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ABSTRACT

We study the asymptotic behavior of the smallest singular value of
the Single Input Multiple Output (SIMO) channel filtering matrix.
We prove that this can be expressed in terms of the sub-channel
transfer functions. We apply this result to study the identifiabil-
ity of bandlimited channels from their (estimated) second order
statistics (SOS). We prove, and verify through examples, that SOS
based algorithms are unable to identify frequency selective chan-
nels regardless of the assumed channel order.

1. INTRODUCTION

Future communication systems tend to involve multi-sensor and
fractionally spaced receivers in order to increase the system ca-
pacity [9] or allow some tasks, such as SOS-based blind identi-
fication, which are not possible with single-sensor Baud-rate re-
ceivers. Such techniques lead to the study of Single Input Mul-
tiple Output (SIMO) channels. The processing of SIMO channel
covariance matrices often involves inversion techniques and blind
algorithms show poor performance when tested with bandlimited
channels [11]. The interest in the conditioning of such matrices
w.r.t. inversion is hence highly justified while few results have
been devoted to it [2]. In this paper, we express the conditioning
of SIMO channel covariance matrices in terms of the transfer func-
tions of the sub-channels. Application to bandlimited channels is
straightforward and enables immediate conclusions on their (non)
identifiability from their (estimated) SOS.

2. THE SIMO CHANNEL FILTERING MATRIX
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Fig. 1. Single input multiple output channel

An m-order SIMO channel, as depicted in Fig. 1, is a set
of c filters hu=̂ [hu

0 , · · · , hu
m]T (to each we associate the Fourier

transformhu(w)), u = 1, · · · , c, driven by a common scalar input
s(k). This setting corresponds to a multi-sensor reception or a
poly-phase representation of an over-sampled signal, or a possibly
hybrid situation. The SIMO channel orderm is defined as the
maximum order among those of the different filtersh1 · · ·hc.

n successive output observations are stacked into the vector

xn(k)=̂
[
x1(k) · · ·x1(k − (n − 1)) · · ·xc(k) · · ·xc(k − (n − 1))

]T
related to the scalar input byxn(k) = Hn(h)sn+m(k) where

Hn(h)=̂


 Hn(h1)

...
Hn(hc)


 is thecn× (n+m) SIMO channelfilter-

ing matrix andHn(hu)=̂




huT

0 · · · 0

0 huT · · · 0
...

0 · · · 0 huT


 is then × (n + m)

filtering matrix associated with theu-th filter. We noteσ(n)
k =̂

σk(Hn(h)) whereσk(A) (resp.λk(A)) refers to thek-th largest
singular (resp. eigen) value of the matrix (resp. square matrix)A.

If the inputs(k) is zero mean and white with varianceσ2
s , then

the covariance matrixRn=̂E
[
xn(k)xH

n (k)
]

= σ2
sHn(h)HH

n (h).
An important result [10] states that the filtering matrix is full

column rank if the SIMO channel is zero-coprime (i.e.hu(w), u =
1, · · · , c do not have any zero in common) and ifn ≥ m.

3. ASYMPTOTIC BEHAVIOR OF THE FILTERING
MATRIX SINGULAR VALUES

We first recall the following definitions and results about asymp-
totic equivalence [4] as well as Szegö’s theorem [5]. The strong
norm ‖An‖ and the weak norm|An| are defined, respectively,
as the spectral norm‖An‖2 =̂max‖x‖=1x

HAH
n Anx and as the

normalized Frobenuis norm|An|2=̂ 1
n

∑n

i=1

∑n

j=1
|ai,j |2.

Definition 1 Asymptotic equivalence
Two n × n matrix sequences {An} and {Bn}, n = 1, 2, · · · are
said to be asymptotically equivalent and noted {An} ∼ {Bn} if

∃M < ∞ such that∀n, ‖An‖ ≤ M and ‖Bn‖ ≤ M (1)

limn→∞|An − Bn| = 0 (2)

Lemma 1 If {An} ∼ {Bn} and if limn→∞ 1
n

∑n

k=1
λs

k(An)
exists and is finite for any positive integer s, then

limn→∞
1

n

n∑
k=1

λs
k(An) = limn→∞

1

n

n∑
k=1

λs
k(Bn)

Theorem 1 Szegö’s theorem
For all absolutely summable sequences {tk}k=···,−1,0,1,···,

if Tn=̂




t0 t−1 · · · t−(n−1)

t1
. . .

. . . t−(n−2)

...
. . .

...
tn−1 tn−2 · · · t0


 is Hermitian,



then for all functions F continuous on [minwt(w), maxwt(w)]

limn→∞
1

n

n∑
k=1

F (λk(Tn)) =
1

2π

π∫
−π

F (t(w)) dw.

where t(w)=̂
∑

k
tke−ikw stands for the Fourier transform of tk.

In the following, we prove that the sequenceHH
n (h)Hn(h)

is asymptotically equivalent to a Toeplitz matrix sequence, then,
using Szeg̈o’s theorem, a result is estalished on the aymptotic be-
havior of the singular values ofHn(h).

