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ABSTRACT
This paper addresses the problem of speaker tracking in a noisy
and reverberant environment using time delay of arrival (TDOA)
measurements at spatially distributed microphone pairs. The track-
ing problem is posed within a state-space estimation framework,
and models are developed for the speaker motion and the likeli-
hood of the speaker location in the light of the TDOA measure-
ments. The resulting state-space model is non-linear and non-
Gaussian, and consequently no closed-form solutions exist for the
filtering distributions required to perform tracking. Here Sequen-
tial Monte Carlo (SMC) methods are applied to approximate the
true filtering distribution with a set of samples. The resulting
tracking algorithm requires no triangulation, is computationally
efficient, and can straightforwardly be extended to track multiple
speakers.

1. INTRODUCTION

Speaker tracking involves determining and following the position
of a speaker within some acoustic environment. The need for
robust speaker tracking is becoming increasingly important with
the increase in multimedia applications. A popular strategy for
speaker localisation is performing triangulation based on time de-
lay of arrival (TDOA) measurements at spatially distributed micro-
phone pairs [1, 2]. This works well in acoustic environments char-
acterised by low noise and reverberation, but breaks down even
in moderately reverberant conditions. Some heuristic modifica-
tions to reduce the effects of reverberation have been proposed in
e.g. [3, 4, 5], but these are reliant on either specific array configu-
rations, or rather strong assumptions about the source signals and
acoustic environment, and are far from robust in general scenarios.

In the approach taken here the speaker tracking problem is for-
mulated within a state-space estimation framework. This frame-
work requires a model for the speaker motion and a likelihood
model for the speaker location in the light of the TDOA mea-
surements. To cope with the effects of reverberation a multi-
hypothesis likelihood model similar to those proposed before for
radar [6] and vision based [7, 8] tracking is developed here. Track-
ing then amounts to estimating the distribution of the speaker lo-
cation recursively in time based on all the past and present TDOA
measurements. The resulting state-space model is non-linear and
non-Gaussian, and consequently no closed-form solutions exist for
the filtering distributions. Under these circumstances Sequential
Monte Carlo (SMC) methods [9], also known as particle filtering
methods, provide accurate, yet simple and computationally effi-
cient, estimation strategies.

The multi-hypothesis model together with the SMC estima-
tion strategy provide a number of important advantages over more

conventional speaker localisation strategies. Most important is the
ability of the system to operate robustly in adverse acoustic en-
vironments. Furthermore, the methodology can straightforwardly
be extended to track multiple speakers. More subtly, the need to
perform triangulation, which is especially susceptible to reverber-
ation, is completely eliminated. This is due to the fact that in the
likelihood model the distribution of the TDOA measurements is
conditioned on the hypothesised source location, or equivalently,
the corresponding hypothesised TDOA values. The non-linear
transformation between the source location and the corresponding
TDOA values is elegantly and accurately accommodated within
the SMC estimation framework. Finally, the strategy is applicable
to arbitrary array configurations.

The remainder of this paper is organised as follows. Section
2 formulates a model for the source motion. Section 3 describes
the measurement system and develops the likelihood model for
the source location based on the TDOA measurements. The SMC
tracking algorithm is briefly described in Section 4, with a tracking
example following in Section 5. Finally, the findings of the paper
are summarised in Section 6.

2. SOURCE MODEL

The problem considered is that of tracking a source in the XY -
plane. It should be stated, however, that the methodology can eas-
ily be extended to perform 3D tracking. The source state at dis-
crete time k is defined as �k , (xk; yk; _xk; _yk), where (xk; yk)
and ( _xk; _yk) are the source position and velocity, respectively. The
source motion in the X and Y coordinates are assumed to be inde-
pendent and identical. Although this is a rather strong assumption,
it was found to work well in practice, even for trajectories that
clearly violate this assumption (see Section 5). The source motion
is modelled as a Langevin process, which in the X coordinate is
specified by d2x

dt2
+ �x

dx
dt

= Fx, with �x the rate constant and Fx
a thermal excitation process. It corresponds to the discrete process

_xk = ax _xk�1 + bxFxk ; xk = xk�1 +�T _xk; (1)

where Fxk
iid
� N (0; 1), �T is the discretisation time step, and

ax = exp (��x�T ) ; bx = vx
p

1 � a2x;

with vx the steady-state root-mean-square velocity. Thus, the
source dynamics follow a first-order Markov process of the form

p (�kj�k�1) = p (xkjxk�1; _xk) p ( _xkj _xk�1)

p (ykj yk�1; _yk) p ( _ykj _yk�1) : (2)



The chosen dynamical model is general enough to capture many
different kinds of motion. Alternatively, more accurate models for
human motion can be designed and trained on a set of representa-
tive motion trajectories. However, the performance of such models
often degrades rapidly when encountering trajectories that devi-
ate from those in the training set. In the experiments performed
here the simple model was retained, with its parameters fixed to
�x = 10 s�1 and vx = 1 ms�1, and was found to give good
results.

