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ABSTRACT

In most adaptive identification applications, a finite impulse
response (FIR) filter is employed with coefficients that are
computed using the normalized least mean sguare (NLMS)
algorithm. In this paper, the convergence behavior of the NLMS
agorithm is analyzed using a simple model of the input signa
vectors. Explicit expressions of the learning curve and
misadjustement are derived and compared with those previously
established for the NLMS algorithm. Comparisons between
theoretical and experimental results are given to validate our
approach.

1. INTRODUCTION

In this paper, we consider direct adaptive identification with
transversal adaptive filters, which is the usual framework in many
practical applications. In direct identification, the unknown system
is characterized by two observations, namely, the input signal x,
and the signal y, available at the output of the unknown system.
The convolution of the excitation signal x, with the L coefficients
of the impulse response of a FIR filter H!_, produces an estimate
»,, which is subtracted from y, to give an estimation error
e =W _Hz;lxt .

The NLMS agorithm is the most popular agorithm for updating
the impulse response of the FIR adaptive filter. It provides an
efficient way to implement the optima L-samples Wiener filter
that minimizes, in a stochastic approximation sense, the mean-

square value of thefiltering error (M SE) according to
-1

H/ = H/—l + Ue, (X;[X/) X/ . (1)

Assuming that the optimal filter H* of the unknown system is a
FIR filter of order L, ie 1y, =(H°”‘)l X, +¢, the error

AH, =H* —H, in the estimated filter coefficients at time  may
be expressed from (1) as
X,€,
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In the noiseless case and with x =1, the interpretation of (2)
leads to the projection interpretation of the NLMS. In cases where
1 #1, this operation is defined as a relaxed affine projection of

vector AH, ; on a subspace completely specified by the matrix

within the square brackets of (2).

In this paper, we present an analysis of the convergence behavior
of the NLMS algorithm. In Section 2, we briefly review the
origina work reported in [1] under the classical independence
assumption. We then extend the analysis of the NLMS agorithm
to the case of M-Independent inputs. In Section 3, we discuss the

cases of 2- and 3-Independence and present some remarks
regarding the convergence domain and steady-state behavior of
the NLMS algorithm. Finally, we compare in Section 4 simulated
and theoretical learning curvesto validate our approach.

2. PRELIMINARIES

2.1. Model of the Input Signal Vectors

In[1], aspecific model for the input signal vectors {X,]} has been

proposed to analyze the convergence behavior of the LMS and
NLMS agorithms. The distribution of X, is modeled as the

product of two marginal distributions: the "radia" distribution
(random variable r) and the "angular" distribution (random
variable sW,) of X, . Such a model is based on the following

assumptions:
(A1) The sequence of input vectors {X,} is independent and

identically distributed (i.i.d.);
(A2) The vector X, is the product of three independent

variablesthat arei.i.d., i.e. X, =srW,
Pr(s=+1)=05
with 37 =X, | (= means"asthe same distribution as”) ~ (3)
Pr(W,=V,)=p,=4/m(R)
where 1 denotes rrace, and {V,ie[LL]} represent the

eigenvectors of the decomposition of the covariance matrix of the
input sequence R = E[X[XZ] ,ie.,
1
R=VIV =Y AVV/. @)
i=1
It is satisfying to note that E[X,]=0 and E[XX']=R. By

using this model in the NLMS coefficient update formula, it has
been demonstrated in [1] a close correspondence between the
theoretical learning curves of the NLMS agorithm and the
simulations using experimental data. The following sub-section
recalls some of the main results established in [1].

2.2. The NLMS learning curve

We will assume in the following that &, isi.i.d., with zero mean
and variance ¢, and is independent of {X,} . Furthermore, we

shall assume that the optimal filter H® and the identification
filter H, have the same length of L taps. We can rewrite the a

priori error e, =¢, + AH” X, and the mean-square error (MSE) as

& =E[e’]|=0"+E[X/AH,_AH X, | (5)
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where independence of the input sequence vectors { X, } has been
used, and where the diagonal elements /, (1) are given by
% (1)=V/ Cov, V,. ™

with Cov, = E[ AH, AH] ]. Replacing AH, by the relation of (2),
we get

% (1)=p’o’p, H [1-u(2-u)p )2 (1-1). (8)
Analyzing the steady-state behavior of the above equation and
replacing 4 (1-1) in (6) by the asymptotic value lim 4 (¢), we
get the steady-state MSE, or equivalently the misadjustment (with
independence assumption) given by
limé-o?
Mlnd = [—+oo — #
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3. M-INDEPENDENT INPUTS

In this section, we analyze the convergence behavior of the NLM S
agorithm (i.e. learning curve and misadjustment) with a modified
model for the input signal vectors {X,} .

