
������������	�	
��
����������
���	
���
����
�
�����
�����������
������

�������������	�

FRANCE TELECOM R&D, 2. Av. Pierre Marzin, 22307 Lannion Cedex, FRANCE {e-mail: pascal.scalart@rd.francetelecom.fr} 
 

	����	���

In most adaptive identification applications, a finite impulse 
response (FIR) filter is employed with coefficients that are 
computed using the normalized least mean square (NLMS) 
algorithm. In this paper, the convergence behavior of the NLMS 
algorithm is analyzed using a simple model of the input signal 
vectors. Explicit expressions of the learning curve and 
misadjustement are derived and compared with those previously 
established for the NLMS algorithm. Comparisons between 
theoretical and experimental results are given to validate our 
approach.  
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In this paper, we consider direct adaptive identification with 
transversal adaptive filters, which is the usual framework in many 
practical applications. In direct identification, the unknown system 
is characterized by two observations, namely, the input signal 

W
[  

and the signal 
W
\  available at the output of the unknown system. 

The convolution of the excitation signal
W
[  with the 
 coefficients 

of the impulse response of a FIR filter 1
7

W−�  produces an estimate 

ˆ
W
� , which is subtracted from 

W
�  to give an estimation error 

1
7

W W W W
� � −= −� � . 

The NLMS algorithm is the most popular algorithm for updating 
the impulse response of the FIR adaptive filter. It provides an 
efficient way to implement the optimal 

samples Wiener filter 
that minimizes, in a stochastic approximation sense, the mean-
square value of the filtering error (MSE) according to 

( ) 1

1
7

W W W W W W
�µ

−

−= +� � � � � . (1) 

Assuming that the optimal filter opt�  of the unknown system is a 

FIR filter of order 
, ���� ( )opt 7

W W W
� ε= +� � , the error 

opt
W W
= −� � �  in the estimated filter coefficients at time 	  may 

be expressed from (1) as 

( ) 1

1
7 7 W W

W W W W W W 7

W W

εµ µ
−

−
 = − −  

�
� 
 � � � � �

� �
 (2) 

In the noiseless case and with 1µ = , the interpretation of (2) 
leads to the projection interpretation of the NLMS. In cases where 

1µ ≠ , this operation is defined as a relaxed affine projection of 

vector 1W−+  on a subspace completely specified by the matrix 

within the square brackets of (2).  
In this paper, we present an analysis of the convergence behavior 
of the NLMS algorithm. In Section 2, we briefly review the 
original work reported in [1] under the classical independence 
assumption. We then extend the analysis of the NLMS algorithm  
to the case of M-Independent inputs. In Section 3, we discuss the  

cases of 2- and 3-Independence and present some remarks 
regarding the convergence domain and steady-state behavior of 
the NLMS algorithm. Finally, we compare in Section 4 simulated 
and theoretical learning curves to validate our approach. 
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In [1], a specific model for the input signal vectors { }W;  has been 

proposed to analyze the convergence behavior of the LMS and 
NLMS algorithms. The distribution of 

W
;  is modeled as the 

product of two marginal distributions: the "radial" distribution 
(random variable � ) and the "angular" distribution (random 
variable 

W
V: ) of

W
; . Such a model is based on the following 

assumptions: 
(	�) The sequence of input vectors { }W;  is independent and 

identically distributed (i.i.d.); 
(	�) The vector 

W
;  is the product of three independent 

variables that are i.i.d., ���. 
W W

V U=; :  

( )
( )

( ) ( )

Pr = 1 0.5

with means "as the same distribution as"

Pr

W

W L L L

�

�

� 	�λ

 ± =

≈ ≈

 = = =

�

� � �

 (3) 

where 	� denotes 	����, and [ ]{ }, 1,
L
� 
∈�  represent the 

eigenvectors of the decomposition of the covariance matrix of the 

input sequence 7

W W
�  =  � � � , ����, 

1

/

7 7

L L L

L

λ
=

= Σ =∑� � � �� . (4) 

It is satisfying to note that [ ] 0
W

( =;  and 7�   = � � � . By 

using this model in the NLMS coefficient update formula, it has 
been demonstrated in [1] a close correspondence between the 
theoretical learning curves of the NLMS algorithm and the 
simulations using experimental data. The following sub-section 
recalls some of the main results established in [1]. 
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We will assume in the following that
W
ε  is i.i.d., with zero mean 

and variance 2σ , and is independent of { }W; . Furthermore, we 

shall assume that the optimal filter opt�  and the identification 
filter 

W
+  have the same length of 
 taps. We can rewrite the ��

������ error 1
7

W W W W
� ε −= + � �  and the mean-square error (MSE) as 

2 2
1 1

7 7

W W W W W W
� � �ξ σ − −   = = +   � � � �  (5) 



