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ABSTRACT H,(h')
We study the asymptotic behavior of the smallest singular value ofH"(h)_ : is theen x (n+m) SIMO channefilter-
the Single Input Multiple Output (SIMO) channel filtering matrix. H, (h°)
We prove that this can be expressed in terms of the sub-channel ' 0-..0
transfer functions. We apply this result to study the identifiabil- onv" ...
ity of bandlimited channels from their (estimated) second order ing matrix andH,, (h*)= ] is then x (n +m)
statistics (SOS). We prove, and verify through examples, that SOS :
based algorithms are unable to identify frequency selective chan- 0-..0n*"

nels regardless of the assumed channel order. . , . . . (n) -
filtering matrix associated with the-th filter. We noter, =

ox(H, (h)) whereoy (A) (resp.)\; (A)) refers to thek-th largest
1. INTRODUCTION singular (resp. eigen) value of the matrix (resp. square marix)
If the inputs(k) is zero mean and white with varianeg, then
Future communication systems tend to involve multi-sensor andhe covariance matriR,, =E xn(k)xf(k)} = 02H,,(h)H (h).
fractionally spaced receivers in order to increase the system ca-  pp, important result [10] states that the filtering matrix is full

pacity [9] or allow some tasks, such as SOS-based blind identi- -o|,mn rank if the SIMO channel is zero-coprime (ié(w), u =
fication, which are not possible with single-sensor Baud-rate re- | .. . 4o not have any zero in common) andhit> m.

ceivers. Such techniques lead to the study of Single Input Mul-
tiple Output (SIMO) channels. The processing of SIMO channel
covariance matrices often involves inversion techniques and blind
algorithms show poor performance when tested with bandlimited
channels [11]. The interest in the conditioning of such matrices
w.r.t. inversion is hence highly justified while few results have
been devoted to it [2]. In this paper, we express the conditioning i .
of SIMO channel covariance matrices in terms of the transfer func- 0" ||Ax | and the weak normA.,| are defined, respectively,
tions of the sub-channels. Application to bandlimited channels is @5 the spectral norA., | AN =1 X AnnAnX and as the
straightforward and enables immediate conclusions on their (non)normalized Frobenuis nor., [*=5 377 P |ai,j|?.
identifiability from their (estimated) SOS.

3. ASYMPTOTIC BEHAVIOR OF THE FILTERING
MATRIX SINGULAR VALUES

We first recall the following definitions and results about asymp-
totic equivalence [4] as well as SZiég theorem [5]. The strong

Definition 1 Asymptotic equivalence
Two n x n matrix sequences {A,} and {B,},n = 1,2,--- are

2. THE SIMO CHANNEL FILTERING MATRIX said to be asymptotically equivalent and noted { A, } ~ {B.,} if

1
" a (k) 3M < oo such thatn, [|A, | < M and [|B.|| < M (1)
S .
x°(k) lim,oo|Apn — By =0 (2)
Fig. 1. Single input multiple output channel Lemmal If {A,} ~ {Bn} and if limp—co s Y1 Ai(Ay)
exists and isfinite for any positive integer s, then
An m-order SIMO channel, as depicted in Fig. 1, is a set hmn—wol Z AL(AL) = 1jmnﬁool Z)‘Z(B”)
of ¢ filtersh*=[hy,---, h%]" (to each we associate the Fourier ne ne
transformh" (w)),u = 1, - - -, ¢, driven by a common scalar input
s(k). This setting corresponds to a multi-sensor reception or a Theorem 1 Szegs’s theorem
poly-phase representation of an over-sampled signal, or a possiblyror all absolutely summable sequences {tx b r=....—1,0,1, -
hybrid situation. The SIMO channel ordet is defined as the to tor - to(mon
maximum order among those of the different filthrs - - h®. . .
n successive output observations are stacked into the vectofs -~ bt - bt | s Hermitian,

% (k)= [} (k) -2 (k= (n = 1)) - a(k) -2k — (n— 1))]

related to the scalar input by, (k) = H, (h)s,..(k) where ta1 tn—'2 t.o



then for all functions F' continuous on [min,, t(w), max.t(w)]

™

nmn%o% ST F (w(T) = % /F(t(w)) dw.
k=1

-

where t(w)=3", tre”*** stands for the Fourier transform of ¢.