Let i, j ∈ {1, . . . , n + m}.(
HH

n (hu)Hn(hu)
)

i,j
=
∑n

k=1
(hu(i − k))∗ hu(j − k)

=
∑

k∈{1,...,n}
⋂

{i−m,...,i}
⋂

{j−m,...,j} (hu(i − k))∗ hu(j−k).

If j − i > m then{i − m, . . . , i}⋂{j − m, . . . , j} = ∅ and(
HH

n (hu)Hn(hu)
)

i,j
= 0. If m+1 ≤ i ≤ n then{1, . . . , n}⋂{i−

m, . . . , i} = {i − m, . . . , i} and
(
HH

n (hu)Hn(hu)
)

i,j

=
∑

k∈{i−m,...,i}
⋂

{j−m,...,j} hu∗
(i − k)hu(j − k) which is a

function ofi − j. The same holds whenm + 1 ≤ j ≤ l.
We hence can writeHH

n (hu)Hn(hu) =



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


whereXu
m and Yu

m are twom × m Hermitian blocks (neither
depends onn) andtui , i = 0 · · ·m are given by
tu
i =
(
HH

n (hu)Hn(hu)
)

m+1+i,m+1

=
∑

k∈{m,...,0}
⋂

{i+m,...,i} hu∗
k hu

k−i =
∑m

k=i
hu∗

k hu
k−i whose

Fourier transform equals|hu(w)|2.
We introduce then× n finite order Hermitian Toeplitz matrix

Tn =




t0 · · · t∗m 0 · · ·
...

. . . 0

tm

. . . t∗m
0
. . . 0 tm · · · t0


 wheretk =

∑c

u=1
tu
k . From

[4], σn(Tn) ≥ minw∈[−π,π]

(∑c

u=1
|hu(w)|2

)
≥ 0 and hence

Tn is positive definite. Furthermore, one can prove thatXm +
Ym = Tm whereXm=̂

∑c

u=1
Xu

m andYm=̂
∑c

u=1
Yu

m.

HH
n (h)Hn(h) =

∑c

u=1
HH

n (hu)Hn(hu)

= Tn+m +

[
Xm −Tm 0m,n−m+1 0m

0n−m+1,m 0n−m+1 0n−m+1,m

0m 0m,n−m+1 −Xm

]
(3)

We now prove that the matrix sequenceHH
n (h)Hn(h) is asymp-

totically equivalent to the Toeplitz matrix sequenceTn+m when
n → +∞, and so will be said to be asymptotically Toeplitz. First,
from [4, Lemma 4.1 (4.4)],Tn is bounded. So isHH

n (h)Hn(h)

as
∥∥HH

n (h)Hn(h)
∥∥ ≤ ‖Tn+m‖ +

∥∥∥[Xm − Tm 0m

0m −Xm

]∥∥∥.
Also, from (3), we have|HH

n (h)Hn(h) −Tn+m|
=
√

2m
n+m

∣∣∣[Xm − Tm 0m

0m −Xm

]∣∣∣→ 0. Hence,HH
n (h)Hn(h)

is asymptotically equivalent toTn+m whenn → +∞.
Consequently, from Lemma 1, we have

limn→∞
1

n

n+m∑
k=1

λs
k(HH

n (h)Hn(h)) = limn→∞
1

n

n+m∑
k=1

λs
k(Tn+m)

Following the same procedure as in [4], this can be extended to the
following. For all continuous functionsF ,

limn→∞
1

n

n+m∑
k=1

F
(
λk(HH

n (h)Hn(h))
)

= limn→∞
1

n

n+m∑
k=1

F (λk(Tn+m))

Using Szeg̈o’s theorem, we prove the following

Theorem 2 For all continuous functions F ,

limn→∞
1

n

n+m∑
k=1

F
(

σ
(n)
k

)
=

1

2π

π∫
−π

F


σs

√√√√ c∑
u=1

|hu(w)|2

 dw

The following can be deduced (the proof is similar to that of
[7, Corollary 3.9]) about the smallest singular value.

Theorem 3 If σ
(n)
n+m converges in n, then

limn→∞
(
σ

(n)
n+m

)
≤ σsminw



√√√√ c∑

u=1

|hu(w)|2

 (4)

