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ABSTRACT we use the Fisher discriminant as the starting point for the

. . iterative process that finds the geometric discriminant.
When it becomes necessary to reduce the complexity of a

classifier, dimensionality reduction can be an effective way to 2.1 Notation and Assumptions
address classifier complexity. Linear Discriminant Analysis )
(LDA) is one approach to dimensionality reduction that makes 1.We havec classesw,,w,,...,w, wherec is known.

use of a linear transformation matrix. The widely used Fisher’s

o S . - 2.The feature vectox is an nx1 vector in a Euclidean
LDA is “sub-optimal” when the sample class covariance matrices

are unequal, meaning that another linear transformation exists vector spaceE", andn is known.

that produces lower loss in discrimination power. In this paper, . . <

we introduce a geometric approach to Linear Discriminant 3.Each class has; training vectors withN = Zni :
Analysis (GLDA) that can reduce the number of dimensions =

from n to m for any number of classes. GLDA is able to compute 4.The class conditional densitid?r(x|wi) are multivariate

a better linear transformation matrix than Fisher's LDA for
unequal sample class covariance matrices and is equivalent to
Fisher’'s LDA when those matrices are equal or proportional. The 5. A-priori probabilities Pr(w;) are assumed to be equal.
classification problems we present in this paper demonstrate and

strongly suggest that geometric LDA can generate the “optimal” 2 2 pgrameterized Classifiers
classifier in a lower dimension.

normal, N(¢;,Z;) , where the mean is a column vector.

A possible approach to reduce classifier complexity consists
1 INTRODUCTION of using a nxm matrix, ©,,, to classify the transformed

The optimal algorithmic approach to LDA is where the observationy =O] x instead ofx . This parameterization of the

linear transformation minimizes the loss of discrimination power. classifier creates a class of classifiers, of which one can be
In the framework of a parameterized classifier [1], GLDA is an chosen that is the best solution to the problem. In this paper, we
approach that appears to be optimal and independent of theresent a geometric approach to LDA that calculates the
relationship between sample class covariance matrices. Since thgansformation matr>o,,, .

rate of misclassifications is related to discrimination power of a
classifier, we use the number of misclassified test vectors t023
compare the GLDA classifiers to a Fisher's LDA classifier and ™~
the optimal classifier.

Fisher'sLinear Discriminant Analysis

Fisher’s linear discriminant [2] is found by maximizing one
After some preliminaries, we present the geometric Of the criterion functions in (1).
approach to LDA that reduces arx1 feature vector to a scalar. 6'S.0
This approach is not amenable to a closed form solution, so we f(6)= - B
describe the iterative algorithm to find the geometric 6 S0
discriminant. Before providing the generalized solution for . . ] S
GLDA, that is finding a transformation matrix that reduces a Eduation (2) defines the matri8;, which is the between class
nx1 vector to amx1vector wherem<n, we present a simple  scatter matrix, and the matri$,, , which is the within class
classification problem where GLDA finds the “optimal”
classifier in a lower dimension. Finally, we compare the number ) o o
of misclassifications made by the GLDA classifier, the Fisher's St =Sg +Sy - If there is a limited amount of training, then the
LDA, and the optimal classifier for problems where the sample criterion function containing the matri8, may provide a more
class covariance matrices are proportional or heteroscedastic.  4ccyrate discriminant since more data went into its estimation.

2 PRELIMINARIES
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scatter matrix. S; is the total scatter matrix where

1 Cc T ) Cc
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The notation used in this paper and the definition of a 1o (2)
parameterized classifier are given. For completeness, we briefly Sw=—>nz,
present Fisher's linear discriminant for two reasons. First, we N &

compare GLDA to this widely used approach for LDA. Second,



The maximization of equation (1) is obtained by computing
the eigenvectors corresponding to the largest eigenvalues of

Sy'Sy or S.'S;. There are at most rank(Sg) -1 eigenvectors
that have non-zero eigenvalues. The rank(Sg) isa most c, the

number of classes to discriminate. So, there are at most c-1
linear independent eigenvectors for the transformation matrix
6; that can be used to reduce the dimension of the problem

from E" to ES?.

3 GEOMETRIC LDA
In this section, we present the framework and agorithm to
find a geometric linear discriminant, z,, that will map a column
vector x JE" to ascalar y= z;x using geometric ideas. The

foundation of this approach is a geometric function, f(z), that

has a maximum that is correlated with minimum classification
error. We then present a simple classification problem to show a

and f,.

(i,j)max

(z) defined by equation (6) for each pair of indices

(i,j) wherei=12,....c-L j=i+1i+2...,c.

f(i,j)min(z) = max{z‘vi ,Ztvj } - min{Ztﬁi ,Ztﬁj}

- = (6)
fijmax(2) = max{ztvi Z'V, } - min{z‘vi ,z‘vj}
The geometric criterion functiof(z) to be maximized is
min 1:i j min(z)
TR () )

a1 2]

3.2 lterative Algorithm

In general, equation (7) does not have a closed form
solutiort and the transformation vectaz,, , must be found using

an iterative algorithm. An adjustable step steepest ascent

case where GLDA generates the “optimal” classifier in a lower algorithm is used to maximize the criterion function of (7). The

dimension.

