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ABSTRACT

In this paper, a blind sequence estimation algorithm based on in-
teracting multiple model is introduced to estimate the channel and
the transmitted sequence corrupted by ISI (intersymbol interfer-
ence) and noise. The proposed algorithm avoids the exponential
growth complexity caused by increasing channel memory length.
The performance of the IMM (interacting multiple model) based
equalizer is studied and compared with the well known algorithm
like DDFSE (Delayed Decision-Feedback Sequence Estimation).

1. INTRODUCTION

The interest in this paper is the problem of detection of digital
data in the presence of intersymbol interference (ISI) and additive
noise. Throughout this work the assumption made is that after
some processing (matched filtering, for instance), the continuous
time received signals are sampled at the baud (symbol) rate. Thus
results in a discrete time model of the channel. Our objective is
to produce a reliable decision of the input sequence based on the
received data in the absence of channel characteristics.

As discussed in [1], various approaches to data detection can
be broadly divided into symbol by symbol and sequence estima-
tion. The first class contains linear and decision-feedback detec-
tors. These schemes have low complexity and undesirably high er-
ror rates. Another approach to data detection is given by maximum-
likelihood sequence estimation (MLSE) [2]. The trellis-based
Viterbi algorithm [3] solves the MLSE problem recursively when
the memory of the channel is finite. The symbol error rate of
the Viterbi algorithm is often much lower than error rates of the
symbol by symbol detectors. However, the total storage (com-
plexity) of the algorithm is proportional to the number of states
of the trellis which grows exponentially with the channel memory
length. When the channel memory becomes large, the algorithm
becomes impractical. In this case reduced state algorithms like
RSSE (Reduced-State Sequence Estimation) [4, 5] and DDFSE
(Delayed Decision-Feedback Sequence Estimation) [6] are used.
These algorithms assume some past decisions as correct while es-
timating several most recent symbols.

Another set of equalizers use a hidden Markov model (HMM)
formulation for blind (or semi blind) equalization for input se-
quences governed by Markov chains. Either they use off-line [7]
or on-line EM algorithm [8, 9] to maximize the Kullback-Leibler
(KL) measure to calculate the HMM model. [10, 11] use a HMM
estimator together with a sequence estimation for stochastic max-
imum likelihood (ML) equalization. While on-line methods over-
come the memory and computational cost involved in the off-line

EM algorithm based methods, they still need to use some kind of
state reduction algorithm to reduce the state complexity of the state
trellis [9]. Tugnait et al. [12] presents a comprehensive review of
single-user channel estimation and equalization techniques. Here
we propose an alternative approach which utilizes the interacting
multiple model (IMM) algorithm.

The paper is organized as follows: In Section 2 we define our
signal model and formulate the equalization problem as a state esti-
mation under model uncertainty problem. In Section 3, we review
the IMM algorithm. We derive our IMM based equalizer in Sec-
tion 4. Simulation studies are presented in Section 5 and finally
some conclusions are drawn in Section 6.

2. PROBLEM FORMULATION

Let d(k) denote the symbol emitted by the digital source at time
kT , where T is the symbol duration. This discrete time signal
is modulated, filtered, sent through the communication channel,
filtered and demodulated. The resulting signal is continuous and is
given by

y(t) =

Nh�1X
n=0

h(t� nT ):d(n) + v(t) (1)

where T is the symbol period, v(t) is the additive white noise inde-
pendent from the emitted symbols, h(t) is the composite channel
response encompassing the effects of the transmitting filter, recep-
tion filter, channel response and modulation/demodulation (which
is assumed to be linear). The composite channel is assumed to be
FIR, with a duration of approximately NhT . In general, d(t) can
take on K possible values. For simplicity we use binary trans-
mission (K = 2) and symbols transmitted are either -1 and 1.
The extension to the general case is straightforward. Symbol rate
sampling is used which results in an equivalent discrete-time rep-
resentation,

y(k) =

Nh�1X
n=0

h(k � n):d(n) + v(k) (2)

This can easily be extended to multi rate sampling. To overcome
the phase ambiguity in the channel coefficients, differential decod-
ing is used.

Under the assumption that h(k) is perfectly known, the opti-
mum receiver is composed of a filter matched to the pulse h(k) fol-
lowed by a symbol rate sampler and a Viterbi decoder that searches
for the path with minimum metric in the trellis diagram of a finite
state machine of the equivalent channel.



Unfortunately, in many practical communication systems, we
do not know the impulse response h(k) or we need to use simpli-
fied state description of the channel in order to reduce excessive
state complexity. The objective is to find the transmitted sym-
bol sequence from the received sequence when the channel co-
efficients are not known. The suboptimal optimal approach to this
makes use of data aided parameter estimators together with the
sequence estimator.