4. IMPLICATIONS FOR BLIND SIMO CHANNEL
IDENTIFICATION

Blind identification of a SIMO channel from its SOS is made pos-
sible when the channel is zero-coprime and its SOS are completely
known (n > m). SOS-based blind techniques always involves the
inversion of the (noise free) correlation matrix (The Linear Pre-
diction (LP) [1] and the Outer Product Decomposition (OPD) [3]
algorithms) or the determination of its kernel (the Subspace (SS)
[8] algorithm). Both approaches are sensitive to the conditioning
of the processed correlation matrix [11]. This conditioning is well
expressed in terms of the lowest non-zero eigenvalue of the (rank

deficient) correlation matrix, i.e.λn+m(Rn) =
(
σ

(n)
n+m

)2

. On



the other hand,σ(n)
n+m is well approximated [5, Theorem p. 72] by

limn→∞
(
σ

(n)
n+m

)
. We, therefore, suggest the left-hand side of

(4) as an algorithm-independentmeasure of blind identifiability.
The right-hand side of (4) is better suited to assess channel

blind (un)identifiability under practical observation conditions. In
fact, in cases where the right-hand side in (4) is small, the chan-
nel output covariance matrix is poorly conditioned and blind al-
gorithms are expected to fail to identify the channel if its output
is observed over a limited time duration. This bound has also the
advantage of giving a spectral interpretation of channel blind iden-
tifiability.

hm’

hm

Fig. 2. Channel response with small heading and trailing terms

This bound has a further interpretation in the practical case
when the channel response includes small heading and/or trailing
terms (Fig. 2). The wholem-order channel responseh can be
written as the sum of anm′-order effective responsehm′ , m′ <
m, and a perturbation vector due to the small trailing terms [6]. If
we lethu

m′ (w) be the Fourier transform associated with the sub-
channelu = 1, · · · , c of hm′ , then

∑c

u=1
|hu(w)|2 �∑c

u=1
|hu

m′ (w)|2
i.e., the bound in (4) is approximately the same when evaluated for
h or hm′ . When this bound is weak, it implies non-identifiability
of the whole response as well as the effective response. In such
case, the channel will not be identifiable whatever the assumed
channel order. When assumed to be greater thanm′, it leads to a
poorly conditioned covariance matrix because of the small trailing
terms. When less thanm′, the identification procedure will fail
because some significant terms are ignored. When equal tom′,
blind identification is still not possible because of the bound (and
hence the conditioning of the correlation matrix) is unfavorable.
Hence, while generally not tight as verified through computations,
the upper bound in (4), when low, indicatespractical non identifi-
ability of the channel i.e., neither the channel nor a part of it can
be identified from a finite observation set. Examples are given in
the practical case of fractionally received bandlimited channels.

5. FRACTIONALLY SPACED BANDLIMITED
CHANNELS

If the sub-channelshu(w), u = 1, · · · , c are generated by over-
sampling awaveformh(t) andh(w)=̂

∫
h(t)e−jwtdt, thenhu(w) =∑

l
h(w−2lπ)e−j(w−2lπ) u−1

c . If h(w) is bandlimited (to[− 1
T

, 1
T

]),

thenhu(w) = h(w)e−jw u−1
c + h(w − 2π)e−j(w−2π) u−1

c for
w ∈ [0, 2π] and it can be proved that (4) simplifies to

limn→∞
(
σ

(n)
n+m

)
≤ σs

√
c minw

(√
(|h(w)|2 + |h(w − 2π)|2)

)
More commonly,h(w) is a shaping filter (a raised cosinewave-

form most often) propagating through a frequency selective mul-

tipath channel. Some frequency components can be significantly
attenuated leading the above upper bound to be weak. This justi-
fies the poor performance of blind algorithms in identifying com-
munication channels using fractional receivers, and concurs with
remarks in [2]1

A series of simulations was conducted with a raised cosine
waveform2 with rolloff 0.3, propagating through randomly selected
multipath channels with a4 symbol period delay spread3. Chan-
nels for which the upper bound of (4) was weak (≤ 0.1), such as
in Fig. 3, were systematicallypractically non identifiable4 in the
sense given in Section 4. On the contrary, however, when the upper
bound of (4) was not weak, no conclusion can be made. An order
with which reliable identification can be performed may exist (Fig.
4) or not (Fig. 5).
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Fig. 3. The upper bound in (4) equals0.0851.

6. CONCLUSION

We studied the asymptotic behavior of the singular values of the
SIMO channel filtering matrix when the smoothing factor tends

1The therein made analysis however is relative to the SS algorithm.
2The waveform response was truncated over40 symbol periods.
3The direct path is not delayed and not attenuated while the number,

delays and attenuations of the weaker and delayed paths are randomly cho-
sen. The channel response was normalized so that‖h‖ = 1

4Identification was tried using the subspace algorithm. The channel was
observed over300 symbol periods with anSNR of 20dB and wasT/2
sampled. The channel was declared non identified when the mean square
error exceeds0.1.
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Fig. 4. The upper bound in (4) equals1.0690.

to infinity. This is proved to be linked to the transfer functions
of the sub-channels. We are interested in particular in the lowest
singular value which, because it expresses the conditioning of the
correlation matrix, is a relevant and algorithm-independent mea-
sure of the channel blind identifiabily from SOS. With respect to
this lowest singular value, an upper bound is derived which gives
a practical spectral interpretation of channel blind identifiability.
The practical case of fractionally spaced bandlimited channels is
studied and the proof is made that when the channel is frequency
selective, it can not be blindly identified, regardless of the assumed
channel order.
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