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ABSTRACT
When it becomes necessary to reduce the complexity of a
classifier, dimensionality reduction can be an effective way to
address classifier complexity. Linear Discriminant Analysis
(LDA) is one approach to dimensionality reduction that makes
use of a linear transformation matrix. The widely used Fisher’s
LDA is “sub-optimal” when the sample class covariance matrices
are unequal, meaning that another linear transformation exists
that produces lower loss in discrimination power. In this paper,
we introduce a geometric approach to Linear Discriminant
Analysis (GLDA) that can reduce the number of dimensions
from n to m for any number of classes. GLDA is able to compute
a better linear transformation matrix than Fisher’s LDA for
unequal sample class covariance matrices and is equivalent to
Fisher’s LDA when those matrices are equal or proportional. The
classification problems we present in this paper demonstrate and
strongly suggest that geometric LDA can generate the “optimal”
classifier in a lower dimension.

1 INTRODUCTION

The optimal algorithmic approach to LDA is where the
linear transformation minimizes the loss of discrimination power.
In the framework of a parameterized classifier [1], GLDA is an
approach that appears to be optimal and independent of the
relationship between sample class covariance matrices. Since the
rate of misclassifications is related to discrimination power of a
classifier, we use the number of misclassified test vectors to
compare the GLDA classifiers to a Fisher’s LDA classifier and
the optimal classifier.

After some preliminaries, we present the geometric
approach to LDA that reduces an n ×1  feature vector to a scalar.
This approach is not amenable to a closed form solution, so we
describe the iterative algorithm to find the geometric
discriminant. Before providing the generalized solution for
GLDA, that is finding a transformation matrix that reduces a
n ×1  vector to a m ×1 vector where m n< , we present a simple
classification problem where GLDA finds the “optimal”
classifier in a lower dimension. Finally, we compare the number
of misclassifications made by the GLDA classifier, the Fisher’s
LDA, and the optimal classifier for problems where the sample
class covariance matrices are proportional or heteroscedastic.

2 PRELIMINARIES

The notation used in this paper and the definition of a
parameterized classifier are given. For completeness, we briefly
present Fisher's linear discriminant for two reasons. First, we
compare GLDA to this widely used approach for LDA. Second,

we use the Fisher discriminant as the starting point for the
iterative process that finds the geometric discriminant.

2.1 Notation and Assumptions

1. We have c  classes ω ω ω1 2, , ,K c  where c  is known.

2. The feature vector x  is an n ×1  vector in a Euclidean

vector space E n , and n  is known.

3. Each class has ni  training vectors with N ni

i

c

=
=

∑
1

.

4. The class conditional densities Pr x ω i3 8  are multivariate

normal, N i iµ ,Σ1 6 , where the mean is a column vector.

5.  A-priori probabilities Pr wi1 6  are assumed to be equal.

2.2 Parameterized Classifiers

A possible approach to reduce classifier complexity consists
of using a n m×  matrix, Θm , to classify the transformed

observation y x= Θm
T  instead of x . This parameterization of the

classifier creates a class of classifiers, of which one can be
chosen that is the best solution to the problem. In this paper, we
present a geometric approach to LDA that calculates the
transformation matrix Θm .

2.3 Fisher’s Linear Discriminant Analysis

Fisher’s linear discriminant [2] is found by maximizing one
of the criterion functions in (1).
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Equation (2) defines the matrix SB , which is the between class

scatter matrix, and the matrix SW , which is the within class

scatter matrix. ST  is the total scatter matrix where

S S ST B W= + . If there is a limited amount of training, then the

criterion function containing the matrix ST  may provide a more

accurate discriminant since more data went into its estimation.
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The maximization of equation (1) is obtained by computing
the eigenvectors corresponding to the largest eigenvalues of

S Sw B
−1  or S Sw T

−1 . There are at most rank BS1 6 −1 eigenvectors

that have non-zero eigenvalues. The rank BS1 6  is at most c , the

number of classes to discriminate. So, there are at most c −1
linear independent eigenvectors for the transformation matrix
θ f  that can be used to reduce the dimension of the problem

from E n  to Ec−1 .

3 GEOMETRIC LDA

In this section, we present the framework and algorithm to
find a geometric linear discriminant, zg , that will map a column

vector x ∈E n  to a scalar y g
T= z x  using geometric ideas. The

foundation of this approach is a geometric function, f z1 6 , that

has a maximum that is correlated with minimum classification
error. We then present a simple classification problem to show a
case where GLDA generates the “optimal” classifier in a lower
dimension.

3.1 Geometric Framework

The geometric discriminant, zg , is found by considering the

hyperellipsoids that are defined by contours of constant
conditional densities with γ i > 0  and i c= 1 2, , ,K .