If the transmitted symbols d(k) were known a priori, then the
estimation of channel coefficients, would be a conventional linear
Gaussian problem, and could be solved using the Kalman filter.
But in our case, with d(k) unknown, the measurement model rep-
resented by (2) is dependent on a Markov switching process gener-
ated by the symbol sequence. This is the problem of state estima-
tion with model uncertainty [13]. Hence we propose to solve the
blind equalization problem using the interacting multiple models
(IMM) [14, 15], one of several methods available for the Markov
switching systems (Hybrid systems).

3. THE INTERACTING MULTIPLE MODEL
ALGORITHM

Our blind sequence estimation can be formulated as a linear hybrid
system and hence only the linear hybrid systems are considered
here. The simplest linear hybrid system is described by a set linear
models as

�(k) = Fj(k � 1)�(k � 1) +Gj(k � 1)wj(k � 1) (3)

y(k) = Hj(k)�(k) + vj(k) 8 j 2 S (4)

where S = f1; : : : ; rg is the set of possible modes. This model
can handle changes in the system structure as well as in the noise
statistics but in our case, as will be seen, changes occur only in
the observation matrix, Hj(k). The mode at time kT , m(k) is
assumed to be among the possible r modes. The mode transitions
are governed by a first-order homogeneous Markov chain

Pfmj(k + 1)jmi(k)g = �ij 8 j 2 S (5)

where �ij is the transition probability from mode i to mode j and
mi(k) symbolises that the mode at time kT is i. Let ms

i (k � 1)
denote the sth mode history up to and including time (k � 1)T
with mode i at time (k � 1)T . Then the mode probabilities are
given by

Pfmj(k)jY
k
g =

X
s

Pfmj(k)jY
k
;mi(k � 1)g (6)

�Pfm
s
i (k � 1)jY k

g

=
X
s

�ijPfm
s
i (k � 1)jY k

g

where both summations are over all possible mode histories and
Pfms

i (k � 1)jY k
g can be calculated using Bayes formula. The

number of mode histories through (k � 1)T is rk�1 since r num-
ber of modes are possible at each time. Thus the number of his-
tories grows exponentially with time. To overcome this problem,
fixed memory algorithms like GPB (Generalized Pseudo Bayes)
[14] and IMM (Interacting Multiple Model) [14, 15] algorithms
were introduced.

The IMM algorithm is a recursive algorithm consisting of four
major steps: interaction (mixing), filtering, mode update and com-
bination. In each cycle, the initial condition for the filter matched

to a certain mode is obtained by interacting (mixing) the state es-
timates of all filters at the previous time under the assumption that
this particular mode is in effect at the current time. This is fol-
lowed by a prediction and update step, performed in parallel for
each mode. The mode probability update is performed next for
each modes. Then a combination of the updated state estimates
for all filters yields the state estimate. The mode probability acts
as the weighting in the interaction step and in the combination of
states and covariances. Implementation details can be found in
[14] and section (4).

4. IMM ALGORITHM FOR ADAPTIVE EQUALIZATION

IMM algorithm can be used for sequence estimation by assuming
the mode in effect is due to one of transmitted symbols. For binary
transmission, the received signal comes from one of two symbols
and hence the number of modes, r is equal to 2. We need r number
of filters in parallel at a time as only one of r modes can be in
effect. We define the state vector � (coefficients of channel) as

�(k) = [ h(0) h(1) : : : h(Nh � 1) ] (7)

Let M be the set of symbols transmitted. We use a random
walk model for the system model (3) and from (2), the observation
matrix can be written asHj(k) = [d(k) d(k�1) :: d(k�Nh+1)].
Hence the hybrid system simplifies to,

�(k) = �(k � 1) + w(k � 1) (8)

y(k) = Hj(k)�(k) + v(k) 8 j 2 S (9)

The algorithm can now be summarised as follows:

� Calculate the probability that the symbol corresponding to
mode i was in effect at time (k � 1)T given that the mode
j was in effect at kT conditioned on past received data,
Y k�1, for all i; j = 1; : : : ; r. Here symbols corresponding
to i and j takes on values in M and the calculation is done
for all K = r values in M .

�ijj(k � 1jk � 1) = P (mi(k � 1)jmj(k); Y
k�1)

=
1

c
P (mj(k)jmi(k � 1); Y k�1)

:P (mi(k � 1)jY k�1)

=
1

c
�ij�i(k � 1) i; j = 1; ::; r

where c is the normalizing constant and �i(k � 1) is the
posterior symbol probability at time (k � 1)T .

