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ABSTRACT

The CORDIC algorithm is a well-known iterative method for the
computation of vector rotation. For applications that require for-
ward rotation (or vector rotation) only, the Extended Elementary
Angle Set (EEAS) Scheme provides a relaxed approach to speed
up the operation of the CORDIC algorithm. When determining
the parameters of EEAS-based CORDIC algorithm, two optimiza-
tion problems are encountered. In the previous work, greedy algo-
rithm is suggested to solve these optimization problems. However,
for the application that requires high-precision rotation operation,
the results generated by greedy algorithm may not be applicable.
In this paper, we propose a novel searching algorithm to over-
come the aforementioned problem, called Trellis-based Searching
(TBS) algorithm. Compared with the greedy algorithm used in the
conventional EEAS-based CORDIC algorithm, the proposed TBS
algorithm yields apparent performance improvement. Moreover,
derivation of error boundary as well as computer simulations are
provided to support our arguments.

1. INTRODUCTION

The COordinate Rotational DIgital Computer (CORDIC) algo-
rithm is a well-known iterative technique to perform various ba-
sic arithmetic operations [1]. The algorithm is very attractive for
hardware implementation because it uses only elementary shift-
and-add operations to perform the vector rotation in 2D plane.
The major problem of CORDIC algorithm is the slow computa-
tional speed because of the large iteration number. For some of
these aforementioned applications, the large iteration number can
be significantly reduced by taking the advantage of prior knowl-
edge of the rotation angles. The reduction of iteration number
comes from the relaxation of rotation sequence of �(i). The set
of �(i) is extended from f�1; 1g to f�1; 0; 1g, i.e., some rota-
tion of elementary angles is skippable. Such a technique is called
Angle Recoding (AR) technique [2].

In our previous work, by taking the similar concept of AR
technique, we proposed an algorithmic-level improvement scheme,
called Extended Elementary Angle Set (EEAS) scheme [3]. Based
on the EEAS scheme, the iteration number of CORDIC algorithm
can be further reduced compared to that of AR technique, implying
faster operation speed in iterative CORDIC structure, or reduced
hardware complexity in parallel CORDIC structure [1].

In the application of EEAS scheme, two constrained optimiza-
tion problems are encountered, one in the micro-rotation phase
and the other in the scaling correction phase. Unlike conventional
CORDIC algorithm, these two optimization problems raise due to
the extension of rotation sequence. One intuitive solution is to

perform the exhaustive searching algorithm. However, the compu-
tational complexity is extremely high to be practically employed.
Instead, greedy search can be used to solve the optimization prob-
lems [2][3]. In general, the greedy algorithm leads to local opti-
mal solution to the optimization problem; it trades the error per-
formance for the computational complexity. For situations that
require high-precision (i.e., high-SQNR) rotational operations, the
greedy algorithm may not be applicable.

To deal with the aforementioned optimization problems, in
this paper, we propose a novel searching algorithm, called Trellis-
based Searching (TBS) algorithm. The proposed searching algo-
rithm operates in the similar way to the trellis search (also known
as Viterbi decoding algorithm [4]), which is frequently used in de-
coding convolutional codes in communication systems. Moreover,
by exploring the relationship between greedy algorithm and the
proposed TBS algorithm, we can show that the proposed TBS al-
gorithm always has superior precision performance to the greedy
algorithm. In addition, the mathematical derivation is supported
by extensive computer simulations. The simulation results show
that the averaged residue angle error generated by TBS algorithms
is only about 15% of the greedy algorithm.

2. REVIEW OF EEAS-BASED CORDIC ALGORITHM

In the conventional CORDIC algorithm, each elementary angle
needs to be performed sequentially so as to complete the micro-
rotation phase. However, in the applications where the rotation
angles are known in advance, it would be advantageous to relax
the sequential constraint on the micro-rotation phase. The Angle
Recoding (AR) technique is done by extending the set of �(i) from
f1;�1g to f1;�1; 0g [2]. With the relaxation on �(i), for cer-
tain angles, we can obtain better approximation of � (i.e., smaller
residue angle, �) but with reduced iteration number.

