm
[3] and Extended Elementary Angle Set (EEAS) scheme [4]. We
explore their relationship with the proposed AQ process. Then we
will derive a unified framework for all these vector rotational oper-
ations. That is, all previous schemes can be considered as subsets
of the proposed framework. The unified operations and AQ pro-
cess of these algorithm suggest a family of rotation algorithms. We
call it Vector Rotational CORDIC Family.

2. DESIGN FRAMEWORK FOR VECTOR ROTATIONAL
OPERATIONS

2.1. Conventional CORDIC Algorithm

In conventional CORDIC algorithm, the elementary angles, a(i),

is defined as a(i)
4

= tan�1(2�i) [1]. Based on the elementary
angles, the conventional CORDIC algorithm can be rewritten as

� =

N�1X
i=0

�(i)a(i) + �m; (3)

where N denotes the number of elementary angles, �(i) 2 f1;�1g
is the rotation sequence which determines the ith rotational angle
a(i). In general, for data of W -bit wordlength, the iteration num-
ber is less than W , i.e., N � W . Basically, the CORDIC tries to
decompose the rotation angle, �, into the combination of a(i), for
i = 0; 1; : : : ; N�1. The angle quantization error of the CORDIC
algorithm

�m;CORDIC
4

= � �

"
N�1X
i=0

�(i)a(i)

#
; (4)

represents the residue angle beyond the resolution of CORDIC al-
gorithm.

2.1.1. Link AQ process with conventional CORDIC algorithm

Next, we would like to define Elementary Angle Set (EAS) for the
derivation of the proposed vector rotational framework. Basically,
EAS consists of all elementary angles used in the rotation algo-
rithms. In the conventional CORDIC algorithm, the EAS com-
prises of all a(i), for 0 � i � N � 1, and can be defined as

S = fa(i) : 0 � i � N � 1g : (5)

With the help of EAS, we can say that the CORDIC algorithm
essentially performs the angle quantization. This can be observed
from Eq. (3). Given a target rotation angle �, CORDIC algorithm
determines the first rotation sequence �(0) for the most significant
elementary angle a(0), followed by the determination of �(1) for
a(1). The process is repeated until the last elementary angle is
applied. That is, the CORDIC algorithm tries to perform the rota-
tion through sequentially applying micro-rotations of all elemen-
tary angles.

Referring to Fig. 2, now we can relate AQ to CORDIC algo-
rithm as follows: 1) The sub-angle �i in AQ now becomes �i =
�(i)a(i) in CORDIC algorithm, 2) The number of sub-angles of
NA in AQ is set to be N in CORDIC algorithm, 3) CORDIC
algorithm sequentially apply all �i, for i = 0; 1; : : : ; N � 1, to
approximate the target angle �.

2.2. AR Technique [2]

In conventional CORDIC algorithm, the micro-rotations of all ele-
mentary angles are performed in a sequential way. On the contrary,
in the Angle Recoding (AR) technique proposed by Hu and Na-
ganathan [2], certain micro-rotations can be skipped depending on
the target rotational angle. Specifically, the modification is done by
extending the set of �(i) from f1;�1g to f1;�1; 0g. One can skip
the micro-rotation of the elementary angle a(i) = tan�1(2�i) by
setting �(i) = 0. Now, the angle quantization error of the AR
technique, �m;AR, can be represented as

�m;AR
4

= � �

"
N�1X
i=0

�(i)a(i)

#
: (6)

Basically, Eq. (6) is identical to Eq. (4), except for the extended
�(i) 2 f1;�1; 0g.

2.2.1. Link AQ process with AR technique

To make AR technique fit into our design framework, we reformu-
late Eq. (6) in a compact form as

�m;AR = ��

"
N0�1X
j=0

tan
�1
�
�(j) � 2

�s(j)
�#

4

= ��

"
N0�1X
j=0

~�(j)

#
; (7)

where N
0 4=

PN�1

i=0
j�(i)j, denotes the effective iteration num-

ber, s(j) 2 f0; 1; � � � ; N � 1g is the rotational sequence that
determines the micro-rotation angle in the j

th iteration, �(j) 2

f�1; 0; 1g is the directional sequence that controls the direction
of the j

th micro-rotation of a(s(j)), and ~�(j) is the j
th micro-

rotation angle, defined as ~�(j)
4

= tan�1
�
�(j) � 2�s(j)

�
.

As we can see from Eq. (7), the AR technique essentially tries
to approximate � with the combination of selected angle elements
from a pre-defined elementary angle set (EAS). The EAS consists
of all possible values of ~�(j)’s, and the EAS S1 used in AR tech-
nique can be represented as

S1 =
�
tan

�1
�
�
?
� 2
�s?

