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ABSTRACT

The subspace methods with second-order statistics
based on PCA basically need to calculate the eigen-
values and the eigen-vectors of the autocorrelation ma-
trix of the received signal. However, the calculation of
the eigen-values and the eigen-vectors of the matrix re-
quires much computational complexity. In this paper,
we propose a new algorithm based on PCA without
solving the eigen-values and the eigen-vectors of the
matrix. Moreover, we perform the proposed method
under the condition that noise-variance is known, but
we confirmed that the proposed method is effective to
a certain degree when noise-variance is unknown. We
show the effectiveness of the proposed method by nu-
merical examples.
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1. INTRODUCTION
On the blind identification based on second statis-

tics, much method has been proposed in recent year[1][2].

In this paper, we propose a new algorithm based on
Principal Component Analysis (PCA).

The method using PCA can get the impulse response
vector with the fact that the signal-subspace is orthog-
onal to the noise subspace [2].

However, the method basically needs to calculate the
eigen-values and the eigen-vectors of the autocorrela-
tion matrix of the received signal. The calculation of
the eigen-values and the eigen-vectors causes the in-
crease of computational complexity, both the degrada-
tion of the accuracy and the convergence speed.

In this paper, we discuss a new algorithm to get
the impulse response vector without solving the eigen-
values and the eigen-vectors of the matrix with the es-
timation of the autocorrelation matrix of the received
signal vector. This paper discusses the Signal-Input
Double-Output (SIDO) system in which the sampling
rate of the output signal is as twice as that of input

one.
The proposed method is based on both the struc-

tural relationship between a matrix and a vector, and
the fact that the subspace spanned by the column vec-
tors of the impulse response matrix (the impulse re-

sponse subspace) is equivalent to the column-space of
the matrix, which is obtained by subtracting the au-
tocorrelation matrix of the received signal vector from
the diagonal matrix with its non-zero elements being

the noise-variance. . .
This proposed method consists of the following: 1)

With the orthogonality between the impulse response
subspace and the noise-subspace, we will get the noise
vector, which can be obtained by subtracting the vec-
tor projected onto the impulse response subspace of the
received signal vector from that. 2) This noise vector
has a relationship with the noise matrix. Hence, the
noise matrix is composed of this noise vector. 3) Due
to the orthogonality between the column-space of the
noise matrix and the impulse response vector, we will
get the desired impulse response vector, which can be
obtained by subtracting the vector projected onto the
column-space of the noise matrix of the received signal

vector from that. )
We perform the proposed method under the condi-

tion that noise-variance is known. However, we confirm
that the proposed method is effective to a certain de-
gree when noise-variance is unknown.

2. PROBLEM FORMULATION

2.1. Preparation
Consider a blind channel identification/estimation
of a discrete-time signal-input multiple-output (SIMO)
%ystem. The ith component of output at time n is given
Y

M
e = hdn m+0, i=0,---,L-1 (1)
m=0

where the h{)) are the finite impulse responses (FIR)
of subchannels to be estimated using observations xSZ ),
We assume that the transmitted signal d,, is indepen-

dent of the observed noise b .A model in (1) can be for-
mulated by temporally oversampling the channel out-
puts at L time the baud rate.

Stacking N successive samples of the received signal

sequence, i.e., X = [z, ... ,a:ff)_NH T we obtain
X® =HYD, + BY 2)
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where Bg)déf[bsf), cee ,b,(f)_NH]T(le), D.=[dn, -,

dp-N-m+1]F((N+ M) x1); matrix H%) is the Nx(N+
M) filtering matrix associated with the linear filter

HO €50 5O .. BT defined as

T N (S TP |
) 0 h(i) h(i) 0 . 0
T I .
0 o o0 AR . K
Hence, all received signal vector is expressed as
(0) 0 o
X o BY
I N BT B P Y
X;L—l) H%«—l) B%L_l)

Here, we express (4) as
X, = HyDy + Ba. ()
A blind estimation procedure consist in estimating
the L(M + 1)x1 vector H of channel coefficients:

H % [{HOT ... HE-DT|T (6)

from the sole observations of X,,. In this paper, we will
discuss the case with L = 2 in later section.