3.1 Geometric Framework

The geometric discriminant, , is found by considering the
hyperellipsoids that are defined by contours of constant

conditional densities witly; >0 andi=12,...,c.

H(yi):{x mf= Pr(x|a)i)2yi} (3)

So, given any non-zero vectaiin E", let V, and V; be vectors
in hyperellipsoidsH(y;) that satisfy

vV, OvOH(y) (4)

If the covariance matrix is positive definite, then the défy,)
are strictly convex, closed and bounded, and the paifis and

Z'v, are well defined.

The necessary and sufficient conditions to find bgththe

lower bound, and\:/i, the upper bound, given a transformation
are described by a boundary point on the

vector z,
hyperellipsoid as given by the equations in (5).

SV ) =Mz

L _ (5)
05(v; — 1) ZiH(vi — ) = ¥,

When the two equations in (5) are solved simultaneously, the
lambda has & root. The vectoiv; comes from the negative root

of lambda and the vectdr, uses the positive root of lambda.

The criterion function for the geometric discriminant is
constructed by comparing scalars from two mapping functions.

So, class separability is determined by using ma@%mm(z)

iterative approach begins with an initial guess of the solution by
using the Fisher discriminaré; , an initial step lengthd; >0,

and a small scalae=10"° used as a stop rule. The iterative
algorithm that maximizes (7) is:

Given z,=6;,4,>0,>0

Step 0: Set i=1.
Step 1. Let x; =z +A,0f(z) .
_ xi, Ay iff(x)> f(z)
2. . A = I | | 1
Step Z|+11 i+1 {Ziv/\i/z dse
Step 3: If ||f ()| < £ Stop, else go to Step 4.
Step4: Set i=i+1,andgoto Step 1.

3.3 Demonstration of Geometric L DA

Consider a classification problem with two classesEh
where each class is normally distributed and the model
parameters are given in (8). To illustrate the difference between
the geometric LDA and Fisher LDA, we compare the decision

regions in E2 resulting from the projection onto the respective
discriminants from (9). Figure 1 is an intuitively pleasing result.
The geometric discriminant correctly captures the major axis of
the ellipse from class 2, which results in a reduced number of
misclassified test samples. In fact, we searched all possible linear
discriminants and found that the optimal discriminant is indeed
z4 from (9).

1 7 2
P(w,) = P(w,) :E; Hy :|:5:|’ H, :|:4:\
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" When £, =%, = 2, an analytical solution can be found for the
transformation vector , and it is the Fisher discriminant.

(8)




{0_9993} {0.5855} projection is the key to the process that makes the next geometric
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_ 9 roject .
00378 t =l 08107 C) discriminant orthogonal to the previous.

For completeness, we describe the process of generating the
orthogonal transformation matrix®,,,, from the i step, where

i=12,..,m. The i" step begins with the training vectors

Geometric neisl - - — -~ .
xOE and ©,, =[%,%,....Z.,| , where Z; is a column

vector containing the geometric discriminazjt augmented with

S
—

j—1 zeros, j=1,...,i —1. The state of the data going into the
th

=
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Y fé! i step becomes more clear after the following two paragraphs.
2 i
$ ‘\%:‘sﬂi We first calculate the geometric discriminarg,, using

Wl

model parameters fronE"*! space. Since it is desirable to
have an orthogonal ®,, we apply an intermediate

&5—1
a {

Fisher transformation,y = ATx , so that every vectoy is orthogonal to

z, (i.e. zZ'y=0). It can be shown that the matrix,

- 0 T eamre1 15 2 A=1-z12 ,is aprojection where every vectgr is orthogonal
to the geometric discriminard, .

Figure 1: Contour plot for Gaussian distributions defined by

n-i+l
equation (8). The decision boundaries are plotted in E? for the We now have a problemy OE™™, where the class
geometric discriminant, the vertical lines, and Fisher's distributions are restricted to a hyperplane kn dimensions,
discriminant, the diagonal lines. where k=n—-i+1. It is trivial to remove thek™ dimension by

finding a kx k transformation matrix [3],R., that rotates the
Simulating this classification problem 100 times, the g 1R,

following table is a comparison of the average error rate for theProblem, v=R;y, so that the geometric discriminarg is
optimal classifiers inE? and E, geometric LDA, and Fisher's  aligned in the direction of th&" principal axis. This will make
LDA classifiers in E. We used Matlab to generalé¢=10,000 all the data values equal to zero in tk8 dimension. We now

vectors defined by equation (8) and classified those vectors usinthave a problem ink-1 dimensions withz defined as the
the four different classifiers. The geometric discriminant has an

error rate that is 6% higher than the optimal classifieEfand . _ = = =
matches the optimal classifier ifE whereas Fishers LDA  Can create aixi geometric matrixo; =[z.2.....7].

