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ABSTRACT

We address the problem of estimating changes in fractional
integrated ARMA (FARIMA) processes. These changes
may be in the Long Range Dependence (LRD) parameter
or the ARMA parameters. The signal is divided into “el-
ementary” segments: the objective is then to estimate the
segments in which the changes occur. This estimation is
achieved by minimizing a penalized least-squares criterion
based on the parameter estimates computed in each seg-
ment. The optimization problem is then solved using a dy-
namic programming algorithm. Simulation results on syn-
thetic data are reported.

1. INTRODUCTION

Recent studies have shown the self-similar nature of ether-
net or internet packet traf�c data [8], [12]. These studies
suggest new approaches for analysis and understanding of
traf�c data, and in particular for traf�c monitoring. One
of the key problems is the accurate estimation of the Hurst
parameter, which describes the degree of Long-Range De-
pendence (LRD) in the data. This problem has been ad-
dressed in many articles (see for instance [1] and references
therein). In particular, Abry and Veitch [11] have devel-
oped a wavelet-based estimator which is unbiased, consis-
tent, and with “quasi-minimal” variance. Important advan-
tages of this estimator are: 1) it is robust to polynomial
trends, as well as to level shifts in mean and/or variance
of the processes [10]� 2) its low computational cost (����)
allows real-time applications� 3) it is useful for the detection
of a single change in the LRD parameter.

However, it seems unlikely that the network traf�c can
be accurately modeled by one or two parameters (i.e., the
Hurst parameter, and the magnitude of LRD effects). FARIMA
models have been suggested to be good models for bursty
data such as variable bit rate video (VBR) traf�c [3]� the
FARIMA model with heavy-tailed innovations was used in
[5], and some buffer allocation schemes are studied in [7].
The FARIMA model captures the LRD nature of the data�
other authors have used Gaussian innovations [7].

Here, we model traf�c data as a FARIMA process� we
use extensions of the Abry-Veitch estimator in order to de-
tect multiple changes in the process parameters. Adaptive
estimation of parameters and tracking are useful for dy-
namic bandwidth allocation, which is important since prac-

tical communication systems are constrained by �nite band-
width.

2. PROBLEM FORMULATION

The observed signal �Q �� ������ � � �� � � � � �� is mod-
eled as

���� � �l��� � � � ��l�4 � �� �l� � � � ��� 	 	 	 �
� (1)

with �3 � � and �P � � . In (1), �l��� is a FARIMA��� �l� 
�
process with LRD parameter �l, and ARMA parameter vec-
tors �l � 	�l���� � � � � �l���
, and �l � 	�l���� � � � � �l�
�
.
Hence, process �l��� satis�es the difference equation:
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��n, and �l��� is an

i.i.d. possibly non-Gaussian sequence with �nite mean and
variance. Moreover, it is assumed that � � �l � ��
 to en-
sure LRD [2]. The process �l��� can then be considered as
an i.i.d. input successively �ltered by the FARIMA��� �l� ��
�lter and the ARMA��� 
� �lter with parameter vectors �l
and �l [2].

The problem addressed in this paper is the estimation
of the changepoints ��l �� � �� � � � �
 � ��, given the data
�Q .

It is assumed that the parameters �l, �l and �l, as well as
the distribution of the processes �l���� � � ��� 	 	 	 �
� are
unknown. In particular, these processes may have different
distributions, e.g., �4��� may be Gaussian, �5��� exponen-
tial, etc. This allows us to deal with a large scale of data
traf�c processes, which are often modeled as non-Gaussian
processes [5]. In particular, the estimation procedure is ap-
plicable to the case where the change affects the distribution
of the process. It is assumed that the model orders � and 

are known and identical for all �l���. The case of unknown
and changing model orders is discussed in Section �.