In the following, we prove that the sequenkg! (h)H,, (h)
is asymptotically equivalent to a Toeplitz matrix sequence, then,
using Szeg's theorem, a result is estalished on the aymptotic be-
havior of the singular values @i, (h).

Leti,j € {1,...,n+m}.
(B (h")H, (")), =30, (h"(i = k)" h"(j — k)
= 2ukeq1,..., n} (Yti—m.....i} (G—m.....3} (h*(i = k)" h*(j—F).
If j—i>mthen{i —m,....s}({j —m,...,5} = 0 and
(H2 (h*)HL, (h"), = 0. fm+1 < < nthen{l,...,n} ({i-

,i} and(H} (h*)H,, (h")) ;

= Zke{i—m,...,i} pIr - h* (i — k)h*(j — k) which is a
function ofi — 5. The same holds when + 1 < 5 <.

We hence can writéI” (h*)H,, (h")

m,...,iy={i—m,...
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where X} andY;, are twom x m Hermitian blocks (neither

depends om) andt;*,i = 0---m are given by

¢ = (H (h")H, (h"))
m+14+i,m+1

..........

Fourier transform equal&® (w)
We introduce the: x n finite order Hermitian Toeplitz matrix

| 2

to 0
: 0
Tn= |y, ¢= | wheret, = 70 t)i. From
0
0 tm to

[4], 0n(T0n) > minge—r = (> o_, |h*(w)]*) > 0 and hence
T, is positive definite. Furthermore, one can prove Kat +
Y. =T, whereX,,=3° X, andY,,=> " Y.

u=1

H/ (hH, (h) = 377 H/(h*)H,, (h")

X'm - T'm Om,n7m+1 Om
= Tn+m + 0n7m+1,m 0n7m+1 0n7m+1,m (3)
Om 0m,n—m+1 _Xm

We now prove that the matrix sequerd@& (h)H,, (h) is asymp-
totically equivalent to the Toeplitz matrix sequeri€g.,, when
n — o0, and so will be said to be asymptotically Toeplitz. First,
from [4, Lemma 4.1 (4.4)]T . is bounded. So i1/ (h)H,, (h)

Xm —Tm  Onm
as [ E (H, )| < [Tosnll + |[[*7g T G |
Also, from (3), we havéHZ (h)H,, (h) — T m|

=/ 2 H 0. _Xm} — 0. Hence HY (h)H,, (h)
is asymptotically equivalent t@,+,, whenn — +oo.

Consequently, from Lemma 1, we have

n+m n+m
. 1 s . 1 s
limy, o0 — ; A (HE (W)H, (h)) = limy, o0 — ; Ao (Trgm)
=1 =1

Following the same procedure as in [4], this can be extended to the
following. For all continuous function§’,

n—+m

limp oo Y F (M (H (0)H,, ()
k=1
n—+m

1
limp,— 00 — F (Ae(Trntm
im nZ (M (Togm))

Using Szeg's theorem, we prove the following

Theorem 2 For all continuous functions F',

)

The following can be deduced (the proof is similar to that of
[7, Corollary 3.9]) about the smallest singular value.

n+m

1imn%o% Z F (a

k=1

1

(m)\ _ 1
2w

k

(n)

n+m

Theorem 3 Ifo convergesin n, then

(n)

liman— 0o (Un+m) < osming,

4. IMPLICATIONSFOR BLIND SIMO CHANNEL

IDENTIFICATION

Blind identification of a SIMO channel from its SOS is made pos-
sible when the channel is zero-coprime and its SOS are completely
known (» > m). SOS-based blind techniques always involves the
inversion of the (noise free) correlation matrix (The Linear Pre-
diction (LP) [1] and the Outer Product Decomposition (OPD) [3]
algorithms) or the determination of its kernel (the Subspace (SS)
[8] algorithm). Both approaches are sensitive to the conditioning
of the processed correlation matrix [11]. This conditioning is well
expressed in terms of the lowest non-zero eigenvalue of the (rank
2
(afﬁr)m) . On

deficient) correlation matrix, i.eAp+m (Rn)



the other handaf[fgm
(n)

nim |- We, therefore, suggest the left-hand side of
(4) as an algorithm-independemieasure of blind identifiability.