3. MEASUREMENT MODEL

Measurement System. The measurement system consists of M
spatially distributed microphone pairs, with all the microphones
omni-directional. For the m-th pair the microphone locations are
specified by m(m)

1 and m(m)
2 , respectively. At each microphone

pair candidates for the TDOA are taken to be the positions of the
peaks in the generalised cross-correlation function (GCCF) [10]
between the signals received at the microphones comprising the
pair. Apart from the true source, “ghost sources” due to reverber-
ation also lead to the peaks in the GCCF. Peaks not due to the true
source will be referred to as clutter. Suppressing the time index
k, the measurement vector is defined asD , (D(1); : : : ;D(M)),
with D(m)

, (D
(m)
1 ; : : : ; D

(m)

N(m) ) the 0 � N (m) � Nmax can-
didate TDOA measurements at the m-th microphone pair. The
maximum TDOA that can be measured at the m-th microphone
pair is D(m)

max = c�1km(m)
1 �m(m)

2 k, with c the speed of sound
(normally taken to be 342 ms�1), and k � k the Euclidean norm.
The true TDOA associated with the source state � at the m-th
microphone pair is given by

D
(m)
�

= c
�1
�


p� �m(m)

1




�



p� �m(m)

2





�
; (3)

where p� , (x; y) is the source location.
Likelihood Model. The aim is to develop a likelihood

model for the source state based on the TDOA measurements,
i.e. p(Dj�). Given the state of the source �, the vector
of the true TDOAs at each of the microphone pairs D� ,

(D
(1)
� ; : : : ; D

(M)
� ) can be computed using (3). Since this is a de-

terministic mapping the likelihood satisfies p(Dj�) = p(DjD�).
The latter form will be used in the development that follows.

Suppressing the superscript (m), consider first the measure-
ments at any one of the microphone pairs. These are assumed to
be independent, so that

p (DjD�) =
NY
i=1

p (DijD�) : (4)

In practice, however, clutter measurements due to reverberation
are expected to be strongly coherent with the true source, thus vio-
lating the independence assumption. Accurate modelling of rever-
beration requires detailed knowledge about the composition and
acoustic properties of the environment, which is difficult to ob-
tain in practice, and thus not attempted here. Notwithstanding, the
model still performed well. Of the measurements at most one is
associated with the true source, while the rest is associated with
clutter. To distinguish between the two cases a classification label
ci is introduced, such that ci = T if Di is associated with the true
source, and ci = C if Di is associated with clutter. The likelihood

for a measurement from the true source is taken to be

p (DijD�; ci = T ) = c�N
�
Di;D�; �

2
D

�
ID (Di) ;

where D , [�Dmax; Dmax] is the set of admissible TDOA val-
ues for the microphone pair, c� is a normalising constant that can
be obtained using the Gaussian error function, and ID (�) is the
indicator function for the set D. Thus, within the range of ad-
missible TDOA values, the measurement is assumed to be the true
TDOA corrupted with additive Gaussian observation noise of vari-
ance �2D. Empirical studies showed this to be a reasonable as-
sumption. Similar to what was done in e.g. [8], the likelihood for
measurements associated with clutter is taken to be

p (Dij ci = C) = UD (Di) :

Thus, the clutter is assumed to be uniformly distributed within the
admissible interval, independent of the true source TDOA. For N
measurements there are N + 1 possible hypotheses. Either all the
measurements are due to clutter, or one of the measurements cor-
respond to the true source, and the rest to clutter. More formally,

H0 , fci = C : i = 1; : : : ; Ng

Hi , fci = T; cj = C : j = 1; : : : ; N; j 6= ig ;

with i = 1; : : : ; N . The likelihoods for these hypotheses follow
straightforwardly from (4), and are given by

p (Dj H0) = UDN (D)

p (DjD�;Hi) = c�N
�
Di;D�; �

2
D

�
ID (Di)UDN�1 (D�i) ;

where D�i is D with Di removed. However, for any set of mea-
surements, the correct hypothesis is not known beforehand, and
the final likelihood for the microphone pair should be obtained by
summing over all the possible hypotheses, i.e.

p (DjD�) =
NX
i=0

qip (DjD�;Hi) ; (5)

where qi , p(HijD�), i = 0; : : : ; N , are the prior probabilities
of the hypotheses. These are commonly assumed to be equal and
independent of the true source TDOA D�. They can, however,
be adjusted to reflect the confidence in the measurements. In the
case where no measurements are available the likelihood is simply
set to p(DjD�) / 1. Thus, no new information about the source
state can be obtained from the measurements.