2.2. Principal Component Analysis

Since the additive measurement noise is assumed to
be independent of the transmitted sequence, the auto-
correlation matrix Rx (LN X LN) of the received signal
vector X,, is given by

Rx = HNRgHE + 0’1 (7)

where Rd denotes the autocorrelation matrix of the
transmitted signal vector D,,, and 02 denotes the noise-
variance. The source covariance matrix Rd has dimen-

sion (M + N)x(M + N), and is assumed to be full rank

but otherwise unknown. The autocorrelation matrix
Ry is the hermitian matrix. Therefore, this matrix is

decomposed as following:
Rx = UAUT (8)

where A is the diagonal eigen-values matrix, and U
corresponds to the eigen-vectors matrix. Let Ao > A1 >
- > Arn_1 denote the eigen-values of Rx, and A

denote the eigen-values of HyRqHY - Since Ry is full
rank, the signal part of the autocorrelation matrix Rx,
ie., HNRqH} has rank M 4 N, hence:

)\1':)\‘24'0'2
)\i=0'2

(for i=0,---,M+N-1) 9
(for i=M+ N+, LN —1). )

Let us denote the unit-norm eigen-vectors associated

with the eigen-values Ag, - -, Am+n—-1 by So, -+, Sm4N-1

and denote those corresponding to A+, -, ALN-1
by G-+, GLny-—m—N—1. Also define

S=[So, "+, SmN-1] (LNx(M+N))  (10)
G=[Go, -, GrN-m-N-1] (LNX(LN — M - N)). (11)

Using (9),(10) and (11), (8) is thus also rewritten by
Rx = Sdiag(A\o» - - > Aman—1)ST + 0?GGT. (12)

The columns of matrix S span the so-called signal-
subspace, while the columns of G span its orthogonal
complement, the noise-subspace. Therefore R(S) =
R(G)*. Furthermore, considering relationship between
(7) and (12), we have R(S) = R(Hy). Hence, the fol-
lowing is given by

R(Hn) = R(G)*. (13)

The method using PCA get the impulse response
vector based on (13). But, it is necessary to calculate
the eigen-values and the eigen-vectors once in it. The
calculation of the eigen-values and the eigen-vectors
causes the increase of computational complexity, fur-
thermore it causes both the degradation of the accuracy
and the convergence speed. So, it is desirable to get the
impulse response vector without using the eigen-values
and the eigen-vectors.

3. PROPOSED METHOD

In this section, we will present a new algorithm based
on PCA without the usage of the eigen-values and the
eigen-vectors. Firstly, we describe the condition of pro-
posal method. Secondly, we get the impulse response
subspace with estimation of the autocorrelation ma-
trix of the received signal vector. Following that, we
can obtain the impulse response vector.

3.1. Assumption in the Discussion
(i) Noise variance: Noise variance o2 is known.
(ii) Concerning the relationship with the order of

each channel M, the number of samples N and

the number of virtual channels L: We assume
that dimN (H%) = dimN(G;") = 1. Hence, N =
M+1,L=2

3.2. Relationship with Each Subspace

Since the noise-variance o2 is known, all the vectors
y with which the noise-subspace R(G) is spanned are
satisfied with following relation:

(Rx — o’ I)y = 0. (14)

We define this symmetric matrix as (Rx — o?I) = A,
so (14) is expressed using A as

Ay =0. (15)

The noise-subspace R(G), which is spanned with all
vector y in (15), is null space N'(A), ie., orthogo-
nal complement of R(AT). In other word, R(AT) =
R(G)*, and R(G) = N(A). As matrix A is the
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Table 1: The computational complexity

Algorithm Computational Complexity

Proposed Method

Moulines’ Method
Using Jacobi

Moulines’ Method
Using QR

4(LN)?

24(LN)® ~ 40(LN)?

10(LN)® ~ 18(LN)?

symmetry matrix, the following is given by R(A) =
R(G)L. Those relations yields the following:

R(AT) = R(A) = R(Hn) = R(S) = R(G)™. (16)

Well, the following structural relation

GIHy =HTG; =0 (17)

is known[2], where the noise vector G;(LN x 1) is to
the noise matrix G;(L(M + 1) x (M + N)) what the
impulse response vector H is to the impulse response
matrix Hy(See.(3) — (6)).

In the following discussion, we realize blind estima-
tion based on (16) and (17). Here, we represent Ay
as

A(n) = Rz(n) - 0’21 (18)

where Ry, is the autocorrelation matrix of the re-
ceived signal vector at time n. Therefore R,y is ex-
pressed as

n—1

1
Ry(n-1) + EX(n)X?;)- (19)

3.3. Blind Estimation

The proposed method can get the impulse response
vector based on (16) and (17).

First, we will get the noise vector G;(,), which can be
obtained by projecting the received signal vector Xy,
at time n onto orthogonal complement of column-space
of matrix A(,). In general, the orthogonal projection
matrix P(,) onto column-space of matrix Ay, is de-
fined as

Py =AmAf, (20)

where A(tl) is referred to as the pseudo-inverse of A ).