( )2

1

1
/

W L L

L

	ξ σ λ λ
=

= + −∑ �  (6) 

where independence of the input sequence vectors { }
W

�  has been 

used, and where the diagonal elements ( )L
	λ�  are given by 

( ) 7

L L W L
	λ = � ��, �� . (7) 

with 7

W W W
�  =  ��, � � . Replacing 

W
+  by the relation of (2), 

we get 

( ) ( ) ( )2 2
2

1
1 2 1

L L L L

W

	 � � � 	
�

λ µ σ µ µ λ
 

= +  − −  −   
 

� � . (8) 

Analyzing the steady-state behavior of the above equation and 

replacing ( )1
L
	λ −�  in (6) by the asymptotic value ( )lim

L
W

Wλ
→+∞

% , we 

get the steady-state MSE, or equivalently the misadjustment (with 
independence assumption) given by 

( )
2

2 2

lim
1

2

W

W

,QG
� 	� �

�

ξ σ µ
σ µ

→+∞
−

 = =  −  
� . (9) 
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In this section, we analyze the convergence behavior of the NLMS 
algorithm  (i.e. learning curve and misadjustment) with a modified 
model for the input signal vectors { }W; . 
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The NLMS analysis  given in section 2 use the so-called 
independence assumption which specifies that the sequence of 
input vectors { }W;  is an i.i.d. sequence. In this section, a 

generalization of the model given by (3) is proposed and the joint 
probability between successive input signal vectors is introduced. 
In particular, the vector 

W
�  is now modeled as an M-independent 

process, ����� independence is assumed between the sequences 

{ }W;  and { }W 0−; . The input sequence vector is given by 

W W
V U=; :  where variables V  and �  are assumed independent, 

and with the joint probability given by 

( )
{

M subscrips

1 , ,Pr , ,W L W 0 S L SS− −= = =: 9 : 9
L

L  (10) 

 where ( )
, ,

LM S L L

M S

S S WUλ= =∑ 5
L

L

. 

The introduction of the joint probability between successive input 
vectors provides an analysis which is not restricted to the case of 
independence assumption which is clearly violated in practice 
since 

W
;  and 1W−;  have 1
 −  samples in common. In the 

following, we restricted our analysis to the 2- and 3-independent 
cases. 
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Let us first consider the case of 2-independence assumption for 

the input signal vectors where ( )1Pr ,
W L W M LM

�−= = =� � � � . 

Inserting (2) in relation (5), we can re-write the MSE as 

( )
2 2 2 1 1

2

1 1

1 1 1 1
2 2

1 1 1 1

7

7 W W

W W W
7

W W

7 7

7 7W W W W

W W W W7 7

W W W W

�

�

ξ σ µ σ

µ µ

− −

− −

− − − −
− −

− − − −

 
 = +
 
 

    
+ − −    

     

� �
� �

� �

� � � �
� 
 � � 
 �

� � � �

. 

Since { }W;  and { }2W−;  are assumed independent, introduction of 

the probabilistic model (10) in the above equation leads to 

( ) ( )

2 2 2

1 1

2
2

1 1

/ /
7 7

W LM L M M L

L M

/ /
7 7 7

LM L M M W M M L

L M

S

( U S

ξ σ µ σ

µ µ

= =

−
= =

= +

 + − − 

∑∑

∑∑

9 9 9 9

9 , 9 9 &RY , 9 9 9

 

that is 

( ) ( )2 2 2 2

1 1

2 2
/ /

W LL L LL L

L L

S ( U S S Wξ σ µ σ µ µ λ
= =

 = + +  − −  −  ∑ ∑ % .   (11) 

Replacing twice 
W

+  in (7) by the equality of (2), we get 

( )
( )

( )

2 2
2

2 2 1 1
2

1 1

1 1

2 2
0 0

7

7 W W

L L L
7

W W

7 7 7

7 W W W W W W

L L7 7
7

W W W W
W W

7 7

7 7W Q W Q W Q W Q

L W W L7 7

Q QW Q W Q W Q W Q

	 �

�

�

λ µ σ

µ σ µ µ

µ µ

− −

− −

− − − −
− −

= =− − − −

 
 =
 
 

     + − −        
    

+ − −    
     
∏ ∏

� �
� �

� �

� � � � � �
� 
 
 �

� � � �� �

� � � �
� 
 � � 
 �

� � � �

�

 

which is  

( ) ( )

