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ABSTRACT

We address the problem of estimating changesin fractiona
integrated ARMA (FARIMA) processes. These changes
may be in the Long Range Dependence (LRD) parameter
or the ARMA parameters. The signal is divided into “el-
ementary” segments: the objective is then to estimate the
segments in which the changes occur. This estimation is
achieved by minimizing a penalized least-squares criterion
based on the parameter estimates computed in each seg-
ment. The optimization problem is then solved using a dy-
namic programming algorithm. Simulation results on syn-
thetic data are reported.

1. INTRODUCTION

Recent studies have shown the self-similar nature of ether-
net or internet packet traffic data [8], [12]. These studies
suggest new approaches for analysis and understanding of
traffic data, and in particular for traffic monitoring. One
of the key problems is the accurate estimation of the Hurst
parameter, which describes the degree of Long-Range De-
pendence (LRD) in the data. This problem has been ad-
dressed in many articles (see for instance [1] and references
therein). In particular, Abry and Veitch [11] have devel-
oped a wavelet-based estimator which is unbiased, consis-
tent, and with “quasi-minimal” variance. Important advan-
tages of this estimator are: 1) it is robust to polynomia
trends, as well as to level shifts in mean and/or variance
of the processes [10]; 2) its low computational cost (O(n))
allowsreal-time applications; 3) itisuseful for the detection
of asingle changein the LRD parameter.

However, it seems unlikely that the network traffic can
be accurately modeled by one or two parameters (i.e., the

Hurst parameter, and the magnitude of LRD effects). FARIMA

models have been suggested to be good models for bursty
data such as variable bit rate video (VBR) traffic [3]; the
FARIMA mode with heavy-tailed innovations was used in
[5], and some buffer allocation schemes are studied in [7].
The FARIMA model captures the LRD nature of the data;
other authors have used Gaussian innovations [7].

Here, we model traffic data as a FARIMA process, we
use extensions of the Abry-Veitch estimator in order to de-
tect multiple changes in the process parameters. Adaptive
estimation of parameters and tracking are useful for dy-
namic bandwidth allocation, which isimportant since prac-
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tical communication systems are constrained by finite band-
width.

2. PROBLEM FORMULATION

The observed signal Yy := {y(n), n=1,---, N} ismod-
eled as

y(n) =yi(n), ne{tii +L;t;}, i {1,..., M} (1)

withtg = 0andty; = N. In (1), yz(n) ISaFAR”\AA(p, d;, q)
processwith LRD parameter d;, and ARMA parameter vec-
torsa; = [a;(0),---,a;(p)], and b; = [b;(0),-- -, bi(q)]-
Hence, process y; (n) satisfies the difference equation:

®; (271 (1 — z_l)d"'yi(n) = W (27 Y)eg(n) 2

where ®;(271) =320 g ai(k)z™F, Wi(271) = i bi(k)

27k (11— )d = Zzif) ﬁ%z*k, ande;(n) isan

i.i.d. possibly non-Gaussian sequence with finite mean and
variance. Moreover, it isassumed that 0 < d; < 1/2 toen-
sure LRD [2]. The process y;(n) can then be considered as
ani.i.d. input successively filtered by the FARIMA(0, d;, 0)
filter and the ARMA(p, q) filter with parameter vectors a;
and b, [2].

The problem addressed in this paper is the estimation
of the changepoints {¢; |¢ = 1,---, M — 1}, given the data
Yn.
It isassumed that the parametersd;, a; and b,, aswell as
the distribution of the processes y;(n), i € {1,..., M} are
unknown. In particular, these processes may have different
distributions, e.g., y1(n) may be Gaussian, y2(n) exponen-
tial, etc. This allows us to dea with a large scale of data
traffic processes, which are often modeled as non-Gaussian
processes [5]. In particular, the estimation procedure is ap-
plicableto the case where the change affects the distribution
of the process. It is assumed that the model orders p and ¢
areknown and identical for all y;(n). The case of unknown
and changing model ordersis discussed in Section 6.