H Ei
n

i iγ ω γ1 6 1 6= B= ∈ ≥x xPr (3)

 So, given any non-zero vector z in E n , let vi and vi  be vectors

in hyperellipsoids H iγ1 6  that satisfy

z v z v z v vT
i

T T
i iH≤ ≤ ∀ ∈ γ1 6 (4)

If the covariance matrix is positive definite, then the sets H iγ1 6
are strictly convex, closed and bounded, and the points z vT

i  and

z vT
i  are well defined.

The necessary and sufficient conditions to find both vi , the

lower bound, and vi , the upper bound, given a transformation

vector z , are described by a boundary point on the
hyperellipsoid as given by the equations in (5).
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When the two equations in (5) are solved simultaneously, the
lambda has a ± root. The vector vi comes from the negative root

of lambda and the vector vi  uses the positive root of lambda.

The criterion function for the geometric discriminant is
constructed by comparing scalars from two mapping functions.
So, class separability is determined by using maps f i j, min1 6 1 6z

and f i j, max1 6 1 6z  defined by equation (6) for each pair of indices

i j,1 6  where i c j i i c= − = + +1 2 1 1 2, , , ; , , ,K K .
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The geometric criterion functionf z1 6 to be maximized is
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3.2 Iterative Algorithm

In general, equation (7) does not have a closed form
solution1 and the transformation vector, zg , must be found using

an iterative algorithm. An adjustable step steepest ascent
algorithm is used to maximize the criterion function of (7). The
iterative approach begins with an initial guess of the solution by
using the Fisher discriminant θ f , an initial step length λ1 0> ,

and a small scalar ε ≈ −10 5  used as a stop rule. The iterative
algorithm that maximizes (7) is:

Given z1 1 0 0= > >θ λ εf , ,

Step 0: Set i = 1.
Step 1: Let x z zi i i if= + ∇λ 1 6 .

Step 2: z
x x z

zi i
i i i i

i i

f f
+ + =

>%&'1 1 2
,

,

,
λ

λ
λ

if 

else

1 6 1 6

Step 3: If ∇ ≤f iz1 6 ε stop, else go to Step 4.

Step 4: Set i i= +1 , and go to Step 1.

3.3 Demonstration of Geometric LDA

Consider a classification problem with two classes in E2

where each class is normally distributed and the model
parameters are given in (8). To illustrate the difference between
the geometric LDA and Fisher LDA, we compare the decision

regions in E2 resulting from the projection onto the respective
discriminants from (9).  Figure 1 is an intuitively pleasing result.
The geometric discriminant correctly captures the major axis of
the ellipse from class 2, which results in a reduced number of
misclassified test samples. In fact, we searched all possible linear
discriminants and found that the optimal discriminant is indeed
zg  from (9).
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1 When Σ Σ Σ1 2= = , an analytical solution can be found for the

transformation vector z , and it is the Fisher discriminant.
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Figure 1: Contour plot for Gaussian distributions defined by

equation (8). The decision boundaries are plotted in E2  for the
geometric discriminant, the vertical lines, and Fisher’s
discriminant, the diagonal lines.

Simulating this classification problem 100 times, the
following table is a comparison of the average error rate for the

optimal classifiers in E2  and E , geometric LDA, and Fisher’s
LDA classifiers in E . We used Matlab to generate N = 10 000,
vectors defined by equation (8) and classified those vectors using
the four different classifiers. The geometric discriminant has an

error rate that is 6% higher than the optimal classifier in E2  and
matches the optimal classifier in E  whereas Fisher’s LDA

classifier in E  is 56% higher than the optimal classifier in E2 .

Optimal

(in E2 )

Optimal
(in E )

Geometric
(in E )

Fisher
(in E )

Total Error 11.0% 11.7% 11.7% 17.2%

4 GENERALIZED GEOMETRIC LDA

In this section, we find an n m× orthogonal transformation

matrix Θm , which transforms a vector x  in E n  to a vector y  in

E m , where m n< .  Instead of extending geometric discriminant
analysis to calculate the geometric matrix Θm  for m > 1 , we

define a procedure that uses GLDA described in section 3.1 and
the iterative algorithm in section 3.2 to calculate Θm  via stages.

The procedure has two basic steps: 1) find a geometric
discriminant given a vector space; 2) reduce that space such that
the next geometric discriminant is orthogonal to the previous. At
the heart of the process, an intermediate projection matrix
followed by a rotation is used to make the training vectors
orthogonal to a given geometric discriminant and to remove the
flatness in the class distributions created by the projection. This

projection is the key to the process that makes the next geometric
discriminant orthogonal to the previous.

For completeness, we describe the process of generating the

orthogonal transformation matrix, Θm , from the i th  step, where

i m= 1 2, ,..., . The i th  step begins with the training vectors

x ∈ − +E n i 1  and Θ i i− −=1 1 2 1
~ ,~ , ,~z z zK , where ~z j  is a column

vector containing the geometric discriminant z j  augmented with

j − 1 zeros, j i= −1 1, ,K . The state of the data going into the

i th  step becomes more clear after the following two paragraphs.