The extension of the likelihood for a single microphone pair
in (5) to M microphone pairs is straightforward. The transforma-
tion of source state to the corresponding true TDOAs at the micro-
phone pairs effectively decouples the measurements, so that the
likelihood for M microphone pairs becomes

p (DjD�) =
MY
m=1

p
�
D

(m)
���D(m)

�

�
; (6)

where each p(D(m)jD(m)
� ) is computed according to (5). Note

that no assumptions have been made regarding relations between
the individual microphone pairs, so that the likelihood model is
applicable to arbitrary array configurations.



4. TRACKING ALGORITHM

The general tracking problem involves the recursive estima-
tion of the filtering distribution p(�kjD1:k), with D1:k ,

(D1; : : : ;Dk), from which estimates of the source state can be
obtained. The general recursions to compute the filtering distribu-
tion are given by

p (�kjD1:k�1) =

Z
p (�kj�k�1) p (�k�1jD1:k�1) d�k�1

p (�kjD1:k) / p (Dkj�k) p (�kjD1:k�1) :

(7)

The first, or prediction, step uses the dynamic model in (2) and
the filtering distribution at the previous time step to compute the
one-step ahead prediction distribution of the state. This then acts
as the prior for the state in the second, or update, step where it is
combined with the likelihood in (6) to obtain the desired filtering
distribution.

For the model considered here no closed-form solutions exist
for the general recursions in (7). Furthermore, analytic approxi-
mations, like the Extended Kalman Filter, fail due to the inherent
multi-modality of the problem. Under these circumstances one
particularly attractive solution strategy is Sequential Monte Carlo
(SMC), or particle filtering, methods [9]. These methods are con-
ceptually simple, computationally efficient, and do not degrade
in performance as the dimensionality of the state-space increases.
They are also well-suited to cope with the multi-modality due to
clutter.

Standard particle filtering is essentially a Monte Carlo imple-
mentation of the recursions in (7). The filtering distribution is ap-
proximated by a large number of samples, or particles, with asso-
ciated importance weights. At every time step each of the particles
is propagated according to the dynamical model (prediction) and
reweighted with its likelihood (filtering). The particles are then
resampled according to their new importance weights to ensure a
uniform weight distribution.

One limitation of standard particle filtering is the fact that par-
ticles are propagated without taking account of the new measure-
ment. Thus, many may be needed to accurately represent the filter-
ing distribution. This is especially the case for narrow likelihood
functions, or cases where the likelihood has significant mass in the
tails of the prior. The Auxiliary Particle Filter (APF) [11] solves
this problem by resampling the particles using an importance func-
tion that incorporates some knowledge of the new measurement
prior to propagation. This effectively directs particles towards the
modes, and dramatically reduces the number needed to accurately
represent the filtering distribution. This is the strategy adopted
here.

5. SIMULATION EXAMPLE

Here the algorithm performance is illustrated on a particularly dif-
ficult artificial tracking problem. The simulated acoustic environ-
ment is depicted in Figure 1. The dimensions of the enclosure are 3
m � 3 m � 2.5 m, with a reverberation time of 0.3 s and a back-
ground noise level of 30 dB. Two omni-directional microphone
pairs were used, each with a separation of 60 cm. For the source,
also omni-directional, the utterance “Draw every outer line first,
then fill in the interior.” was taken from the TIMIT database. The
clean signal at each of the microphones was obtained using the

imaging method [12], with the source following a simulated semi-
circular trajectory. These signals were subsequently corrupted by
adding white Gaussian noise of the desired level.
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Fig. 1. Experimental setup for evaluating the tracking perfor-
mance.

Figure 2 shows the original speech signal and the evolution
of the GCCF at each of the microphone pairs, computed every
32 ms over frames of 64 ms. From these graphs it is clear that
the GCCF exhibits multiple peaks, and that the strongest peak at
each time step is not necessarily associated with the true source
(see Figure 3). In fact, the peak associated with the true source
often disappears for one or a number of time steps. Also, contrary
to expectation, the clutter appears to be largely uncorrelated with
the true source, thus validating (at least empirically) the likelihood
model.
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Fig. 2. Source speech signal and GCCF evolution at each of the
microphone pairs. The GCCF is overlayed by the true TDOA
(white dots). At each time step the GCCF exhibits multiple peaks,
with the strongest peak not necessarily associated with the true
source. Furthermore, the clutter is largely uncorrelated with the
true source.
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Fig. 3. GCCF for the first microphone pair at t = 0:5 s. The
existence of multiple peaks due to reverberation is clear, with the
peak corresponding to the true source (indicated by the vertical
line) being notably smaller than the largest peak.