3. HYPOTHESES

Because of the LRD, the effects of a change in the Hurst
parameter cannot be observed just after the change. In other
words, it is difficult (and even useless) to detect changes



with an accuracy equal to one sample. Therefore, this study
is restricted to the location of changes within small seg-
ments (henceit isimplicitly assumed that two changes can-
not be separately detected if they occur in the same seg-
ment). More precisely, consider a segmentation of {n =
1,...,N} into K “elementary” segments
I & [kNs + 1;(k+ 1)Ns] (k€ {1,...,K})

of Ny samples (i.e, N = K x N;). Then, the actual signal
y(n) is accurately approximated by the signal y(n), which
is equal to (y(n)),—; . except in the elementary seg-
ments where the changes occur: in these segments, denoted
by (I;;), 1 < i < M — 1, y(n) has the FARIMA struc-
ture with parameters (d;, a;,b;) over the whole segment,
whereas the FARIMA parameters of y(n) change from
(di,a;,b;) 10 (diy1,a;,4,b;,) insidethesegment 7;,. Con-
sequently, thesignal y(n) is considered asif it werethe sig-
na y(n) (note however that the algorithm operates on the
actual datay(n)).

Notation: .

P (dk,gf,lgf) . the true parameter vector of
the FARIMA process y(n) over the segment I, k =
1,...,K;

e l;,i=0,---, M : the number of the elementary seg-
ment where the ith change occurs, i.e., the last seg-
ment of the signal 3;(n); here, Iy £ 0.

e 07,4 =1,...,M : the true parameter vector of the
process y; (n), over the segments (I )i, , +1<k<1,-

Then, one should have:

kaej,k:li_1+l,...,li, i=1,..., M.

The method derived in this paper consists of estimating the
FARIMA parameters over these K segments, yieding es-
timated vectors 6, 2 (cfk,@k@k) fork=1,...,K, and
of statistically detecting changes in the estimated parame-
ters, ( ) The problem reduces to detecting changes in

the mean of (6, provided that the estimates 0y, of 6, are
(asymptotically) unbiased. In this case, a change detected
at the [th lag of (Ek) means that a change occurred during

segment I, in the process y(n). However, it is not possi-
ble to refine the change location within this segment. Thus,
the resolution of the change detector in y(n) is equal to the
length of the“ elementary” segments, V. Consequently, the
choice of N, must be a trade-off between high/low resolu-
tion and the sufficiently large number of samples required
to accurately estimate the FARIMA parameters.

4. PARAMETER ESTIMATION

We propose athree step procedure to estimate the FARIMA
parameters.

1. The estimate of the LRD parameter, dy, is obtained
viathe Abry-Veitch algorithm [11];

2. Thedata (y(n)),n € I, arefiltered by the FARIMA
(0, —dg,0) filter, yielding the signa (zx(n)), n =
1,..., N,. If the estimate of d,, is sufficiently accu-
rate, then z;(n) isan ARMA process.

3. The ARMA parameters are estimated from (zx(n)),
n = 1,..., N, using standard techniques. For ex-
ample, one could use the Yule-Walker equations for
the AR estimate, and the long AR method for the MA
estimate [9].

Itisshown in [11] that the estimate dj, of dj, is unbiased
and consistent. Thus, for N, large enough, the process ob-
tained in step 2 should be close to the true ARMA part of
the FARIMA process. Consequently, the techniques usedin
step 3 are well suited and should yield asymptotically un-
biased and consistent estimators. Hence, the estimates 9,
of 6 should be (asymptotically) unbiased and consistent,
and the problem indeed amounts to detecting changesin the
mean of (6, ) , as mentioned above. A detailed anaysis

of the consi steﬁcy of the parameter estimates is beyond the
scope of this paper, and will be addressed in another article.

Since the true parameters d;, a; and b; are unknown for
all segments, the true vector 67 is also unknown, and the
problem amounts to estimating changepoints of unknown

amplitudes in the multi-dimensional signal (§k) .
k=1,...,. K

e In the case of a known number of changes, the es-
timates of the change points £ (lAl, o ,lAM,l) in

the signal (&). k =1,...,K can be obtained by
minimizing the following least-squares criterion:

M

1= arg min Z Z ’ 3
=l =) T i =ty 41
— li ~
where 9, £ ﬁ ) ZZ . 0. The estimated
=li—1
change points in the signal y(n) are then given by

e In the case of an unknown number of changes, the
previous criterion has to be penalized, leading to:

1= arg min Z Z

=l —1)" j=1k=l; 41

o3 +c001

(4)
where y(K) isapositive penalizing term which fixes
the resolution of the estimate, i.e., the number of de-
tected changes.