( ) ( ) ( )

2 2
2

1
2 2

1 2 2 2 2

L L LL

L LL L

	 � � �
�

� � 	

λ µ σ µ µ

µ µ µ µ λ

 =  − −    
 + − −  − −  −  

�

�
. (12) 

After some simplifications, the misadjustment is given by  

( )2
2 2

1

1
1

/

,QG ,QG LL

L

� � � 	� �
�

µ−
=

  = + −    
∑ � . (13) 
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Following directly from the results given in the previous sub-
section, we can write for the 3-independent case: 

( )

( )

2 2 2 1 1
2

1 1

2 2 1 1 2 2 1 1
2

1 1 1 12 2

2

3 3
1

7

7 W W

W W W
7

W W

7 7 7

7 W W W W W W

W W7 7
7

W W W W
W W

7 7

7 7W Q W Q W Q W Q

W W W7 7

Q W Q W Q W Q

�

�

�

ξ σ µ σ

µ σ µ µ

µ µ

− −

− −

− − − − − −

− − − −− −

− − − −
− −

= − − −

 
 = +
 
 

     + − −        
 

+ − − 
 

∏

� �
� �

� �

� � � � � �
� 
 
 �

� � � �� �

� � � �
� 
 � � 


� � �

2

1
W

Q W Q= −

  
  
   

∏ �
�

 

Consequently, inserting the probabilistic model for the 
3-independence case, we obtain 

( ) ( ) ( ) ( )2 2 2 2

1 1

2 3
/ /

W L L L L

L L

T ( U S T Wξ σ µ σ µ µ µ µ λ
= =

 = + +  − −  −  ∑ ∑ %  



where :        ( ) ( )
1

2
/

L LL LML LLL

M

T S S Sµ µ µ
=

= + − −∑ . (14) 

Proceeding the same way as we did for (12) and replacing three 
times 

W
+  in (7) by the equality of (2), we find that the diagonal 

elements ( )
L
	λ�  are given by 

( ) ( ) ( ) ( ) ( )2 2
2

1
1 2 3

L L L L
	 � � � 	

�
λ µ σ µ µ µ µ λ = +  − −  −   
� �       (15) 

with 

( ) ( ) ( )

1

3 2 2 2

(1 )

L L LL LLL

/

LL LNL

N

� � � �

� �

µ µ µ µ µ

µ µ
=

= − −  − −  
 − + −  

∑
. 

Analyzing the steady-state behavior of (15), it can be shown that 
the misadjustment is given by  

( ) ( )2
3 2

1

1
1

/

,QG ,QG L

L

� � � 	� �
�

µ µ−
=

  = + −    
∑ � . (16) 
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Based on the analysis of the previous sections [from (8), (12), and 
(15)], it follows that a sufficient condition for the convergence of 
the NLMS algorithm is given by 0 2µ< < , and the fastest 

convergence occurs for 1µ = . Moreover, inserting in (9), (13), 
and (16) the following approximation (from [1]), 

( )
1

2

1 1 1
1 [

(
U WU /

ν −−   ≈ −     5
 

which holds if the kurtosis of the input signal satisfies 
4 4

[ W [
( [ /ν σ = <<  , we can see that 

3 2,QG ,QG ,QG
0 0 0− −≤ ≤  (17) 
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In this section, we present computer simulations to illustrate the 
usefulness of the proposed approach. For these simulations, we 
have used the same parameters than those presented in [1]: the 
input signal is a gaussian first-order autoregressive (AR) process 
with pole 0α =  and 0.9α = , the step-size of the algorithm is set 
to unity, the filter length 
  is equal to 20, the initial value of the 
filter coefficient vector is 1− =+ � , and the optimal filter is chosen 

to ensure that the initial diagonal elements ( )1
L
λ −�  are equal, ���� 

the optimal filter has components of equal magnitude along all 
eigenvectors of � . In the following sub-sections, we compare 
simulations of the NLMS algorithm and the learning curves 
predicted by the theory from (6), (11), and (14). 

