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ABSTRACT

This paper compares the performance of an operational
Automatic Speech Recognition system when MFCCs, J-
RASTA Perceptual Linear Prediction Coefficients (J-Rasta
PLP) and energies from a Multi Resolution Analysis (MRA)
tree of filters are used as input features to a hybrid system
consisting of a Neural Network (NN) which provides
observation probabilities for a network of Hidden Markov
Models (HMM). Furthermore, the paper compares the
performance of the system when various combinations of
these features are used showing a WER reduction of 16%
w.r.t. the use of J-Rasta PLP coefficients, when J-Rasta PLP
coefficients are combined with the energies computed at the
output of the leaves of an MRA filter tree. Such a combination
is practically feasible thanks to the NN architecture used in
the system. Recognition is performed without any language
model on a very large test set including many speakers
uttering proper names from different locations of the Italian
public telephone network.

1. INTRODUCTION

Attention has been devoted in the recent years to the use of
Multi Resolution Analysis (MRA) of a signal in the time and
frequency domain as opposed to popular techniques based on
single resolution analysis in which a fixed time window is
used for computing samples of spectral energies at different
frequencies.

Experiments seem to indicate that performance improvements

have been obtained by applying MRA to speech coding, while

the application to Automatic Speech Recognition (ASR)
appears to be more problematic.

MRA is exploited in Discrete Wavelet Transforms (DWT)

which provides a compact representation with two key

properties for a large class of signals and images, namely:

« smooth signal/image regions are represented by small
coefficients, while edges and other singularities are
represented by large coefficients; thresholding can thus
be used for denoising;

« large and small coefficients cascade along the branches
of a wavelet tree.

Some motivations for using Discrete Wavelet Transforms

(DWT) as opposed to all Mel Frequency-scaled Cepstral

Coefficients (MFCC) are [5]:
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« corruption of a frequency band of speech affects all
MFCCs,

* in the transition between two phonemes, some spectra may
have features of both in different bands, these features are
separated by different band analysis,

 a fundamental paper by Allen [1] on humaneegh
recognition mentions that perceptual features are local in
frequency and asynchronous in time; ASR systems do not
respect these two principles,

» if a series expansion has to be performed, basis vectors are
needed some of which have good resolution in time and
some others have a good resolution in frequency,

« for coding, it is important to have signal representations
with which the best reconstruction can be achieved with
minimum information; moreover, for ASR, the best
representation is the one which leads to the best separation
of speech units,

* a simple analysis of wavelets shows that they are more
concentrated in frequency and time than Discrete Cosine
Transform (DCT).

Unfortunately, some problems are encountered with MRA and
DWT. In fact, noise can enhance irrelevant signal coefficients
and attenuate large signal coefficients. Moreover, due to the
sparseness of the data, coefficient magnitudes can vary a lot,
near the edges of the segment in which they are computed, for
slight changes in the alignment. This can be avoided by
introducing redundant DWT or complex Wavelet Trees.

Even if interesting solutions have been proposed for speech
analysis and coding, attempts to improve ASR performance
produced less impressive results. One of the reasons for this may
be that, for ASR, the important features are not the time samples
of filter outputs, but representation of energy components and
their transformation. Along this line, some important attempts
have been performed.

Different time and frequency resolutions can be obtained with a
hierarchical time-frequency decomposition performed by a
wavelet transform. The simplest way to obtain such a
decomposition is to recursively use low and high pass filtering
operations followed by downsampling at 0.5 the sampling
frequency of the input signal. An unbalanced binary tree of low
and high pass filters can be used [8]. Energy is computed at the
output of each filter by summing the absolute value of N
samples.

In [10] it is proposed to compute a Wavelet Packet Transform
(WPT) with a complete tree of filters. A time-domain filtering is



performed with a signal representation obtained from
frequency components witheach subband. It is shown that,

if for each frame, the subband signal energies are computed, a
reduced variability is observed in each band. Features appear
to be relatively immune to local changes within a particular
band with significant advantages in speaker-dependent
isolated phoneme recognition pronounced by male speakers
under stress.