Motivated by this, we proposed an algorithmic-level improve-
ment scheme, called Extended Elementary-Angle Set (EEAS) scheme,
in our previous work [3]. In addition to the relaxation on �(i),
the EEAS scheme further applies the relaxation on the elemen-
tary angles. We first treat the elementary angles as the set of
arctangent of single signed-power-of-two (SPT) term. From such
a different viewpoint, employing one additional SPT term pro-
vides a very straightforward way to relax the constraint of conven-
tional elementary angles, and the precision/range of the elemen-
tary angle set can be significantly extended. Specifically, given the
wordlength W , the elementary angle set (EAS) S1 and EEAS S2
can be represented in the form of
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Figure 1: Constellation of (a) EAS S1 (b) EEAS S2, with
wordlength W=8.

% Initilization
Given initial vector of [ x(0), y(0)]T

% Micro-rotation phase
For j = 0 to Rm-1

x(j+1)
y(j+1) = α0(j) 2

-s0(j)+α1(j) 2
-s1(j)

1
1

-α0(j) 2
-s0(j) - α1(j) 2

-s1(j) x(j)
y(j)

END
% Sclaing phase
For m = 0 to Rs-1

x(m+1)
y(m+1) =

k0(m) 2-q0(m)+k1(m) 2-q1(m)

1 k0(m) 2-q0(m)+k1(m) 2-q1(m)

x(m)
y(m)

END

1

Table 1: Summary of the EEAS-based CORDIC scheme.

where �?, �?0 , �?1 2 f�1; 0; 1g, and s
?, s?0 , s?1 2 f0, 1, � � �, W �

1g. In fact, the use of EEAS scheme has the effect of improving the
SQNR performance of the CORDIC algorithm in vector rotation
mode. The reason is that now we have more choices of elementary
angles in approximating the target rotation angle.

To demonstrate the concept of EEAS scheme, the constellation
of the elementary angles from S1 and S2 are shown in Fig. 1 (a)
and (b), respectively. As we can see, the number of elementary
angles in S2 is much larger than S1. This implies that EEAS S2
can yield better error performance than S1 with a fixed number of
micro-rotations of elementary angles (iterations).

Moreover, to improve the scaling phase of the EEAS-based
CORDIC algorithm, we introduce the technique of Extended Type-
II (ET-II) scaling operation to perform the scaling operations. It
helps to preserve the vector norm after the CORDIC operation [3].
The ET-II scaling operation inherits the feature of EEAS scheme
in the micro-rotation phase, which makes the VLSI architecture
of the EEAS-based CORDIC algorithm regular and reusable. It
can also achieve much smaller quantization error than conven-
tional Type-I scaling operation (Canonical-Signed-Digit (CSD)-
based representation) in the approximation of scaling factor.

Table 1 summarized the detailed recurrence equations of EEAS-
based CORDIC algorithm, including the EEAS scheme in the micro-
rotation phase and ET-II scaling operation in the scaling phase.
The readers may refer to [3] for detailed operations.

3. OPTIMIZATION PROBLEMS AND GREEDY
ALGORITHM

Unlike conventional CORDIC algorithm, two optimization prob-
lems are encountered due to the modified basic operations in the
EEAS-based CORDIC algorithm, one in the micro-rotation phase
and the other one in the scaling phase. In the micro-rotation phase,
we try to minimize the residue angle error �m, which represents
the difference between target angle � and the angle that can be
composed by elementary angles from EEAS S2. The residue an-
gle error �m relates to the parameters in Table 1 in the form of

�m =

������ �
Rm�1X

j=0

tan�1
�
�0(j) � 2

�s0(j) + �1(j) � 2
�s1(j)

�
����� :

(2)
In the scaling phase, we try to minimize the quantization error

of �s, which represents the difference between the ideal scaling
factor and the quantized one that can be represented by ET-II scal-
ing operation. Similarly, the residue angle error �s relates to the
parameters in Table 1 in the form of
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where P denotes the floating-point represented scaling factor.

These two optimization problems can be solved by the greedy
algorithm (GA) [3]. The greedy algorithm tries to approximate the
remaining angle using a closest elementary angle at each search
step without looking ahead of future steps. By successively ap-
plying such an operation, the accumulated angle can continually
approach the target angle � until the searching algorithm is termi-
nated; it terminates when no further improvement can be found, or
the Rm

th micro-rotation angle is determined.