3.1. New model of the input signal vectors
The NLMS analysis given in section 2 use the so-called

independence assumption which specifies that the sequence of
input vectors {X,] is an i.i.d. sequence. In this section, a

generalization of the model given by (3) is proposed and the joint
probability between successive input signal vectors is introduced.

In particular, the vector X, is now modeled as an M-independent
process, i.e. independence is assumed between the sequences
{X,} and {X,_,}. The input sequence vector is given by
X, = s rW, where variables s and r are assumed independent,
and with the joint probability given by

Pr(W, =V, W_y1=V,)=p ..,

L h
M subscrips

(10)

where Y p,., =p =4/r(R
fon

The introduction of the joint probability between successive input
vectors provides an analysis which is not restricted to the case of
independence assumption which is clearly violated in practice
since X, and X,, have L-1 samples in common. In the

following, we restricted our analysis to the 2- and 3-independent
Ccases.

3.2. Learning curve with 2-independence assumption

Let us first consider the case of 2-independence assumption for
the input signa vectors where Pr(W,=V,,W,_ =V )=p,.
Inserting (2) in relation (5), we can re-write the MSE as

X, X!
§=0"+u’0’E| X[ —E=E0X,
(Xr—lxr—l)

T T
D RIS RN NN U D ERELER S
Xx—lxt—l Xx—lxt—l
Since {X,} and {X,_,]} areassumed independent, introduction of
the probabilistic model (10) in the above equation leads to
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that is
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§,=0'2+,uz(722p“+E[ ]Z[p -u(2-u Pu]/1 (t-2
i=1

Replacing twice AH, in (7) by the equality of (2), we get
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After some simplifications, the misadjustment is given by

L 1
M, 4a=M,, +ﬂ22pu (1_”’(R)E[r2:|]'
i=1

(12)
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3.3. Learning Curve with 3-independence assumption
Following directly from the results given in the previous sub-
section, we can write for the 3-independent case:

Xr le 1 X

(Xf 1Xz 1)
Xt—le—l \ XI—ZXf—Z 1- thllel X
XX, J(XZLZX,Q)Z ( “ XXy )

2 X—HXT—YV YVXTI’I
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n=1

n=1 t-n“*-n 1-n“X-n
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Consequently, inserting the probabilistic model for the
3-independence case, we obtain

§,=62+ﬂzazgq,(y) E[r ]z[p —u(2-u)q, (1)) A (t-3)
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Where: 4q; (ﬂ)zpii"'zpm _ﬂ(z_ﬂ)pm . (14)
J=1

Proceeding the same way as we did for (12) and replacing three
times AH, in (7) by the equality of (2), we find that the diagonal
elements 4, (¢) aregiven by

/i,(t):#ZGZE[TJ'Z];;(;[)+[1—#(2—#)7;(,u)])z,(t—S) (15)
with
r (1) =3p, - u(2-u)[ 2p, - u(2- ) p, |

L
—ﬂ[p,, +(1- ﬂ)ZpW]
k=1

Analyzing the steady-state behavior of (15), it can be shown that
the misadjustment is given by

My, =M, + yziq, (ﬂ)(l—tr(R)E[rlZ:”.

(16)

i=1

3.4. Convergence and Misadjustement

Based on the analysis of the previous sections [from (8), (12), and
(15)], it follows that a sufficient condition for the convergence of
the NLMS agorithm is given by O<u<2, and the fastest

convergence occurs for u=1. Moreover, inserting in (9), (13),
and (16) the following approximation (from [1]),

Bl

which holds if the kurtosis of the input signa satisfies
VX:E[x,“]/Gf«L,Wecanseethat

M3—171d < MZ—Ind < Mlnd (17)

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present computer simulations to illustrate the
usefulness of the proposed approach. For these ssimulations, we
have used the same parameters than those presented in [1]: the
input signal is a gaussian first-order autoregressive (AR) process
with pole ¢ =0 and a=0.9, the step-size of the algorithm is set
to unity, the filter length L isequal to 20, the initia value of the
filter coefficient vector is H_, =0, and the optimdl filter is chosen

to ensure that the initial diagonal elements 4 (1) are equdl, i.e.

the optimal filter has components of equal magnitude along all
eigenvectors of R . In the following sub-sections, we compare
simulations of the NLMS agorithm and the learning curves
predicted by the theory from (6), (11), and (14).