� Compute the mixed initial condition for the filter matched
to each symbol at time kT using �̂i(k � 1jk � 1), state
estimate of the Kalman filter matched to mode i at time
(k � 1)T: The initial state estimate is given by

�̂
0j(k � 1jk � 1) =

rX
i=1

�̂
i(k � 1jk � 1) (10)

:�ijj(k � 1jk � 1) 8 j = 1; ::; r



and the corresponding covariance matrix is

P
0j(k � 1jk � 1) (11)

=
rX

i=1

�ijj(k � 1jk � 1)fP i(k � 1jk � 1)

+(�̂i(k � 1jk � 1)� �̂
0j(k � 1jk � 1))

(�̂i(k � 1jk � 1)� �̂
0j(k � 1jk � 1))0g

8 j = 1; ::; r

where �̂j(kjk) and P i(kjk) are the state estimate and co-
variance of the state estimate at time kT .

� The above two estimates, (10) and (11) are used as input
to two Kalman filters matched to two symbols to obtain
�̂j(kjk) and P j(kjk). These are the outputs of the Kalman
filter and the Kalman filter equations can be found in [16].
The likelihood corresponding to two filters,

�j(k) = p(y(k)jmj(k); (12)

�̂
0j(k � 1jk � 1); P 0j(k � 1jk � 1))

are also computed. For Gaussian noise this reduces to

�j(k) / exp(�0:5 e(k)Re(k)
�1
e(k)) (13)

where e(k) and Re(k) are respectively the innovation and
innovation variance given by the Kalman filter.

� The probability that the mode j (j = 1; ::; r) is in effect is
updated as follows

�j(k) = P (mj(k)jY
k) (14)

=
1

c
�j(k)

rX
i=1

�ij�i(k � 1)

8 j = 1; ::; r

where c is the normalization constant. The mode at time
kT can now be estimated as

m(k) = argmax
j

�j(k) (15)

Thus the symbol at kT is the symbol corresponding to mode
m(k).

� Finally calculate the channel coefficient estimates using the
following mixture equations

�̂(k) =
rX

j=1

�̂
j(kjk)�j(k) (16)

5. SIMULATION RESULTS

The performance of the proposed algorithm was examined using
simulations and compared to the well known reduced state se-
quence algorithms like RSSE which for binary transmission is equiv-
alent to the DDFSE. The transmitted sequence was an independent
and identically distributed (iid) binary sequence. The transition
probability matrix, �ij is given by

�ij =

�
0:5 0:5
0:5 0:5

�
(17)
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Fig. 1. Frequency response of equivalent channel

A two-ray channel is selected for simulation with channel co-
efficients,

h = [:620 :560 :480 :460 :220] (18)

The resulting frequency response is plotted in figure 1. In
DDFSE, channel estimation was done on a per-survivor basis as
outlined in [17, 18] and the resulting algorithm is denoted by PSP
DDFSE. Here the effective channel memory is truncated to 2. For
DDFSE, the decoding delay was large enough to avoid any per-
formance degradation due to unmerged survivors. For comparison
these two algorithms were simulated assuming the correct trans-
mitted sequence is available at the receivers. These idealized cases
serve as the lower bounds for the two cases. The simulated bit er-
ror performance is plotted in figure 2. Twenty simulation runs of
length 20000 symbols were used to obtain an average BER. This
thus reflects the effects of estimator convergence.

As seen in figure 2, performance of the proposed method is
generally better to that of DDFSE, with similar performance at
lower SNRs. But the DDFSE incurs a significantly larger com-
putational cost. For our example, it needs four filters but the pro-
posed algorithm requires only two filters, independent of the chan-
nel memory length. In general, the number of filters required in
the proposed method is K, whereas the DDFSE requires a KV

(where V is the truncated channel length) number of filters. The
convergence of channel coefficients is shown in figure 3 where the
mean square estimation (MSE) error at each SNRs are plotted. The
MSE error was obtained by taking the mean square error for each
of the 20 simulations and then averaging it out for each SNRs. As
seen in the figure, the IMM based algorithm performs better than
the PSP DDFSE.

6. CONCLUSIONS

In this paper, an IMM based channel estimator and equalizer has
been derived. The algorithm avoids the exponential growth of the
state complexity with respect to the channel memory. It also uti-
lizes fewer number of filters than the DDFSE scheme and hence is
computationally more efficient.

The results on the simulations also demonstrate the superior
BER performance and channel estimation accuracy of the IMM
based scheme over the DDFSE. The proposed algorithm is an at-
tractive proposition in terms of both computation and performance
for channels with long channel response and/or for systems which
uses bandwidth efficient coding where a large input alphabet is
used.
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Fig. 2. Probability of symbol error (BER) with varying signal to
noise ratio
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Fig. 3. Estimation error for channel coefficients
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