�
: �

?
2 f�1; 0; 1g; s

?
2 f0; 1; � � � ; N � 1g

	
:

(8)

The use of the subscript 1 will become apparent later in this sec-
tion. With the EAS S1 in hand, now we can easily link AR tech-
nique to the AQ process. By comparing Eq. (7) with the AQ ap-
proximation equation of Eq. (2), we find that AR technique indeed
performs the angle quantization of target angle �: The sub-angle
�i now corresponds to ~�(i) = tan�1

�
�(i) � 2�s(i)

�
and NA is

set to be N 0.

2.2.2. Optimization Problem

We can consider the optimization problem of AR technique from
EAS S1 point of view. It can be re-stated as: Given �, find the
combination of elementary angles from EAS S1, such that the an-
gle quantization error j�m;ARj � a(N � 1) and N

0 is minimized.



In [2], the Greedy algorithm is proposed to solve the optimiza-
tion problem.

2.3. MVR-CORDIC Algorithm [3]

Based on the AR technique, in the Modified Vector Rotational
CORDIC (MVR-CORDIC) algorithm [3], two more modifications
are proposed.

1. Repeat of elementary angles:
Referring to Eq. (6), in the AR technique, each micro-rotation an-
gle of a(i) = tan�1(2�i) is allowed to be used only once. How-
ever, in the MVR-CORDIC algorithm, each micro-rotation of el-
ementary angle can be performed repeatedly. The relaxed oper-
ation can result in more possible combinations of elementary an-
gles, hence, smaller �m can be expected.

2. Confines of total micro-rotation number:
From Eq. (7), we can see that the effective iteration number N0 in
the AR technique is not fixed. For certain cases, N 0 is large and
very close to the upper bound of N=2 [2]. In the MVR-CORDIC
algorithm, we confine the iteration number in the micro-rotation
phase to Rm (Rm � W ). The role of Rm is quite similar to the
number of non-zero digits, ND , used in CSD recoding scheme; it
will dominate the precision performance and the complexity.

2.3.1. Link AQ Process with MVR-CORDIC algorithm

Putting all the aforementioned modifications together and ignoring
the null operations, we can represent the angle quantization error
of the MVR-CORDIC algorithm as

�m;MV R
4

= � �

"
Rm�1X
i=0

�(i)a (s(i))

#
; (9)

where s(i) 2 f0; 1; � � � ;W � 1g is the rotational sequence that
determines the micro-rotation angle in the i

th iteration, �(i) 2

f�1; 0; 1g is the directional sequence that controls the direction
of the ith micro-rotation of a(s(i)). As one can find that the sub-
angle of (�(i)a(s(i))) in Eq. (9) is exactly the same as the defini-
tion of ~�(j) in Eq. (7). Hence, the EAS formed by MVR-CORDIC
algorithm is the same as AR technique.

Based on the Eq. (9), it is obvious that MVR-CORDIC algo-
rithm also performs the AQ process as well. The major difference
is: 1) The total number of sub-angles NA in Fig. 2 (i.e., the to-
tal iteration number in the micro-rotation phase) is now kept fixed
to a pre-defined value of Rm (NA = Rm), 2) The sub-angle
�i corresponds to �(i)a(s(i)) in MVR-CORDIC algorithm, i.e.,
�i = �(i)a(s(i)) = ~�(i).

2.3.2. Optimization Problem

In the application of MVR-CORDIC algorithm, the optimization
problem can be stated from EAS point of view as: Given �, find
the combination of Rm elementary angles from EAS S1, such that
the angle quantization error j�m;MV Rj is minimized.

In [3], Semi-greedy algorithm, which can provide tradeoffs be-
tween computational complexity and performance, is proposed to
solve the optimization problem.

2.4. Extended EAS-based CORDIC Algorithm [4]

In Extended Elementary Angle Set (EEAS)-based CORDIC algo-
rithm [4], in addition to applying the relaxation on �(i), we also
relax the constraint of elementary angles by extending EAS S1.
Then, we can have more choices (elementary angles) in approxi-
mating the target angle �. It is expectable that the angle quantiza-
tion error �m can be reduced correspondingly.