4.1. Source Probability Estimate

In practice, the theoretical values of the joint probability of the
input signal vectors are not known a priori. However, without
affecting the performance, we can estimate this probability from
Monte-Carlo simulations. For this purpose, we first select for each

vector X, the nearest eigenvector fJ, (inthe MSE sense), that is

2
BT
X

t
Ue[Vy, V-V, ] HX/ H

} . (19)

= ﬁ[—p ) as
the ratio between the number of events and the total number of
experiments (85 millions in our case). For a confidence interval of
95%, this value provides a relative precision of 0.002 and 0.66 for
the estimation of a probability of 102 and 107 respectively. In the
two-dimensional case, the experimental joint probability is given
in Fig. 1 [plot of logy(p,)] for an AR(1) process with pole

fJ, = argmin { X,

Then, we estimate Pr(W, =0, W,, =0, W,

t=p

a=0 and a=0.9 respectively. To demonstrate the accuracy of
this procedure, we found that the difference between theoretical
and experimental marginal probabilities was inferior to 0.1%
(relative to the theoretical ones) for the white noise case (a =0),
and continuously increases from 0.3% (maximum eigenvalue) to
98% (minimum eigenvalue) for the colored case (o =0.9).
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Fig. 1. Experimenta two-dimensional probability for gaussian
AR(1) input processwith (a) pole =0, and (b) pole #=0.9.

4.2. Learning curve

By inserting the previous joint probability estimates in relations
(6), (11), and (14), we compare in noiseless case (see Fig. 2)
Monte Carlo (100 runs are averaged) simulations of the NLMS
agorithm (solid line) and the learning curves predicted from the
theory (bold lines) for a gaussan AR(1) input process with pole
a=0 and a=09 respectively. Also shown in Fig. 2 are the
simulation results of the NLMS algorithm with independent
regression vectors X, (dot gray curve). On this short time span,
we can notice the capability of the theoretical learning curves to

closely predict the behavior of the simulation results. In the white
noise case, note also that the theoretica curves with independence



assumption seem to correspond more closely to the simulated
learning curves than those predicted by the theory with 2- or 3-
independence assumptions.

We have also considered in Fig. 2.(b) the curves resulting from
our theory but with the independence assumption, i.e.

PI’(W, :‘IH”"W—M—IZVp):Pr(W :Vi)"'Pr(Wr—M—lzv )

P

For the white noise and colored cases, one can easily observe that
the three curves provided by the theory give approximately the
same results and coincides with the simulation results of the
NLMS agorithm with independent regression vectors.
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Fig. 2. Simulations of the NLMS algorithm compared with the
theoretical learning curves with (8) experimental probabilities and
(b) theoretical probabilities (independent assumption).

4.3. Misadjustement

In this simulation, the experimental values of the steady-state
MSE are compared to those predicted by the theory, or
equivalently the misadjustment computed from (9), (13), and (16)
and using the experimental joint probabilities previously described
in sub-section 4.1. These comparisons are given in Fig. 3 for the
white noise and colored noise cases. The experimental results
correspond to Monte-Carlo simulations (100 runs - SNR of 60
dB) of the NLMS agorithm for Gaussian AR(1) input process.

In the white noise case, Fig. 3.(8) shows the theoretica to
experimental misadjustment ratio (in dB) given by

10|Og10(M1heo./Me<p.) :10|Oglo(§t:eo. - 0-2) _10|0910( ;p. _0-2)

It is easily observed that the experimental misadjustement
coincides with the theoretical misadjustment predicted from (9),
(13), and (16) with the ordering established in (17). Fig. 3.(b)
shows that for highly correlated signals, the theoretical
misadjustment computed from (9) with independent {X,]}

exhibits a large bias whatever step-sizeis used. On the other hand,
results computed for the 3- or 2-independence cases provide an
accurate estimate of the experimental misadjustment, especialy
for large values of the step size.
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Fig. 3. Theoretical to experimental misajustement ratio (in dB) for
gaussan AR(1) input process with pole () =0 and (b)
a=0.9.

5. SUMMARY

In this article, atheoretical analysis of the convergence and modal
behavior of the learning curve of the NLMS algorithm is
provided. By introducing the M-independence assumption for the
input signal vectors in a specific distribution model, we have
shown a close correspondence between the simulated and
theoretical learning curves. Some interesting results are also given
regarding analytic expressions for the misadjustment of the NLMS
with M-independence assumption which closely predict the
behavior of the experimental results for gaussian AR process.
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