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ABSTRACT

We derive new bounds for the mixing parameter, ~, within
the cross-correlation constant modulus a girithm (CC-CMA)
for blind source separation and equalization in non-ideal
multiuser environments. Channel undermodelling and noise
are considered when the complex sourcesare circularly sym-
metric. These tighter bounds are obtained by surface to-
pography of the error performance surface of the CC-CMA
algorithm, and replace earlier work which suggested that
~v > 4/3. The validity of the bounds is confirmed by simu-
lation studies.

1. INTRODUCTION

In multiuser wireless communications, space division mul-
tiple access (SDMA) may be exploited when multiplei.i.d.
digital signalsthat originate from spatially separated sources
are transmitted through linear channels and picked up by an
array of antennas. As the result of multipath propagation
and the presence of cochannel system users, the received
signas are distorted not only by intersymbol interference
(ISl) but aso by interuser interference (1UI). Many blind
adaptive channel equalization agorithms with implicit sig-
nal separation capability have been proposed in this context.
Among which, the cross-correlation and constant modulus
algorithm (CC-CMA) [5] reconstructs the underlying con-
stant modulus property of communication signals. To pre-
vent repeated retrieval of the same source, aterm which pe-
nalizes cross-correlation between multiple output signalsis
introduced. In[3], based on the use of sequentia start-up of
equalizers, asimplified CC-CMA cost function is proposed,
where only the previous retrieved sources are included in
the cross-correlation term. Assuming areal system and that
the outputs of the previous equalizers are perfect, the au-
thors show that the mixing parameter v should be greater
than 4/3 to avoid ill convergence. However, in practice,
due to channel undermodelling or noise, perfect equaliza-

tion is not always possible. Meanwhile communication sig-
nals are generally complex rather than real. Therefore we
relax the perfect equalization condition and, by studying the
surface topography of the CC-CMA cost function, we ob-
tain atighter bound for the mixing parameter in a complex
system.

2. CC-CMA ALGORITHM

We assume ad user and r antenna system. The multiple an-
tenna output is processed with d paralel space-time equal-
izers to retrieve al the sources. Notations (-)#, (-)* and
(-)* denote respectively hermitian, transpose and complex
conjugate. The orders of the channel and the sub-equalizer
are respectively M and N. The i*" source signal at time
k is written as s;(k) = [s;(k)...si(k — M — N)]T and
the source vector for all sources is represented by s(k) =
[sT(k) ...sT(k)T. Letx;(k) = [zj(k)...z;(k — N)|T
be the j*" antenna output vector. The space-time equalizer
regressor is x(k) = [x¥(k)...xL(k)|”. Defining AT as
the channel convolution matrix, we obtain x(k) = ATs(k).
Describe the I*" space-time equalizer tap vector as wy (k).
Its output is yi(k) = w] (k)x(k) = hi(k)s(k), where
h;(k) = Aw,(k) is the combined channel + I*" equalizer
impulse response. The CC-CMA agorithm cost function
for the " equalizer iswritten as

E{(Jyu(k)|* = R2)}
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where E{(|y;(k)|* — Ry)?} is the constant modulus cost,
s 2, | E{ui(k)y; (k — 6)}]2 is the cross-correlation cost
between the I** equalizer and the retrieved sources, Ry =
%{%H- is the so-called dispersion constant and v € R+ is
the mixing parameter.



3. SURFACE ANALYSIS

It can be observed from eq (1) that the accuracy of the re-
trieved sources affects the convergence of the current equal-
izer. In practice, due to hardware constraints on equalizer
length and channel noise, residua error at the equalizer out-
put is unavoidable. Therefore we model the previous equal-
izer output as the retrieval of a particular source symbol
with possible delay, together with residual 1Sl and |UI. For
clarity, we present the deviation for two users. But simi-
lar deviation can be extended to more users. Denoting p; =
M+N,p=2(M+N)+1,hy = [a1...ap, B 11... 8|7
and hy = [hohy...h,|T. Without loss of generdity, we
assume that the first equalizer reconstructs source-1, i.e.,
log| > |ag|, @ # dandd € (0, p1]. The first equalizer
output is given by

p1

(k) = ags(k,d)+

i=0,i%d

P
Z B;s(k, i

i=p1+1
)
where s(k, i) isthe i*" element of the vector s(k). The co-
efficients {a;, ¢ # d,7 € (0, p1]} and {B3,;, 1 # d,i €
(p1,p]} respectively contribute to the residual 1S and 1UI.

With respect to eq (12\,7 t}t\tle cross-correlation cost for
+

equalizer-2iswrittenas > v op) [ E{y2(k)yi (k — 8)}H? .