In [9] it is shown that, for plosive recognition, DWT
coefficients lead to a much lower error rate than MFCCs.

This paper compares, in section 4, the performance of an
operational ASR system when MFCCs, J-RASTA Perceptual
Linear Prediction Coefficients (J-Rasta PLP) [6] and energies
obtained with WPT are used as input features to a hybrid
system consisting of a Neural Network (NN) which provides
observation probabilities for a network of Hidden Markov
Models (HMM). Furthermore, it compares the performance of
the system when various combinations of these features are
used showing a WER reduction of 16% w.r.t. the use of J-
Rasta PLP coefficients, when J-Rasta PLP coefficients are
combined with the energies computed at the output of the
leaves of a tree of filters performing WPT. Such a
combination is practically feasible thanks to the NN
architecture used in the system.

Recognition is performed without any language model on a
very large test set including many speakers uttering proper
names from different locations of the Italian public telephone
network.

Section 2 provides some background and section 3 describes
the WPT front-end.

2. BACKGROUND
A function g(t) can be expanded as follows:

90 = Y Cjp (KD jo k(D + Y Y dj (KW (1)
k k j=io
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where k is atranslation index and j is ascaling index.The
function$(t) must satisfy the following property:

6(t) =v2y h(np(2t - ) @
n

¢ () is calledscaling functionwhile Y(t) is called mother
wavelet h(n) represents the sequence of samples of the
impulse response of a suitable filter.

Thewavelet functionsre defined starting from the following
function, callednother wavelet

W(t) =v2 3 hy(mo(2t-n) 3)
n

where the collection i1 (n) } can be expressed as:

hy(n) = (-1)"h(1-n)
which, for a finite even length N becomes:
hy(n) = (-)"h(N -1-n)

In a similar manner as fotj,k(t , Xhe following functions
i
Wkt =22yRt-k)
are expressed as the dilatated, normalized and translated versions

of Y(t).
The coefficients;(k) andd;(k) of the (1) are defined as follows:

¢j(K) = [9()d; (D)l

dj(K) = [9(OWjk (D)t
When the scaling function is well behaved, at high scales it is
similar to a Dirac function and the inner product simply samples
the function.

Two approximations of g(t) are usually performed in wavelet

series expansions, namely truncation w.rt. j, and with
thresholding, which implies eliminating the coefficients whose

absolute value is less than a threshold.

The coefficients of the expansion can be computed as follows:

¢j(k) = 3 hy(m=2K)cja(m)
m

dj() = ¥ hip(m~2K)cj1(m)
m

In practice, f{n) and R(n) are the impulse responses of a low
pass and a high pass digital filter. Multiplying by two the
sampling period k is equivalent to down-sampling. For high
values of j, coefficients;gn) are obtained by multiplying the
signal by a Dirac function, and are, in practice, signal samples.
The DWT is thus performed by expanding a full binary tree
(Wavelet PacketVP) in which the operators for node expansion
are filtering and down-sampling. WP implements MRA. The
root node contains the samples of the signal to be analyzed. The
tree expansion is performed by applying the low pass filter when
descending left, and the high pass filter when descending right.
Each node covers a different range of frequencies and contains
the signal filtered and downsampled along the path reaching the
node. The nodes at different levels have a different
time/frequency resolution, with time resolution decreasing and
frequency resolution increasing when going from the root to the
leaves.

From this tree, it is possible to extract sevéasgis that are sets

of functions covering all ranges of frequencies. A possible base
is thewavelet baseobtained from the DWT by expanding the
nodes only leftmost; another is tfreear) Melone, obtained by
choosing the nodes of the full WP in order to approximate the
Mel-scale frequency division [7]. This set of functions, indicated
in the following asMel base has been used, together with the
full WP, in the experiments described in this paper.

Other sets of functions can be chosen using some optimization
criteria as discussed in [12].