The tracking algorithm was run with N = 50 particles. The
particles were uniformly randomly initialised within the enclosure,
with zero initial velocity. The parameters for the motion model
were fixed to the values in Section 2. A maximum of ten TDOA
measurements were allowed for each microphone pair. The prob-
ability for H0 was set to q0 = 0:3, reflecting the fact that the true
measurement was often not among the candidates. All the other
hypotheses were assumed to be equally likely. The standard devi-
ation of the TDOA measurement error was set to �D = 2Ts, with
Ts = 125 �s the sampling period. This value was empirically de-
termined from training data. The tracking, however, proved to be
robust to changes in the parameters of the motion and likelihood
models. At each time step an estimate of the source position was
computed as the mean of the particles. The tracking results are de-
picted in Figure 4. The particles quickly lock on to the source, and
follow its trajectory to a satisfactory degree of accuracy. This is
remarkable given that the particles were randomly initialised, and
that no effort has been made to compensate for the background
noise or the reverberation.
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Fig. 4. True (circles) and estimated (squares) source trajectory.
The randomly initialised tracking algorithm quickly locks on to
the true source and follows its trajectory to a satisfactory degree of
accuracy. Due to the array configuration tracking is better in the
X coordinate.

6. CONCLUSIONS

This paper developed a SMC method based on the APF to per-
form speaker tracking in a noisy and reverberant environment us-
ing TDOA measurements at a number of spatially distributed mi-
crophone pairs. Models were developed for the speaker motion
and the likelihood of the speaker location in the light of the TDOA
measurements. The latter elegantly accounts for the multiple hy-
potheses due to clutter measurements resulting from reverberation.
With as few as 50 particles the tracking performance proved to be
robust under challenging acoustic conditions.

7. REFERENCES

[1] M. S. Brandstein and H. F. Silverman, “A practical methodol-
ogy for speech source localization with microphone arrays,”
Computer, Speech and Language, vol. 11, no. 2, pp. 91–126,
1997.

[2] H. F. Silverman and E. Kirtman, “A two-stage algorithm
for determining talker location from linear microphone array
data,” Computer Speech and Language, vol. 6, pp. 129–152,
1992.

[3] M. S. Brandstein, “Time-delay estimation of reverberant
speech exploiting harmonic structure,” Journal of the Acous-
tic Society of America, vol. 105, no. 5, pp. 2914–2919, 1999.

[4] M. S. Brandstein and H. F. Silverman, “A robust method for
speech signal time-delay estimation in reverberant rooms,” in
Proceedings of the IEEE International Conference on Acous-
tic, Speech and Signal Processing, 1997, pp. 375–378.

[5] H. Wang and P. Chu, “Voice source localization for auto-
matic camera pointing system in videoconferencing,” in Pro-
ceedings of the IEEE International Conference on Acoustic,
Speech and Signal Processing, 1997, pp. 187–190.

[6] N. Gordon, “A hybrid bootstrap filter for target tracking in
clutter,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 33, no. 1, pp. 353–358, 1997.

[7] M. Isard and A. Blake, “CONDENSATION – conditional
density propagation for visual tracking,” International Jour-
nal of Computer Vision, vol. 28, no. 1, pp. 5–28, 1998.

[8] J. MacCormick and A. Blake, “Probabilistic exclusion and
partitioned sampling for multiple object tracking,” Interna-
tional Journal of Computer Vision, vol. 39, no. 1, pp. 57–71,
2000.

[9] A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Eds., Se-
quential Monte Carlo Methods in Practice, Springer-Verlag,
New York, 2000, To Appear.

[10] C. H. Knapp and G. C. Carter, “The generalized correlation
method for estimation of time delay,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-24, no.
4, pp. 320–327, 1976.

[11] M. K. Pitt and N. Shephard, “Filtering via simulation: Aux-
iliary particle filter,” Journal of the American Statistical As-
sociation, vol. 94, pp. 590–599, 1999.

[12] J. B. Allen and D. A. Berkley, “Image method for efficiently
simulating small-room acoustics,” Journal of the Acoustical
Society of America, vol. 65, no. 4, pp. 943–950, 1979.