As shown above, the estimates are obtained by mini-
mizing a function on a finite but generally very large set
(except for M and/or K small). In such case, one generally
resorts to MCMC agorithms, such as simulated annealing.
However, in this particular case, one can generalize the ap-
proach used in [4] based on the dynamic programming al-
gorithm. The main advantages of this algorithm compared
with MCMC methods are: 1) it yields the exact solution to
the minimization problem, and 2) its computational cost is
much lower than that for simulated annealing.

5. SSIMULATION RESULTS

Many simulations have been performed to validate the method
presented above. We first present the results obtained on a
synthetic signal y(n) formed by the concatenation of six
FARIMA(1,d,2) processes (p = 1 and ¢ = 2). These
processes are generated by filtering a zero-mean i.i.d. in-
put successively through the FARIMA(0, d, 0) filter and the
ARMA(p, q) filter. All sub-processes(y;(n)),i=1,...,6
are next normalized, so that they all have the same mean
and variance. Consequently, the change detection cannot be
achieved by smply looking for changes in the mean or the
variance of the process.

The significant parameters of the algorithm are: i) the
length of the “elementary” segments N; ii) the position of
the abrupt changes, and more precisely the distance between
two successive changes (in order to visualize the resolution
of the detector); iii) the parameter values of the different
FARIMA processes. in particular, it isinteresting to analyse
what happens when two adjacent sub-processes have close
parameters; iv) the distributions of the different processes,
in particular: doesit matter whether the processis Gaussian
or non-Gaussian? V) the penalizing term in the case of an
unknown number of changes.

Because of space limitations, only points ii), iii), and
iv) are considered in this paper. In the following simula
tions, the number of samplesisfixedto N = 215 = 32768),
and the elementary segment length to Vs = 1024. The true

changepointsaret = [6200;12300;16400;24500,27800,32768],

so that these changes fall within the segments I, 113, 117,
Iayg, Iog, I3o. Note that these lengths are redistic for traf-
fic data analysis; further there is no quasi-periodicity in the
changepoint sequence. Finaly, the input sequences ¢;(n)
of the FARIMA processes y;(n) are successively normally
and exponentially distributed.

Two cases are considered: in the first one, the adjacent
sub-signals y;(n) have very different parameters, and in the
second, these parameters are closer.

51. “DISTANT” PARAMETERS

The different parameters for the six sub-signals are:

U1 Y2 Y3 Ya Ys Ye

d| 03]045| 02]03|015| 04
a; | -0.5 04| 08| -02| -05] 09
by 0.8 05]-03| -09| -06] 09
bo 041 -07] 02| -02 041 0.7

Fig. 1 shows the mean of the estimated abrupt changes
computed over the 100 trials. The top figure presents the
data Yy and the actua change locations. The bottom figure
presents the estimated change locations. These estimates
are quite good: indeed, the pairs of estimated changes are
separated by atime interval equal to Ny, i.e., the algorithm
finds either [; or I; + 1 as the actual change point. Thisis

quite satisfying, since we have only 32 samplesin 0 ) and
six changes to estimate (i.e., we have only about 5 samples
of (@«:) per segment).
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Fig. 1: mean of the estimated changes computed from 100
runs. Ny = 1024 - “distant” parameters.