We replace y7 (k — 6) with the expression shown in eg (2).
Using the independent property of the sources and consid-
ering that thecrossterms(z5z D it GG hi shiys),
(Z&Z Dj it

and f 18, h2+5h]+5) aresmallvaluecompared
W|th the squared terms Pt ol ZJ: |h;[? and

P ol B 327141 |hy|” and therefore can be neglected,
as[4], the decorrelation cost is approximated by
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where for notational convenience §; = > ' \az| 0y =
P pis118:% and o is the signal variance. Notice that

as source-1 is assumed to be reconstructed, with very high
probability the energy contribution of source-1 is greater
than that from source-2 a the equalizer-1 output, i.e.,
o ladl? >0 16,7, or equivalently 6; > 6,.
Comb| ning the expression of constant modulus cost given
in [1], the cost function for the second equalizer J is writ-
tenas

Jo = ka4Z|h| +204Z Z hil? |hy]?
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where ks = ﬂ%ﬁm isthe source kurtosisand | e||,, isthe
two-norm of the vector. In the complex case, asin [2], we
study signal constellations that satisfy the circularity condi-
tion E {s(k)?} = 0, which holds for most constellations.

Lemmal 1. Anecessary conditionon - for theelimination

of undesirable minima in a two-user schemeis

2—ks)2ks 2k
20—ty ~ < By

Proof outline: Given E {s(k)?
is given by

} =0, thegradient of eq (4)

gl(k) = 2Ah2 (5)
where A = diag(Ao+361, ..., Ap+361, Ap,y1+302,. ..
Ap +302), A = od(|ha|? (ks — 2) + 2 [ ha5 — E). The
diagonal of the Hessian matrix is

Hy = 20%2(ks— 1) |lf* + 2|ho|3 — k)

af ¥ 0<1<p
*”3{702 pLr1<i<p ©)

The off-diagonal terms are

Hlm—4(7 hlh and Hl,m:H* 1 (7)

m m,

We consider the property of the following classes of station-
ary points.

(D)ha=0

With respect to eq (6) and eq (7), the Hessian of thistype
of stationary pointis H = 20%diag(361 — ks, ... , 36, —

ks, 309 — ks, ..., 362 —k,). Astheequalizer-2 givestriv-

ia output, poative definite Hessian matrix is undesirable.
Therefore the condition on v is

2,
B2
(2) Oneh; #0, ¢ € (0, p1] and others zeros.
To zero the gradient, according to eq (5), the non-zero h;
satisfies |h;|* = 1 — 2. The Hessian is adiagonal matrix
with three values, i.e.,

®)

Hi=2053 ks — 36 0<l<py,l=i
2~ ks —y(01/ks —0.50) p1+1<1<p
©)

Since this kind of stationary point indicates the repeated re-
trieval of source-1, we don’t expect this stationary point to
be a minimum. Hence the condition on vy is

(2 — k) 2k,

10
201 — ks62 (10)
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where we assume the source is sub-Gaussian, i.e., ks < kg
and k, = 2 for a complex-valued Gaussian process. This
assumption is, in fact, a condition for perfect equalization.
(3) Oneh; #£0, i € (p1, p] and others zeros.
To zero the gradient, the non-zero h; satisfies |h;|” =
1-— 527% The Hessian is a diagona matrix of three values,
i.e,

27ks+7(91/2792/ks) 0§l§p1
ks_%02 p1+1<1I<pl=1
2 — ks +v02(0.5 — 1/ky)

(11)
As the stationary point indicates the retrieval of source-2,
which is the desirable source, positive definite Hessian is
desired. The condition on -y is

_ 4
Hl,l— 20'3

%,
02

v < (12)
Notice that thisis the same condition as eq (8).

(4) h; # 0forvvduesof i,v > 1and i € [0, p;] and
all others are zeros.

Zeroing the gradient yields | h; |
Since the right-hand side of the equatlon isa constant aII
non-zero h; s have equal magnitude and we obtain |k;|*> =
k:—05v0L | et D be a diagonal matrix with elements:

ks F2(0—1) "
2% 4"/@(92 01)+ks(2—ks)+0.5702 (ks —2)

_ 2Hh2|\§ ks +0 5701

. Denote matrix Q) as

ks+2(v—1)
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o 204k — 05901) ot
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(13)
wherec; € {—1,0,1} fori € [0, py]. The Hessian matrix
in this case can be expressed in the form of OQ OD . As

v > 1, there exist principal minorsin Q of the following
form

204 (ks — 0.5701) [ ki 2¢;cjei®i
ks +2(v—1) 2cicie 3% kg

] (14

As 61 > 65, provided the sub-Gaussian source condition
(ks < 2) holds and the condition stated in eqg (8) is satis-
fied, the determinant of eq (14) is negative and therefore Q
is indefinite. It is concluded that the stationary points are
saddles[1].

(5) h; # 0forv vauesof i, v > 1and i € (p1, p|] and
all others are zeros.

Similar to case (4), all non-zero h; s are of equal mag-

nitude: [;* = 2%, The Hessian matrix is given

by { OD OQ },whereD is a diagonal matrix. When the

sources are sub-Gaussian (ks < 2) thecondition statedineq
(8) is satisfied, it can be proven that () is indefinite. Hence
the stationary points are saddles.

(6) h; # 0 for vy valuesof 4, vy > 1, ¢ € [0, py] and
hj # 0for vg valuesof ¢, v, > 1 and ¢ € (p1, pl.