3. HYPOTHESES

Because of the LRD, the effects of a change in the Hurst
parameter cannot be observed just after the change. In other
words, it is dif�cult (and even useless) to detect changes



with an accuracy equal to one sample. Therefore, this study
is restricted to the location of changes within small seg-
ments (hence it is implicitly assumed that two changes can-
not be separately detected if they occur in the same seg-
ment). More precisely, consider a segmentation of �� �
�� 			��� into � “elementary” segments

�n � 	��v � �� �� � ���v
 �� � ��� 	 	 	 ����
of �v samples (i.e., � � � ��v). Then, the actual signal
���� is accurately approximated by the signal �����, which
is equal to ������q@4>===>Q , except in the elementary seg-
ments where the changes occur: in these segments, denoted
by ��ol�, � � � � 
 � �, ����� has the FARIMA struc-
ture with parameters ��l� �l� �l� over the whole segment,
whereas the FARIMA parameters of ���� change from
��l� �l� �l� to

�
�l.4� �l.4� �l.4

�
inside the segment �ol . Con-

sequently, the signal ���� is considered as if it were the sig-
nal ����� (note however that the algorithm operates on the
actual data ����).

Notation:

	 �n �
�
�n� �

W
n � �

W
n

�W
: the true parameter vector of

the FARIMA process ����� over the segment �n, � �
�� 	 	 	 ���

	 �l, � � �� � � � �
 : the number of the elementary seg-
ment where the �th change occurs, i.e., the last seg-
ment of the signal ��l���� here, �3 � �.

	 ��l , � � �� 	 	 	 �
 : the true parameter vector of the
process ��l���, over the segments ��n�ol�4.4�n�ol .

Then, one should have:

�n � ��l , � � �l�4 � �� 	 	 	 � �l� � � �� 	 	 	 �
	

The method derived in this paper consists of estimating the
FARIMA parameters over these � segments, yielding es-

timated vectors ��n �
���n���n���n

�
for � � �� 	 	 	 ��, and

of statistically detecting changes in the estimated parame-

ters,
���n�. The problem reduces to detecting changes in

the mean of
���n� provided that the estimates ��n of �n are

(asymptotically) unbiased. In this case, a change detected

at the �th lag of
���n� means that a change occurred during

segment �n in the process ����. However, it is not possi-
ble to re�ne the change location within this segment. Thus,
the resolution of the change detector in ���� is equal to the
length of the “elementary” segments, �v. Consequently, the
choice of �v must be a trade-off between high/low resolu-
tion and the suf�ciently large number of samples required
to accurately estimate the FARIMA parameters.

4. PARAMETER ESTIMATION

We propose a three step procedure to estimate the FARIMA
parameters.

1. The estimate of the LRD parameter, ��n, is obtained
via the Abry-Veitch algorithm [11]�

2. The data ������ � � � �n are �ltered by the FARIMA
������n� �� �lter, yielding the signal ��n����, � �

�� 	 	 	 � �v. If the estimate of ��n is suf�ciently accu-
rate, then �n��� is an ARMA process.

3. The ARMA parameters are estimated from ��n����,
� � �� 	 	 	 � �v using standard techniques. For ex-
ample, one could use the Yule-Walker equations for
the AR estimate, and the long AR method for the MA
estimate [9].

It is shown in [11] that the estimate ��n of �n is unbiased
and consistent. Thus, for �v large enough, the process ob-
tained in step 2 should be close to the true ARMA part of
the FARIMA process. Consequently, the techniques used in
step 3 are well suited and should yield asymptotically un-
biased and consistent estimators. Hence, the estimates ��n
of �n should be (asymptotically) unbiased and consistent,
and the problem indeed amounts to detecting changes in the

mean of
���n�

n
, as mentioned above. A detailed analysis

of the consistency of the parameter estimates is beyond the
scope of this paper, and will be addressed in another article.

Since the true parameters �l, �l and �l are unknown for
all segments, the true vector ��l is also unknown, and the
problem amounts to estimating changepoints of unknown

amplitudes in the multi-dimensional signal
���n�

n@4>===>N
.

	 In the case of a known number of changes, the es-

timates of the change points �� � ���4� 	 	 	 ���P�4� in

the signal
���n�, � � �� 	 	 	 �� can be obtained by

minimizing the following least-squares criterion:

�� � ������
o@+o4>===>oP�4,

W

P�
l@4
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n@ol�4.4

			��n � �l
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where �l � 4
ol�ol�4

ol�
n@ol�4.4

��n. The estimated

change points in the signal ����� are then given by��l � ��l�v.