2.4.1. Extended EAS

By observing Eq. (8), we can see that the EAS S1 are comprised
of arctangent of single signed-power-of-two (SPT) term. In the
problem of SPT-based digital filter design, one effective way to
increase the coefficient resolution (hence the filter performance) is
to employ more SPT terms to represent the filter coefficients [5].
Motivated by this, we can easily extend the set by representing the
elementary angles as the arctangent of the sum of two SPT terms
[4]. That is,

S2 =

�
tan

�1
�
�
?
0 � 2

�s?0 + �
?
1 � 2

�s?1
�
:

�
?
0; �

?
1 2 f�1; 0; 1g; s?0; s

?
1 2 f0; 1; � � � ;W � 1gg :(10)

We call it Extended Elementary-Angle Set S2 (EEAS S2). The
subscript is used to denote the number of SPT terms.

Based on the EEAS S2 developed in Eq. (10), the sub-angle
�i in Fig. 2 now can be represented as

�i = tan�1
�
�0(j) � 2

�s0(j) + �1(j) � 2
�s1(j)

�
; (11)

and the number of sub-angles NA is set to be Rm.

2.4.2. Optimization Problem

With the derived EEAS S2, now the optimization problem of the
EEAS-based CORDIC algorithm can be stated as: Given � and
Rm, find the parameters of �0(j), �1(j), s0(j) and s1(j) (i.e.,
the combination of elementary angles from EEAS S2), such that
the angle quantization error

j�m;EEASj
4
=

������ �
Rm�1X
j=0

tan
�1
�
�0(j) � 2

�s0(j) + �1(j) � 2
�s1(j)

������ ;
(12)

can be minimized.
In [6], a novel searching algorithm, called Trellis-based Search-

ing (TBS) algorithm, is proposed to solve the optimization prob-
lem.

2.5. Generalized EEAS Scheme

By following the similar idea of EEAS scheme, it is straightfor-
ward to insert more SPT terms in the representation of elementary
angles. Hence, the size of EEAS can be increased. With more
than two SPT terms, we call such an extension scheme General-
ized EEAS Scheme. Specifically, the generalized EEAS with d SPT
terms can be represented as

Sd =

n
tan

�1

�
�
?
0 � 2

�s?0 + � � �+ �
?
d�1 � 2

�s?
d�1

�o
; (13)

where �?0 , � � �, �?d�1 2 f�1; 0; 1g, s?0 , � � �, s?d�1 2 f0; � � � ;W �

1g. As one can expect that the size of the EEAS increases ex-
ponentially as d increases. Consequently, with properly chosen
design parameters, we can achieve higher precision performance
in the AQ process.
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Table 1: Comparisons of members in the Vector Rotational
CORDIC family.
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Figure 3: Set diagram of vector rotational CORDIC family.

2.6. Family of Vector Rotational CORDIC Algorithm

So far, we have linked the AQ process with several existing vec-
tor rotation approaches, including CORDIC algorithm, Angle Re-
coding technique, MVR-CORDIC algorithm, EEAS scheme, and
Generalized EEAS scheme. All algorithms intend to realize the
AQ process with various EAS and suitable combinations of sub-
angles. That is, they try to decompose the target rotational angle
into several easy-to-implement sub-angles, while minimizing the
angle quantization error �m to obtain the best precision perfor-
mance.

Based on our discussion, now we can link all these rotation al-
gorithms together under a unified design framework, from the AQ
point of view. They form a family of vector rotational CORDIC al-
gorithm, called Vector Rotational CORDIC Family. They all con-
form to the AQ process, but each rotational algorithm uses differ-
ent AQ setting as summarized in Table 1.

Note that EEAS scheme covers MVR-CORDIC algorithm and
AR technique due to the fact that MVR-CORDIC and AR employ
EAS S1 as a searching space that is a subset of EEAS S2. More-
over, MVR-CORDIC algorithm can also be treated as a subset of
AR technique due to the fact that we impose one constraint on the
total iteration number. Fig. 3 illustrates the relationships among
members of vector rotational CORDIC family.

3. DESIGN EXAMPLE

In the design example, we consider the rotation angle of � =
13�=32. All algorithms in vector rotational CORDIC family de-
rived in Section 2 are applied to perform the rotation of �. Mean-
while, aforementioned searching algorithms are conducted to solve
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and Subangle Index s
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Table 2: Design example of rotation angle � = 13�=32, where the
wordlength W = 16.

the optimization problems. The results are summarized in Table 2.

4. CONCLUSION

In this paper, we introduce a new design index, called Angle Quan-
tization. Following the new index, designers can explore a bigger
design space in deriving low-cost/high-performance rotational cir-
cuits. As illustrated in [7], most popular DSP algorithms can be
realized via rotational circuits. The new framework proposed in
this paper can be employed to design the processing kernel of the
DSP engine in [7].
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