We first calculate the geometric discriminant, zi , using

model parameters from E n i− +1  space. Since it is desirable to
have an orthogonal Θm , we apply an intermediate

transformation, y A x= T , so that every vector y  is orthogonal to

zi  (i.e. z yi
T = 0 ). It can be shown2 that the matrix,

A I z z= − i i
T , is a projection where every vector y  is orthogonal

to the geometric discriminant zi .

We now have a problem, y ∈ − +E n i 1 , where the class

distributions are restricted to a hyperplane in k  dimensions,

where k n i= − +1 . It is trivial to remove the k th  dimension by
finding a k k×  transformation matrix [3], R i , that rotates the

problem, v R y= i , so that the geometric discriminant zi  is

aligned in the direction of the k th principal axis. This will make

all the data values equal to zero in the k th  dimension. We now
have a problem in k −1  dimensions with ~zi  defined as the

geometric discriminant zi  augmented with n k−  zeros. We now

can create a n i×  geometric matrix Θ i i= ~ ,~ , ,~z z z1 2 K .

We repeat the process described above until m  geometric
discriminants have been found. However, the above process will
generate geometric discriminants that have an incorrect
orientation to each of the previously generated discriminants. The
correct orientation for each geometric discriminant can be
recovered by applying the appropriate rotation matrix to unravel
the i −1  rotations. Equation (10) is the appropriate rotation
matrix to insure that all the geometric discriminants are properly
oriented to the standard orthonormal basis.
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We now have the n m×  geometric transformation matrix

Θm m= $ , $ , , $z z z1 2 K , where $zi  is an ×1 vector and Θ Θm
T

m = I .

5 Comparison of Classifiers in E5

In this final section we demonstrate that the geometric
approach to LDA can substantially reduce the misclassification
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rate.  We present a series of classification problems with two-

classes in E5  where the sample class covariance matrices are
equal or proportional, and heteroscedastic respectively. We used

GLDA to create a classifier in E , E2 , E3 , and E4 . These four
classifiers were compared to Fisher’s LDA classifier in E  and

the optimal classifier in E5 . We used the mean and standard
deviation of the total number of misclassified test vectors as the
comparison point.

Using Matlab, the source model defined by Pr x ω13 8  and

Pr x ω 23 8  was used to generate N = 50 000,  training vectors.

The geometric matrix, Θ i  for i = 1 2 3 4, , , , the Fisher

transformation vector θ f , and the class model parameters for

the optimal classifier were estimated from the training set. The
source model was then used to generate N = 50 000,  test vectors
to evaluate the classifiers. This process was repeated 15 times.

The model parameters for the class distributions were
written in canonical form. This form allows us to generally
evaluate the GLDA approach and infer what would happen given
any two-class problem. Given any non-singular matrices3 Σ Σ1 2, ,

there always exists a non-singular transformation [4] to put
Σ Σ1 2,  in canonical form. Equation (11) is the canonical form of

model parameters for N Nµ µ1 1 2 2, , ,Σ Σ1 6 1 6  where

v v v1 2 5 0≥ ≥ ≥ >K .

µ µ1 2 1 2 5

1 2 1 2 5

0= =

= =

, , , ,

, , , ,

    

     

m m m

diag v v v

T
K

KΣ ΣI 1 6
(11)

5.1 Equal or Proportional Covariance Matrices

We ran a series of simulations using model parameters
defined by equation (11) where mi = 01.  and v vi =  for

i = 1 2 5, , ,K . We scaled the problem by multiplying Σ1  by 0.01

and varied v  logarithmically from 10 3−  to 10 . Figure 2 shows
the percentage of errors made by each of the six classifiers. The
standard deviation of error was less than 0.1% absolute in all

cases. As stated earlier, the GLDA classifier in E1  is shown to

be equivalent to Fisher’s LDA classifier in E1 . Figure 2 also

shows the difference between the optimal classifier in E5  and

the GLDA classifiers inE2 , E3 , and E4 .

5.2 Heteroscedastic Covariance Matrices

Using the model parameters defined by equation (11), we

ran a series of simulations where mi = 0 01.  and v vi
i= −/ 4 1  for

i = 1 2 5, , ,K . We scaled the problem by multiplying Σ1  by 0.01

and varied v  logarithmically from 10 3−  to 10 . Figure 3 shows

that the GLDA classifier in E1  has drastically reduced the

number of errors when compared to Fisher’s LDA in E1 . The
error bars are not shown if the error was less than 0.1% absolute.

                                                          
3 This assumption can be made with no real loss of generality.
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Figure 2: Class covariance matrices that are equal or proportional.
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Figure 3: Class covariance matrices that are heteroscedastic.

6 CONCLUSION

We have presented a geometric approach to LDA. We have
presented some simple classification problems that show this
approach gives a linear transformation that better preserves the
discrimination power of a classifier in a lower dimension. We
have also provided a simple example where the geometric
approach generated the optimal classifier in a lower dimension.
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