	 In the case of an unknown number of changes, the
previous criterion has to be penalized, leading to:

�� � ������
o@+o4>===>oP�4,

W

P�
l@4

ol�
n@ol�4.4

			��n � �l

			5�����


(4)
where ���� is a positive penalizing term which �xes
the resolution of the estimate, i.e., the number of de-
tected changes.



As shown above, the estimates are obtained by mini-
mizing a function on a �nite but generally very large set
(except for 
 and/or � small). In such case, one generally
resorts to MCMC algorithms, such as simulated annealing.
However, in this particular case, one can generalize the ap-
proach used in [4] based on the dynamic programming al-
gorithm. The main advantages of this algorithm compared
with MCMC methods are: 1) it yields the exact solution to
the minimization problem, and 2) its computational cost is
much lower than that for simulated annealing.

5. SIMULATION RESULTS

Many simulations have been performed to validate the method
presented above. We �rst present the results obtained on a
synthetic signal ���� formed by the concatenation of six
FARIMA��� �� 
� processes (� � � and 
 � 
). These
processes are generated by �ltering a zero-mean i.i.d. in-
put successively through the FARIMA��� �� �� �lter and the
ARMA��� 
� �lter. All sub-processes��l���� � � � �� 	 	 	 � �
are next normalized, so that they all have the same mean
and variance. Consequently, the change detection cannot be
achieved by simply looking for changes in the mean or the
variance of the process.

The signi�cant parameters of the algorithm are: i) the
length of the “elementary” segments �v� ii) the position of
the abrupt changes, and more precisely the distance between
two successive changes (in order to visualize the resolution
of the detector)� iii) the parameter values of the different
FARIMA processes: in particular, it is interesting to analyse
what happens when two adjacent sub-processes have close
parameters� iv) the distributions of the different processes,
in particular: does it matter whether the process is Gaussian
or non-Gaussian? v) the penalizing term in the case of an
unknown number of changes.

Because of space limitations, only points ii), iii), and
iv) are considered in this paper. In the following simula-
tions, the number of samples is �xed to � � 
48 � �
���),
and the elementary segment length to �v � ��
�. The true
changepoints are � � 	6200�12300�16400�24500�27800�32768
,
so that these changes fall within the segments �:, �46, �4:,
�57, �5;, �65. Note that these lengths are realistic for traf-
�c data analysis� further there is no quasi-periodicity in the
changepoint sequence. Finally, the input sequences �l���
of the FARIMA processes �l��� are successively normally
and exponentially distributed.

Two cases are considered: in the �rst one, the adjacent
sub-signals �l��� have very different parameters, and in the
second, these parameters are closer.

5.1. “DISTANT” PARAMETERS

The different parameters for the six sub-signals are:

�4 �5 �6 �7 �8 �9
� 0.3 0.45 0.2 0.35 0.15 0.4
�4 -0.5 0.4 0.8 -0.2 -0.5 0.9
�4 0.8 0.5 -0.3 -0.9 -0.6 0.9
�5 0.4 -0.7 0.2 -0.2 0.4 0.7

Fig. � shows the mean of the estimated abrupt changes
computed over the ��� trials. The top �gure presents the
data �Q and the actual change locations. The bottom �gure
presents the estimated change locations. These estimates
are quite good: indeed, the pairs of estimated changes are
separated by a time interval equal to �v, i.e., the algorithm
�nds either �l or �l � � as the actual change point. This is

quite satisfying, since we have only 32 samples in
���n� and

six changes to estimate (i.e., we have only about 5 samples

of
���n� per segment).
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Fig. �: mean of the estimated changes computed from ���
runs. �v � ��
� - “distant” parameters.

5.2. “CLOSE” PARAMETERS

Now the parameters in some adjacent intervals are closer,
so that the changes are smaller. The parameters are:

�4 �5 �6 �7 �8 �9
� 0.3 0.25 0.2 0.45 0.4 0.2
�4 -0.5 -0.4 -0.1 0.8 0.7 0.4
�4 0.4 0.3 -0.2 -0.4 -0.6 0.5
�5 0.8 0.7 0.8 0.2 0.4 0.6

The mean of the estimated abrupt changes (computed
over the ��� trials) is shown in �g. 
.