Using QR factorization based on the Gram-Schmidt
orthogonalization, A(y) is expressed as

Am) = Qm)Rm)- (21)

Here, considering the condition of proposal method,
we find that matrix Q,) has a dependent column-

vector. We can get rid of a dependent column-vector
Qi(n), Which is satisfied with the condition that column-

vector q;(n) of the matrix Q) is min ||qi(n)l|, from

Table 2: The proposed algorithm for computation
* Initial value: n =20
Rz(O) = O

* Iteration: forn=1ton=m
1) Ren) = "_lRa:(n—l) + 2 XX
) A(n) - x(n) —o?I
3) Normalize each column-vectors of Ay
4) QR decomposition of Ay
Aw) = Q) B(n)
5)Define Q’(n) as the matrix in which the
column-vector ||g;(»)|| with minimum norm
are removed from matrix Q,,
6) Gi(n) = (I = Q) Q%)) Xm)
7) Noise matrix Gj(,) is conposed of
the noise vector Gj(n)
8) QR decompos1t10n of Gi(n)
Gitm) = Qu Ry
9) Hn) = (I = Qo Q) X

matrix Q,) with the Gram-Schmidt orthogonalization.
Hence, P,y may thus be given by

P = Q(n)Q(n) (22)
Considering above this and (16), G, given by
Gy =1~ Q(n)Q(ﬁ))Xm) (23)

where the noise vector G;(y) is orthogonal complement
to the column-space of A(y).

Next, we know a close relationship between the noise
vector G;(,) and the noise matrix G;(,) about the ele-

ment of the matrix (See.(17)). Hence the noise matrix
Gi(n) is composed of the noise vector Gi(y).

Finally, with the orthogonality between the column-
space of the noise matrix G;(,) and the impulse vector
H(,), we will get the desired impulse response vector
H(,) with similar way to (20) — (23). The comparison
with the computational complexity and the procedures
of the proposed Method are illustrated in Table 1 and

Table 2, where matrix Q'(n) and Q;'n) are column full
rank in Table 2.

4. SIMULATION 1

4.1. Simulation Condition
+ A performance measure:

H 2
NEE = 10 lOglOHTI_I”T“

* The signal to noise rate (SNR):

[dB].

L . .
E{HOdO ()|}
SNR = 10 log;q ;
Z; EX|I6® @)1}

1=

. (24)


田邉 造


田邉 造


田邉 造


田邉 造



10
0
10 = moulines [:
r@ =20 - proposed
o 30
£
-50 xRk - o
-60
-70
0 4000 8000 12000 16000 20000
Number of Samples

Figure 1: Comparison with the proposed and the tra-
ditional method

* The transmitted signal d,, is as follows:
i) colored signal: d,, is generated by
dp = C(2)un, C(z)=[F(2)]"
F(z) =140.1271 - 03272 4+ 1.0273
+0.427% - 0.1275
where u,, is white Gaussian signal (average d,
= 0, variances? = 1/12).

White Gaussian noise is added to the output of chan-
nel; the output SNR is set to 20 [dB] using (24). Ac-
cording to section 3.1, the number of virtual channels
is L = 2; the width of the temporal window is N = b5;

the order of each channel is M = 4. The channel coef-
ficients are listed below.

H= [H(O)T’H(l)T]T
where HOT = [1.0, 3.0, 1.0 , 2.0, 1.5]
HOWT = 2.0, 1.0, 2.0, 3.0, 4.0].

With this above condition, we perform simulation of
the proposed method under the condition that noise
variance o2 is known.

4.2. Simulation Result 1

The simulation result is shown in Figure 1, where
Moulines’ line in Figure 1 is theoretical value. We can
find the proposed method effective from Table 1 and
Figure 1.

5. THE CASE OF UNKNOWN
NOISE-VARIANCE

In order to confirm that the proposed method is ef-
fective to a certain degree in the case of unknown noise-
variance, we perform the proposed method in the case

unknown noise-variance 02 (A(ny = Ry(n). See Table2. 2))

5.1. Simulation Result 2

The result of the proposed method by simulation is
shown in that Figure 2, the simulation condition in the
case is equals to simulation of proposed method (See
section 4.1, but noise-variance is unknown). Hence, we
can confirm that the proposed method is effective to
a certain degree from the viewpoint of parameter esti-
mation when noise-variance is unknown. The detailed

—SNR 20
s SNR 25
-5 ——SNR 30

w10 s

=

w19 o »

E -20 i o T

A

0 1000 2000
Number of Samples

Figure 2: The proposed method of the noise-variance
unknown

explanation about the proposed method is omitted due
to the limitation of the pages.

6. CONCLUSION

In this paper, we proposed a new algorithm, which
can get the impulse response vector without calculating
the eigen-values and the eigen-vectors with estimation
value of the autocorrelation matrix of the received sig-

nal vector.
Furthermore, we perform the proposed method un-

der the condition that noise-variance is known, but we
confirmed that the proposed method is effective to a
certain degree when noise-variance is unknown.

We showed the proposed algorithm was useful by
computer simulations. It is expected that the proposed
algorithm decrease computational complexity without
sacrificing the degradation of the accuracy and the con-
vergence speed.
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