0���� ��%*)���*�2(2&�&!3��+!&/(!��

In practice, the theoretical values of the joint probability of the 
input signal vectors are not known �� ������. However, without 
affecting the performance, we can estimate this probability from 
Monte-Carlo simulations. For this purpose, we first select for each 

vector 
W

; the nearest eigenvector ˆ
W

8  (in the MSE sense), that is 

[ ]1 2

2 2

, ,

ˆ argmin ,
/

W W

W

W W
∈

  = − + 
  8 9 9 9

� �
� � �

� �L

. (18) 

Then, we estimate ( )1 1
ˆ ˆ ˆPr , , ,

W W W W W S W S− − − −= = =: 8 : 8 : 8L  as 

the ratio between the number of events and the total number of 
experiments (85 millions in our case). For a confidence interval of 
95%, this value provides a relative precision of 0.002 and 0.66 for 
the estimation of a probability of 10-2 and 10-7 respectively. In the 
two-dimensional case, the experimental joint probability is given 

in Fig. 1 [plot of ( )10log
LM� ] for an AR(1)  process with pole 

0α =  and 0.9α =  respectively. To demonstrate the accuracy of 
this procedure, we found that the difference between theoretical 
and experimental marginal probabilities was inferior to 0.1% 
(relative to the theoretical ones) for the white noise case ( 0α = ), 
and continuously increases from 0.3% (maximum eigenvalue) to 
98% (minimum eigenvalue) for the colored case ( 0.9α = ). 

(a)

 

(b)

 
�&'���� Experimental two-dimensional probability for gaussian 
AR(1)  input process with (a) pole 0α = , and (b) pole 0.9α = . 
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By inserting the previous joint probability estimates in relations 
(6), (11), and (14), we compare in noiseless case (see Fig. 2) 
Monte Carlo (100 runs are averaged) simulations of the NLMS 
algorithm (solid line) and the learning curves predicted from the 
theory (bold lines) for a gaussian AR(1)  input process with pole 

0α =  and 0.9α =  respectively. Also shown in Fig. 2 are the 
simulation results of the NLMS algorithm with independent 
regression vectors 

N
�  (dot gray curve). On this short time span, 

we can notice the capability of the theoretical learning curves to 
closely predict the behavior of the simulation results. In the white 
noise case, note also that the theoretical curves with independence 



assumption seem to correspond more closely to the simulated 
learning curves than those predicted by the theory with 2- or 3-
independence assumptions. 
We have also considered in Fig. 2.(b) the curves resulting from 
our theory but with the independence assumption, i.e.  

( ) ( ) ( )1 1Pr , , Pr Pr
W L W 0 S W L W 0 S− − − −= = = = =� � � � � � � �� �  

For the white noise and colored cases, one can easily observe that 
the three curves provided by the theory give approximately the 
same results and coincides with the simulation results of the 
NLMS algorithm with independent regression vectors. 

(a) 
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(b) 
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�&'���� Simulations of the NLMS algorithm compared with the 
theoretical learning curves with (a) experimental probabilities and 
(b) theoretical probabilities (independent assumption).�
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In this simulation, the experimental values of the steady-state 
MSE are compared to those predicted by the theory, or 
equivalently the misadjustment computed from (9), (13), and (16) 
and using the experimental joint probabilities previously described 
in sub-section 4.1. These comparisons are given in Fig. 3 for the 
white noise and colored noise cases. The experimental results 
correspond to Monte-Carlo simulations (100 runs - SNR of 60 
dB) of the NLMS algorithm for Gaussian AR(1) input process. 
In the white noise case, Fig. 3.(a) shows the theoretical to 
experimental misadjustment ratio (in dB) given by 

( ) ( ) ( )2 2
10 theo. exp. 10 theo. 10 exp.10log 10log 10log� � ξ σ ξ σ∞ ∞= − − −  

It is easily observed that the experimental misadjustement 
coincides with the theoretical misadjustment predicted from (9), 
(13), and (16) with the ordering established in (17). Fig. 3.(b)  
shows that for highly correlated signals, the theoretical 
misadjustment computed from (9) with independent { }N;  

exhibits a large bias whatever step-size is used. On the other hand, 
results computed for the 3- or 2-independence cases provide an 
accurate estimate of the experimental misadjustment, especially 
for large values of the step size. 
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(b)

 
�&'��-� Theoretical to experimental misajustement ratio (in dB) for 
gaussian AR(1)  input process with pole (a) 0α =  and (b) 

0.9α = . 
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In this article, a theoretical analysis of the convergence and modal 
behavior of the learning curve of the NLMS algorithm is 
provided. By introducing the M-independence assumption for the 
input signal vectors in a specific distribution model, we have 
shown a close correspondence between the simulated and 
theoretical learning curves. Some interesting results are also given 
regarding analytic expressions for the misadjustment of the NLMS 
with M-independence assumption which closely predict the 
behavior of the experimental results for gaussian AR process.�

5�� ����������

[1] D. T. M. SLOCK, “On the convergence behavior of the LMS 
and the normalized LMS algorithms,” ��� ������ ����� ������� ���
������������, vol. 41, no. 9, pp. 2811-2825, Sept.1993. 