4. THE PROPOSED TRELLIS-BASED SEARCHING
(TBS) ALGORITHM

In this paper, we propose a novel searching algorithm, called the
Trellis-based Searching (TBS) algorithm, to solve the optimiza-
tion problem described in Eqs. (2) and (3). To facilitate our dis-
cussion, we use an simple example to illustrate the proposed TBS
algorithm. Suppose that we need to perform the rotation of angle
� = �=3, the wordlength W = 3, and the maximum iteration
number is restricted to Rm = 4.

Step 1. Initialization
First of all, let Z(S2) denote the number of the elementary

angles in the extended set S2, and each distinct elementary angle
in the set is expressed as r(k), for 1 � k � Z(S2), i.e., S2 =
fr(1); r(2); � � � ; r(Z(S2))g. In this example, Z(S2) = 15.

In the TBS algorithm, there are Z(S2) states in each step. For
k
th state (1 � k � Z(S2)) of ith search step, we use the Cu-

mulative Angle, �(i; k), to denote the best approximation of angle
� in the k

th state up to the i
th step. The TBS algorithm is per-

formed column-wise from left to right. Initially, we start the TBS
algorithm by setting all �(1; k) as the corresponding elementary
angles. That is, �(1; k) = r(k) for all k, which is illustrated in the
left-most part of Fig. 2.
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Figure 2: Illustration of initialization process and transition paths
of the proposed TBS algorithm.

Step 2. Accumulation
A path in the trellis, which leaves the k

th state at ith step
and enters the k

0th state at (i + 1)th step, corresponds to an op-
eration of adding �(i; k) by r(k0). Then, the appended angle of
�(i; k)+ r(k0) becomes the candidate for �(i+1; k0). Moreover,
as shown in the right part of Fig. 2, from a given state at step i, the
paths can diverge to all the states at the next search step (i� + 1).
Namely, there are Z(S2) paths, carrying the corresponding ap-
pended angles of �(i�; k) + r(k0) for all k, enters the k0th state at
(i� + 1)th step. Then, those appended angles form the candidate
set for the cumulative angle of �(i� + 1; k0).

Step 3. Comparison and Selection
Conceptually, the whole process is similar to the trellis decod-

ing of convolutional code [4]: The TBS algorithm involves cal-
culating and minimizing the difference between the target angle �
and �(i; k) for all k at each search step i. To be specific, �(i+1; k)
is determined such that

j�(i+ 1; k)� �j = min
1�k?�Z(S2)

j�(i; k?) + r(k)� �j : (4)

Then, the selected path is denoted as the surviving path. Note
that we have to calculate all the cumulative angles �(i; k) for all
k (thus their corresponding surviving paths) before moving to the
(i + 1)th step. Continuing in this manner, we can successively
advance deeper into the trellis (set i = i+ 1), until the maximum
iteration number is reached (i = Rm).

Consider our design example, in which i = 2 and k = 12.
The process of Eq. (4) is illustrated in Fig. 3. In this case, the
third path (k?=3), which is marked by the solid line, is selected.
Then, the resultant angle is assigned to �(3; 12) for the subsequent
search process.

Step 4. Determination of the Global Result and Trace Back
After calculating all the cumulative angles at the last search

step, the next procedure for the TBS algorithm is to determine
the global result, �TBS . Similar to the determination of surviv-
ing path, we decide �TBS as follows

j�TBS � �j = min
1�k?�Z(S2)

j�(Rm; k
?)� �j : (5)

Next, we can determine all the micro-rotations by tracing from the
state, whose corresponding �(Rm; k) is best approximation of �,
along its surviving path backward.

In our example, the procedure for trace back is illustrated in
Fig. 4. All the surviving paths for each state at each step are rep-
resented by the dash line. First, �(4; 13) is selected as the global
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Figure 3: Illustration of the determination of surviving path.
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Figure 4: Illustration of trace back procedure.

result. Then, trace along the surviving path that connecting the
13rd state at final step backward. Next, find the state from which
the surviving path leaves in the previous step. By doing the process
repeatedly, we can thus determine the global surviving path of the
TBS algorithm, as marked by the solid line in Fig. 4. By travelling
along the global surviving path, we can find the visited states and
read all the micro-rotation angles that form the global result �TBS .
In this case, �(4; 13) = r(9) + r(13) + r(2) + r(13), which is
the best approximation of angle � generated by the proposed TBS
algorithm.