3. WAVELETS BASED FRONT-END

A binary tree of filters is used to implement a WP in order to
achieve MRA under the constraints imposed by the Heisenberg
principle which states that the product of time and frequency
resolution is always greater than a constant.

A segment of the original signal is propagated through a binary
tree of a predefined depth. At each node, filtering and
downsampling are performed.



In practice, signal windowing is not necessary as processing is
done by a continuous application of the tree of filtering-
downsampling operators on the input signal.

The filters used in the tree are half-band (low-pass and high

pass) perfect-reconstruction wavelet filters. While for signal

coding the only requested feature is perfect reconstruction, in
the case of recognition, only the analysis phase is performed.

Then MRA features are extracted and employed for acoustic

matching. As a consequence, filters should exhibit some

properties in order to obtain MRA features suitable for
recognition. Some desirable properties are:

1. No loss of information: perfect reconstruction filters
should be orthogonal or biorthogonal wavelet filters.

2. Conservation of total energy:orthogonalfilters should
be used because, by definition, they preserve the total
energy, while this is not the case for biorthogonal filters.
This property is fundamental as MRA features are
subband energies.

3. No spectral distorsion: linear phase filtersshould be
used in order to avoid signal distortion due to different
frequency shiftings. This is in contrast with point 2) as
orthogonal filters cannot, by definition, have linear
phase. Nevertheless some classes of orthogonal filters
exhibits a small deviation from linear phase.

4. Accurate subband partitioning: sharp half-band filters
should be used with a small transition band, to avoid
mixing energy contributions between different bands.

The choice of filters should satisfy, as much as possible, the

above requirements as well as some other, more practical

ones, like computational efficiency. The filters used for the
experiments reported in this paper @mhogonal IR Wavelet

filters as proposed by Selesnick in [11]. The filters order is 19.

A frame synchronous, variable resolution energy computation

is performed at each node k of the tree on the same number of

samples N :

N
B = S k2.
3

As the time resolution halves at each downsampling (while
the frequency resolution doubles at each half band filtering)
the product of the time and frequency resolutions is always
the same at each level of the tree. The only exception takes
place for the highest subbands where the averagindowi is
never smaller than one frame (10 ms). As a result, at the
nodes of a tree with 6 level depth, energies are computed on
different time intervals, from 48 ms at th& @vel, where the
frequency resolution is 125 Hz, to 10 ms at the root where the
total energy of the signal is computed with a frequency
resolution of 4 kHz (the whole band, as 8 kHz sampling rate).

The energies at all the WP nodes could be used as features.

This is feasible at the expenses of a bigger NN. Results using
these features are indicated MRA WP Other possibilities
consist in finding a set dbest basig12], or to choose, as
proposed in [7] and [8] a set of filters that emulates the MEL
scale. The results obtained with these features will be
indicated aMEL base

4. EXPERIMENTAL SETUP AND RESULTS

Experiments were conducted using a hybrid HMM-NN
system described in [3] with a feed-forward Neural Network

(NN) which computes the probability of being in a state of a
Hidden Markov Model (HMM), given the observation made on a
set of input frames.

The network is designed to integrate multiple features,
exploiting the NN capability of mixing several input parameters
without any assumption about their stochastical independence.
The input window is 7 frames wide, ardch frame contains the

set of features extracted by the front-end along with their first
and second time derivatives. The first hidden layer is divided
into three feature detector blocks, one for the central frame, and
two for the left and right contexts.

Each block is in its turn divided into sub-blocks to keep into
account the different types of input parameters. It was
empirically found that this a priori structure is generally better
than a fully connected layer. The second hidden layer is fully
connected with the output layer that estimates the emission
probabilities associated with the HMM states. Further details on
the NN architecture can be found in [4].

In the experiments described in this paper, the features used as
input of the HMM-NN model are MFCC, J-Rasta PLP and WP
derived energies (MEL base and whole WP).