classifier in E is 56% higher than the optimal classifierf? .

geometric discriminang; augmented witm -k zeros. We now

We repeat the process described above untigeometric
Optimal Optimal Geometric  Fisher discriminants have been found. However, the above process will
(in E2) (nE) (in E) (in E) generate geometric discriminants that have an incorrect
orientation to each of the previously generated discriminants. The
Total Error 11.0% 11.7% 11.7% 17.2% correct orientation for each geometric discriminant can be
recovered by applying the appropriate rotation matrix to unravel
the i—1 rotations. Equation (10) is the appropriate rotation

4 GENERALIZED GEOMETRIC LDA matrix to insure that all the geometric discriminants are properly

oriented to the standard orthonormal basis.

1

T
matrix ©,,, which transforms a vector in E" to a vectory in z=1MN Rj] z, fori=12,...,m (10)

In this section, we find am x morthogonal transformation
[j:i—l

E™, wherem<n. Instead of extending geometric discriminant
analysis to calculate the geometric mat®, for m>1, we We now have thenxm geometric transformation matrix

define a procedure that uses GLDA described in section 3.1 and®,, =[2,2,....,2,,], where 2 is anx1vector and®[©,, =1 .
the iterative algorithm in section 3.2 to calcul@g, via stages.

The procedure has two basic steps: 1) find a geometric S Comparlson of Classifiersin E®
discriminant given a vector space; 2) reduce that space such that L i .
the next geometric discriminant is orthogonal to the previous. At [N this final section we demonstrate that the geometric
the heart of the process, an intermediate projection matrix @Pproach to LDA can substantially reduce the misclassification
followed by a rotation is used to make the training vectors
orthogonal to a given geometric discriminant and to remove '[he2 . T . . r T.T T 1T
flatness in the class distributions created by the projection. This” Showzjy =0. z; A =z, (' -z )= Zj =22z =7 -2 =0.




rate. We present a series of classification problems with two-

25

classes in E® where the sample class covariance matrices are ‘ ‘ > Fisher DA, 1-d
equal or proportional, and heteroscedastic respectively. We used e A
GLDA to create a classifier in E,E?,E®, and E*. These four i A AD

— - Optimal, 5-d

classifiers were compared to Fisher’'s LDA classifierBnand

the optimal classifier inE®. We used the mean and standard
deviation of the total number of misclassified test vectors as the
comparison point.

% Error

Using Matlab, the source model defined By(x|ew;) and

Pr(xjw,) was used to generatdl =50,000 training vectors.

The geometric matrix, ©; for i=1234, the Fisher
transformation vectord; , and the class model parameters for

Variance, v, used for class 2

the optimal classifier were estimated from the training set. The
source model was then used to geneidte 50,000 test vectors

to evaluate the classifiers. This process was repeated 15 times. Figure 2: Class covariance matrices that are equal or proportional.

The model parameters for the class distributions were

written in canonical form. This form allows us to generally 50

Fisher LDA, 1-d|

evaluate the GLDA approach and infer what would happen given 457 | 73 GLDA 17 IIIF i

. . . > T T
any two-class problem. Given any non-singular matticgss , , wf| & gtgﬁ; 3d LI 1
there always exists a non-singular transformation [4] to put a5] ——optmal. 5-d e I, |
>,,%, in canonical form. Equation (11) is the canonical form of w0l L IT e
model  parameters  for N(u,%;), N(i,,%,)  where g s o

Vi2V,2..2V5>0.

=0, pp=[mm, . .m]

11)
=1, Z,=dag(v,V,,...,Vs)

5.1 Equal or Proportional Covariance Matrices

Variance, v, used for class 2

We ran a series of simulations using model parameters
defined by equation (11) wherem =01 and v, =v for

i=12,....5. We scaled the problem by multiplying, by 0.01

Figure 3: Class covariance matrices that are heteroscedastic.

6 CONCLUSION
and variedv logarithmically from107° to 10. Figure 2 shows
the percentage of errors made by each of the six classifiers. The  \We have presented a geometric approach to LDA. We have
standard deviation of error was less than 0.1% absolute in allpresented some simple classification problems that show this
cases. As stated earlier, the GLDA classifierfih is shown to approach gives a linear transformation that better preserves the
be equivalent to Fishers LDA classifier iE. Figure 2 also discrimination power of a classifier in a lower dimension. We

. . e have also provided a simple example where the geometric
shows the difference between the optimal classifie€fh and approach generated the optimal classifier in a lower dimension.
the GLDA classifiers ifE? , E*, and E*
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