5. COMPARISON OF TWO SEARCHING ALGORITHMS

5.1. Error Bound of TBS Algorithm

Since the greedy algorithm performs a progressive searching pro-
cedure in nature, for comparison purpose, we also illustrate the
greedy algorithm in the form of the trellis diagram. Consider the
example of � = 3�=8, Rm = 4, and W = 16. In Fig. 5, the
trellis-like representation of the GA process (marked by the bold
dash line) is demonstrated. In our discussion, we call such a line
as the greedy path.

¿From Fig. 5, we can easily explore the difference between
the greedy and TBS algorithm. As we can see, for the greedy al-
gorithm, only one single surviving path is allowed from one step
to next step; while in the TBS algorithm, there are Z(S2) simulta-
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Figure 5: Comparison between greedy algorithm and the proposed
TBS algorithm.

neous surviving paths run in parallel. That is, at each search step
of greedy algorithm, we are forced to select the best path among
Z(S2) candidates and eliminate all the other paths before moving
to next step.

Lemma: Let �GA and �TBS denote the residue angle error
provided by the greedy algorithm and the TBS algorithm, respec-
tively. It is guaranteed that the TBS algorithm outperforms the
greedy algorithm in terms of residue angle error, i.e., �TBS �
�GA.

Proof: First, assume that the first segment of greedy path starts
at lth state at 1st step and enters the kth state at 2nd step (in this
case, l = 457 and k = 338). It is noteworthy that the segment
of the greedy path must be one of the candidates of the surviving
path of kth state at 2nd step in the TBS algorithm. Recall that
�(2; k), the best approximation of � along its surviving path up to
the 2nd step in k

th state, is determined such that �(1; l0) + r(k)
for 1 � l

0 � Z(S2) is closest to �. This implies that the difference
between the cumulative angle �(2; k) and � must be equal to or
smaller than the difference between the greedy results up to 2nd

step and �.
Advancing deeper into the trellis by tracing along the greedy

path, we find that the statement described above holds for all search
step i. That is, for any state at any search step visited by the greedy
path, say k

�th state at i�th step, the corresponding cumulative an-
gle �(i�; k�) is always a better (or equally well) approximation of
� than the result of greedy algorithm up to step i

�. Of course, the
statement is also true for i = Rm. In the last step, moreover, the
determination of the global surviving path further pushes the result
of TBS algorithm toward the target angle �. Let �TBS and �GA be
the resultant angles of the TBS and greedy algorithm, respectively.
Then, we have

j�TBS � �j � j�(Rm; k
?)� �j � j�GA � �j ; (6)

where k
? denotes the state that the greedy path terminated at the

last search step. It follows that

�TBS � �GA: 2 (7)

5.2. Performance Simulation

In the simulation, 4097 uniformly spaced rotation angles in the
region from 0 to �=2, i.e., � = 0, 1��
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Figure 6: Performance comparison between Greedy algorithm and
TBS algorithm with Rm = 2.

performed. Both GA and TBS algorithms are applied to solve the
optimization problem of EEAS-based CORDIC algorithm. They
are run for different values of wordlength, W . The simulation
results are shown in Fig. 6.

The results shown in Fig. 6 show that we can obtain supe-
rior error performance with the proposed TBS algorithm over the
greedy algorithm for all W . This confirms our arguments in Sec-
tion 5.1. The residue error of the proposed TBS algorithm is only
about 15%, in an averaged sense, compared to the greedy algo-
rithm. Combined with the EEAS-based CORDIC algorithm, the
improved precision performance also implies that given a precision
target, vector rotation can be accomplished with fewer shift-and-
add operations. That is, we can reduce the hardware complexity
while maintain the precision performance.

6. CONCLUSIONS

In this paper, we presented a novel searching algorithm based on
trellis-based operation to deal with the optimization problems en-
countered in the application of EEAS-based CORDIC algorithm.
With the proposed TBS algorithm, the averaged residue angle er-
ror is significantly reduced to only about 15% compared to that
of greedy algorithm. The improvement makes applications, which
call for high complexity, feasible, such as high-point/high-speed
discrete transformations (FFT, DCT) and high-order digital lattice
filters.
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