To zero the gradient, the non-zero h; s are given by

12 _ ks—0.5902—v17(02—601) /(ks—2) ; 2

;™ = P . Theexistence of |h;|
: ko (2— k)

FeqUITES 77 < G50, (2—ks)Fo1(61—03) "

ko (2—ks 2 k,)2k, N
0.502(2—k(s)+v1)(91—02) < (201—13592 ; when eq (10) is satis-

fied, |h,|* < 0 and thus this kind of stationary point does
not exist. Although the term stationary pointsisused in the
preceding analysis for the complex case, the minima cor-
respond to a continuum of minima that span the complete
range (0, 27) of valid phase values [2].

The analysis for ad > 2 system is analogous to that
in the two user case. Write the previous equalizer-; output
asy;(k) = SSAN+FMED-1 ), (k) (k,i), where1 < j <
1. Deﬁnetheparametersz LSNEM B P =6,
P ZfﬁNd“fJ&\lﬂrMH) |h;.i|” = 64. The necessary con-
d|t|on for the mixing parameter -y to avoid ill convergence
is given by

However, since

(2—k,)2ks

max(

max(291—k591,201—k392,...291—k39d,) rty
(3—ks)2ks
max(2ﬂl,l—ksﬂl’201,1—19502)...29,,1—1659(1,)) <7<
(2—k,)2k,
ma.x(291—k591,29;—16592...291—19591)

15)
Since the calculation of the desirable range for ~ requires
knowledge of the combined channel + equalizer impulse re-
sponse, which is difficult to estimate in practice, it would
be advantageous if the lower and upper bounds of ~ are
constants. Therefore, in the two-user case, which is ap-
plicable to the example of cross-polarization transmission,
we assume automatic gain control (AGC) so that the re-
constructed power is equa to the transmitted power for the
same time interval, i.e, 8,+ 6, = 1. By considering the
worse case asthat for which the retrieved sequence has equal
contributions from the desired source and the interference
source, i.e., 61 = 65, we suggest that the mixing parame-
ter is chosen as 4k, and this is the value at which the up-
per and lower bound for ~ coincide. For a multiuser sys-
tem, an ad-hoc solution would be to use hard decision on
the previous equalizer when it is estimated to give an open
eye pattern and therefore the decorrel aion cost becomes
Y, Y5 | E{ui(k)dec(y; (k — 6)) ))}|*after the blind start-
up perlod

4. SIMULATIONS

In a QPSK system with source alphabet { f ﬂj},

we assume d = 2 users, r = 3 sensors and six random
sub-channels of order M = 3 with 20dB additive white
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Fig. 1. The convergence of equalizer-2 in the case of
undermodelling (a) Residud error, v = 0.8 (b) Undesir-
able convergence: combined channel + equalizer-2 impulse
response (¢) Residua error, v = 4 (d) Desirable conver-
gence: combined channel + equalizer-2 impulse response
(e) Residual error, v = 35 (f) Undesirable convergence:
combined channel + equalizer-2 impulse response

noise. The order of the first equalizer ischosenas N = 3.
Sinced(M + N +1) < r(N + 1), the channel convolution
matrix is not full column rank. Indeed, thisis the situation
of undermodelling of channel length, and residua error is
present [1] at the first equalizer output. Due to the limita-
tion of space in the paper, equalizer-1 output is not shown.
But despite the residual error, equalizer-1 retrieved source-
1 with delay 1. The second equdizer is also assumed to
have order N = 3. Since #; = 0.67 and 65, = 0.08 with
this setting, the desired bound for v is1.5 < k < 24.8 ac-
cording to our analysis. In the simulation, we initialize the
second equalizer to a small random value and the result is
shown in fig 1. As indicated by the combined channel +
equalizer-2 impulse response, when v = 0.8 (i.e., outside
the desirable range), the second equalizer converges again
to source-1. When the condition on the mixing parameter
is satisfied, v = 4, desirable source-2 is retrieved. When
~v = 35, which exceeds the upper bound, no source is re-
trieved and the equalizer converges to the origin. The mild
tolerance of the lower and upper bounds between the simu-
lation and the analysis is due to the approximation used in
eg (3) and thisisasubject of on-going research. Infig 2, the
second equalizer is assumed to have order N = 5. Thusthe
channel convolution matrix isfull column rank and we have
sufficient degrees of freedom to model the channdl. Similar
result to fig 1 is achieved.

5. CONCLUSION

By studying the surface characteristics of the CC-CMA al-
gorithm, a bound for the mixing parameter v was obtained
which prevents algorithm ill-convergence. For the two-user
system, by considering the worse case, we suggest that the
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Fig. 2. The convergence of equalizer-2 in the case of suffi-
cient degrees of freedom in channel modelling (a) Residual
error, v = 0.8 (b) Undesirable convergence: combined chan-
nel + equalizer-2 impulse response (c) Residua error, v =4
(d) Desirable convergence: combined channel + equalizer-2
impulse response (€) Residual error, v = 35 (f) Undesirable
convergence: combined channel + equalizer-2 impulse re-
sponse

mixing parameter be chosen as4k. Simulation studies sup-
port the analysis results.
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