52. “CLOSE” PARAMETERS

Now the parameters in some adjacent intervals are closer,
so that the changes are smaller. The parameters are:

Y1 Y2 Y3 Ya Ys Y6

d |03 [025[02 [045]|04 | 0.2
a; | -05]-041-01]08 |07 |04
by |04 [ 03 [-02|-04]-06]05

b, |08 [ 07 [08 [02 |04 | 0.6

The mean of the estimated abrupt changes (computed
over the 100 trias) is shown in fig. 2.
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Fig. 2: mean of the estimated changes computed from 100
runs. Ny, = 1024 - “close” parameters.
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Asexpected, the algorithm hasmore difficulty in finding
the exact changes (no changeisdetected at [ = 7), in partic-
ular for those with small changes (I = 7 and [ = 24). Inthis
case, we should allow a greater range of possible numbers
of changes, with a suitable penalizing term ~.

The lower performance of the estimator in this case can
be understood from figs. 3-6, which present the parameter
estimates corresponding to these simulations. Indeed, we



can see fig. 3 that the LRD parameter estimation is not so
accurate around [ = 7 and [ = 24, where the jumps are not
realy significant. This poor accuracy may explain why the
changes are hardly detected for these points. However, it
is surprising to note that, despite this poor LRD parameter
estimation, the ARMA parameter estimation remains satis-
fyingaround [ = 7 and [ = 24. This observation tends
to show that the ARMA estimation (performed after LRD
estimation and filtering) is quite robust to bias in the LRD
estimation.
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Fig. 3: LRD parameter. Fig. 4: AR parameter.
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Fig. 5: first MA parameter. Fig. 6: second MA parameter.
Fig. 3 to 6: estimation of the parameters over each of the
32 elementary segments.

Solid line: mean over the 100 runs - Dotted line: true
parameter. N; = 1024 - “close” parameters.

6. CONCLUSION AND DISCUSSION

The detection of multiple changes in FARIMA processes
was studied. The objective was to localize changepointsin
eementary segments. This was achieved by developing a
three-step algorithm based on the Abry-Veitch estimate of
the LRD parameter. Simulations on synthetic data showed
good performance of the detector. However, many problems
still remain and need to be investigated:

1. What happens when the model orders p and ¢ are
unknown and varying? It is obviously possible to estimate
them when dealing with the ARMA parameter estimation.
Indeed, we could use classical MDL or Akaike criteria. Now,

the problem isthat onewould obtain parameter vectors 0y,

with different dimensions. The criteria(3) and (4) would no :

longer be valid; these criterianeed to be generalized. More-
over, dueto possibly inaccurate estimation, adecreasein the
performance of the detector should be expected.

2. Incriteria(3) and (4), the standard L2 norm on the set
Rr+a+l jsused . However, d must liein ]0; 0.5] for LRD,
whereas the range of the ARMA parameters (particularly
MA) is not restricted (AR part is assumed to be minimum-
phase). It should be interesting to use a weighted norm,
which would give higher weights to the LRD parameter.
How should these weights be chosen? Would it significantly
change the performance of the detector?

3. We now provide a heuristic argument of consistency
of the changepoint detector: 1) the LRD and ARMA param-
eter estimators are consistent; 2) the least-sgquares estimator
of changes in the mean in the case of unknown amplitudes
is consistent (see for instance [6]). The term “consistent” in
our case should be made precise: indeed, only discrete time
changepoints are considered, so that the notion of neigh-
borhood cannot be defined as in the continuous case. Us-
ing the approach given in [6]: the discrete change points
(t;),i=1,...,M —linthesigna (y(n)),n=1,...,N
correspond to continuous change points (7;),_, 5, such
thatt; = [N7;],i=1,..., M — 1. It is assumed that there
eXistsA > Osuchthatr; — 7,1 > A,i=1,...,M—1.1In
thiscase, onecanded withtheconsistency of (7:),_; a1,
instead of that of (¢;),_, __ »,_,, Whichisnot rigorously de-
fined.

4. Intuitively, it may be possible to generalize this ap-
proach to the estimation of non-abrupt changes, i.e., (a-
most) continuous variations of the different parameters. The
first step of the detector, i.e., the estimation of the FARIMA
parameters, would be unchanged. Only the least-squares

estimation of (@;) would have to be modified to take this

structure into account. It may be sufficient to introduce
parameters related to the expected variations (e.g., 2 pa
rameters per segment for linear variations, 3 parameters for
quadratic variations,...). The minimization would then be
achieved with respect to the changepoints as well as these
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