Separate train and test corpora were used. Both corpora are
made of telephone spch, collected in Italian language from
different cities of the Italian Telephone Network. The signal
bandwidth is 300-3400 Hz and the sampling frequency is 8 kHz.
Speakers were evenly distributed among males and females
coming from many ltalian regions and with different accents.
Training was performed on 1136 speakers uttering a total of
4875 phonetically balanced sentences with a vocabulary of 3653
words.

The test corpus consists of 14473 isolated word utterances of
proper names, from 1050 speakers.

There was no overlap in the speakers of the train and the test
corpora. All the test corpus was made of proper names which did
not appear in the training set. The test set is made of isolated
words belonging to a vocabulary containing the 475 most
common ltalian city names.

Two kinds of experiments were performed. The first one is
aimed at comparing the results obtained with two classical front-
ends (MFCC, J-Rasta PLP) with features obtained with MRA
analysis. No language model was used for the experiments as
the purpose was that of comparing acoustic features.

In the case of MFCC and J-Rasta PLP, 12 MFCCs and the total
signal energy are used with their first and second time
derivatives for a total of 39 parameters for each 10 ms frame. In
the case of MRA, the energies of the WP are directly used. There
are 18 energy samples in the MEL base, and 63 in the complete
WP. First and second time derivatives of these features are also
used.

The results in terms of Word Error Rates (WER) are summarized
in Table 1. Feature vectors are computed every 10 msecs. and
include the parameters indicated in the table plus their first and
second time derivatives.

Basic features WER
MFCC 5.31
J-Rasta PLP 4.69
MRA MEL base 5.24
MRA WP 4.58

Table 1.Comparison of individual sets of features.



The results of Table 1 show that J-Rasta PLP parameters
outperform MFCCs, while the MRA MEL base show
performance almost equivalent to MFCCs, and MRA WP
show performance almost equivalent to J-Rasta PLP at the
expense of a larger number of parameters. It is important to
notice that no preprocessing like spectral subtraction, cepstral
mean normalization or vocal tract length normalization were
performed in order to ensure a fair comparison.

Nevertheless, J-Rasta PLP coefficients are computed using a
number of perceptual and practical findings like Rasta
filtering and perceptual compression, while suitable
processing enhancements have not yet been attempted for
MRA.

The results confirm that there is no practical advantage in
replacing popular front ends with MRA front-ends.
Nevertheless, the different types of analysis allow one to
perform different types of pre or post processing and
performance differences may appear with suitable additional
feature processing.

A possibility, worth to be investigated, is whether or not the
integration of different types of features provide any WER
reduction or, in other words, if different types of features have
different information contents. For this purpose, experiments
were conducted on the integration of two kinds of features.
Integration, described in [4], exploits the capability of NNs to
mix different input sources without limiting constraints.

Basic features Additional feat. WER|
J-Rasta PLP - 4.69
J-Rasta PLP MFCC 4.1
J-Rasta PLP MRA MEL base 3.96

Table 2. Recognition results for the integration of single and
multiple resolution analysis.

The results reported in Table 2 show that the synergy of fixed
and multiple-resolution analysis leads to a significant

improvement (16% WER reduction) w.r.t. the situation in

which the most effective features (J-Rasta PLP) are used
alone. Given the very large test corpus, the differences
appearing in Table 2 are statistically significant.

The results in Table 2 have been obtained with an effort
which is still in progress and indicate two main lines for

future work. One consists in finding an optimal subset or
transformation of the combined features which produces
almost the same or better results. The other consists in
exploring new features or functions which can be computed
from MRA.

5 CONCLUSIONS

Now that reference systems have been established, some
important conclusions about the performance of different
types of features and their combinations can be formulated.
MRA does not appear to be superior to J-Rasta PLP, but
whole WP is superior to MFCCs. Notice that no significant
improvements were observed by increasing the numbers of
MFCCs.

MRA Mel base provides additional information to the one
carried by J-Rasta PLP features. This encourages continuing
investigations on parameters which can be obtained from

WP, such as ratios of energies for the children of the same node,
mutual information of filter outputs, patterns described by
trajectories of filter outputs or parameters derived from them,
suitable preprocessing for MRA energies.
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