is well approximated [5, Theorem p. 72] by

limy, 0o (a

tipath channel. Some frequency components can be significantly
attenuated leading the above upper bound to be weak. This justi-
fies the poor performance of blind algorithms in identifying com-

munication channels using fractional receivers, and concurs with

The right-hand side of (4) is better suited to assess channelremarks in [2}

blind (un)identifiability under practical observation conditions. In

fact, in cases where the right-hand side in (4) is small, the chan-

nel output covariance matrix is poorly conditioned and blind al-
gorithms are expected to fail to identify the channel if its output

A series of simulations was conducted with a raised cosine
wavefornt with rolloff 0.3, propagating through randomly selected
multipath channels with & symbol period delay sprehdChan-
nels for which the upper bound of (4) was weak (.1), such as

is observed over a limited time duration. This bound has also thejn Fig. 3, were systematicallgractically non identifiable* in the

advantage of giving a spectral interpretation of channel blind iden-

tifiability.

Fig. 2. Channel response with small heading and trailing terms

This bound has a further interpretation in the practical case

when the channel response includes small heading and/or trailing % 5

terms (Fig. 2). The wholen-order channel responde can be
written as the sum of am’-order effective responde,,,,, m’ <

m, and a perturbation vector due to the small trailing terms [6]. If
we leth;, (w) be the Fourier transform associated with the sub-
channely =1, -, cofh,,, theny " |n"(w)[?

~

h or h,,,,. When this bound is weak, it implies non-identifiability

of the whole response as well as the effective response. In such
case, the channel will not be identifiable whatever the assumed

channel order. When assumed to be greater thaiit leads to a
poorly conditioned covariance matrix because of the small trailing
terms. When less tham’, the identification procedure will fail
because some significant terms are ignored. When equal,to
blind identification is still not possible because of the bound (and
hence the conditioning of the correlation matrix) ifaworable.
Hence, while generally not tight as verified through computations,
the upper bound in (4), when low, indicatasctical non identifi-
ability of the channel i.e., neither the channel nor a part of it can
be identified from a finite observation set. Examples are given in
the practical case of fractionally received bandlimited channels.

5. FRACTIONALLY SPACED BANDLIMITED
CHANNELS

If the sub-channel&*(w),u = 1,---,c are generated by over-
sampling avaveformh(t) andh(w)= [ h(t)e 7""dt, thenh" (w)
32, h(w—2lm)e 325 i p(w) is bandlimited (td— 4, 1),
then A" (w) h(w)e*j“’u;1 + h(w — 2r)e 7 (w2
w € [0,27] and it can be proved that (4) simplifies to

lin—o0 (a;@m) < Opr/omine (\/(|h(w)|2 ¥ h(w - 277)|2))

More commonly/(w) is a shaping filter (a raised cosinave-
form most often) propagating through a frequency selective mul-

u—

1
e for

Dt [P ()2

i.e., the bound in (4) is approximately the same when evaluated for

sense given in Section 4. On the contrary, however, when the upper
bound of (4) was not weak, no conclusion can be made. An order
with which reliable identification can be performed may exist (Fig.
4) or not (Fig. 5).
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o Alg.LP
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con

(b) Blind identification error

Fig. 3. The upper bound in (4) equalsD851.

6. CONCLUSION

We studied the asymptotic behavior of the singular values of the
SIMO channel filtering matrix when the smoothing factor tends

1The therein made analysis however is relative to the SS algorithm.

2The waveform response was truncated es@symbol periods.

3The direct path is not delayed and not attenuated while the number,
delays and attenuations of the weaker and delayed paths are randomly cho-
sen. The channel response was normalized sd|thfit= 1

4ldentification was tried using the subspace algorithm. The channel was
observed oveB00 symbol periods with a5 N R of 20dB and wasl’/2
sampled. The channel was declared non identified when the mean square
error exceeds$.1.



(a) Frequency responsgw)

o o o

o
g g sl PO o e

o o o Ag.SS o o Agss
o O AgLP o o AgLP
o © o Alg.OPD © o A opD|

2 4 6 8 10 12 14 2 4 6 5 10 12 14

(b) Blind identification error (b) Blind identification error

Fig. 4. The upper bound in (4) equalsD690. Fig. 5. The upper bound in (4) equals3033.
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