0 0.5 1 1.5 2 2.5 3
x 104

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
x 104

-4

-2

0

2

4

6

8

Fig. 
: mean of the estimated changes computed from ���
runs. �v � ��
� - “close” parameters.

As expected, the algorithm has more dif�culty in �nding
the exact changes (no change is detected at � � �), in partic-
ular for those with small changes (� � � and � � 
�). In this
case, we should allow a greater range of possible numbers
of changes, with a suitable penalizing term �.

The lower performance of the estimator in this case can
be understood from �gs. �-�, which present the parameter
estimates corresponding to these simulations. Indeed, we



can see �g. � that the LRD parameter estimation is not so
accurate around � � � and � � 
�, where the jumps are not
really signi�cant. This poor accuracy may explain why the
changes are hardly detected for these points. However, it
is surprising to note that, despite this poor LRD parameter
estimation, the ARMA parameter estimation remains satis-
fying around � � � and � � 
�. This observation tends
to show that the ARMA estimation (performed after LRD
estimation and �ltering) is quite robust to bias in the LRD
estimation.
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Fig. �: LRD parameter.
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Fig. �: AR parameter.
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Fig. �: second MA parameter.
Fig. � to �: estimation of the parameters over each of the

�
 elementary segments.
Solid line: mean over the ��� runs - Dotted line: true

parameter. �v � ��
� - “close” parameters.

6. CONCLUSION AND DISCUSSION

The detection of multiple changes in FARIMA processes
was studied. The objective was to localize changepoints in
elementary segments. This was achieved by developing a
three-step algorithm based on the Abry-Veitch estimate of
the LRD parameter. Simulations on synthetic data showed
good performance of the detector. However, many problems
still remain and need to be investigated:

1. What happens when the model orders � and 
 are
unknown and varying? It is obviously possible to estimate
them when dealing with the ARMA parameter estimation.
Indeed, we could use classical MDL or Akaike criteria. Now,
the problem is that one would obtain parameter vectors

���n�
n

with different dimensions. The criteria (3) and (4) would no
longer be valid� these criteria need to be generalized. More-
over, due to possibly inaccurate estimation, a decrease in the
performance of the detector should be expected.

2. In criteria (3) and (4), the standard �5 norm on the set
�
s.t.4 is used . However, � must lie in 
�� �	�	 for LRD,

whereas the range of the ARMA parameters (particularly
MA) is not restricted (AR part is assumed to be minimum-
phase). It should be interesting to use a weighted norm,
which would give higher weights to the LRD parameter.
How should these weights be chosen? Would it signi�cantly
change the performance of the detector?

3. We now provide a heuristic argument of consistency
of the changepoint detector: 1) the LRD and ARMA param-
eter estimators are consistent� 2) the least-squares estimator
of changes in the mean in the case of unknown amplitudes
is consistent (see for instance [6]). The term “consistent” in
our case should be made precise: indeed, only discrete time
changepoints are considered, so that the notion of neigh-
borhood cannot be de�ned as in the continuous case. Us-
ing the approach given in [6]: the discrete change points
��l� � � � �� 	 	 	 �
 � � in the signal ������ � � � �� 	 	 	 � �
correspond to continuous change points �� l�l@4>===>P�4 such
that �l � 	�� l
, � � �� 	 	 	 �
 � �. It is assumed that there
exists � � � such that � l�� l�4 
 �, � � �� 	 	 	 �
��. In
this case, one can deal with the consistency of �� l�l@4>===>P�4,
instead of that of ��l�l@4>===>P�4, which is not rigorously de-
�ned.

4. Intuitively, it may be possible to generalize this ap-
proach to the estimation of non-abrupt changes, i.e., (al-
most) continuous variations of the different parameters. The
�rst step of the detector, i.e., the estimation of the FARIMA
parameters, would be unchanged. Only the least-squares

estimation of
���n� would have to be modi�ed to take this

structure into account. It may be suf�cient to introduce
parameters related to the expected variations (e.g., 2 pa-
rameters per segment for linear variations, 3 parameters for
quadratic variations,...). The minimization would then be
achieved with respect to the changepoints as well as these
parameters.
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