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ABSTRACT

In this paper, automatic classification of QAM signals including 64-state
QAM and 256-state QAM s discussed. Three layer neural networks whose
input data is the histogram distribution of instantaneous amplitude at symbol
points is used for the classification. The evaluations of classification
performance are carried out for both cases in which the synchronization of
symbol timing is assured at the receiver and not assured. Good classification
results are obtained by the computer simulations at SNR  10dB. The
influence of the number of symbol points which are used for the calculation
ofhistogram is also discussed.

1 INTRODUCTION

Automatic modulation classifier can be defined as the system which
identifies the modulation type of input signal automatically andreportsthe
estimation results, and has many applications in the field of commumication.
For example, this technique can be applied to the universal demodulator
which can recognize the opposite modulation types in real time and choose
the optimum demodulator.

Many investigations about automatic classification of modulation signals
have been carried out in the past. As for the classification of digital
modulation signals, there are following investigations. Soliman et al
developed the classification algorithm based on the nth moment of signal
phase to classify M-ary PSK signals[1,2]. Nandi et al classified some digital
modulation signals by the spectrum symmetry around carrier frequency,
standard deviation of instantaneous amplitude and so forth [3].

Those abovementioned investigations did not discuss the classification of
QAM signals, because QAM has not been generally used in the past.
However, with the recent advance of communication technologies, QAM
has become used especially for high capacity radio communication.
Therefore, interest for QAM signal classification is increasing, and some
investigations have been carried out recently. Sills proposed the maximumn
likelihood algorithm which is based on the probability density function of
amplitude and phase difference [4]. Yang et al proposed the log-likelihood
function-based algorithm for QAM classification based on the probability

density function of amplitude and classified 16QAM and 32QAM
signals[5]. However, the classification method based on the maximum:
likelihood algorithm is difficult to be applied to QAM signals whose
constellations are square and mutually close[6]. Therefore, it is desirable that
the pattem recognition method such as neural networks with generalization
ability which enables to recognize unknown patterns is applied to the
classification of QAM signals. In this study, neural networks whose input
expresses the distribution of instantaneous amplitude at symbol points is
applied to the classification of QAM signals including 64-state QAM and
256-state QAM. And we also evaluate the case in which the synchronization
of symbol timing is unknown at the receiver (asynchronous case). For the
estimation of symbol timing, the block demodulation method based on the
block processing of input signal [ 7] is used in this study.

This paper is organized as follows. In Section 2, the block demodulation
method and its estimation performance of symbol timing are shown. The
structure and leaming algorithm of neural networks are explained inSection
3. The evaluation results of classification performance are discussed in
Section 4, and conclusions are presented in Section 5.

2 BLOCK DEMODULATION

Inthis section, block demodulation method to estimate the symbol timings of
input signal by block processing is explained. Fig.1 shows ablock diagram
ofblock demodulator. Block demodulator consists of three parts as follows,
the quasi synchronous orthogonal demodulator, the estimator of symbol
timing based on
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FFT processing and the estimator of carrier information based on the least
square method. In this study, exact estimation of carrier information is not
necessary. Therefore, the explanation of estimator of carrier information is
omitted.

In the quasi synchronous orthogonal demodulator, received signal is
multiplied by a fixed reference carrier which is adjusted around the true
carrier frequency. Therefore, quasi in-phase(I) and quadrature-phase(Q)
components obtained by the demodulator have the carrier frequency offset
and initial phase error. Those components can be given by
where a(t) and b(t) are true Iand Q components, ~ fisthe camier fiequency

B/(t) =p(thcodertit+Q) - o) snerait+§). (o)

offset,and g istheinitial phase error. The influence of carrier frequency and
initial phase eror can be eliminated by the calculation of square sum of T
component and Q component. The square sum component can be

expressed as

a® (nT,)+b* (0T, )=a’(nT,) +0*(nT,). 3
where Ts is the sampling period of AD conversion. These square sum
components can be regarded as the symbol rate components. Therefore,
symbol rate components can be obtained by FFT processingof thesesquare
sum data and choice of maximum peak component. However, symbol
timing is generally asynchronous to the sampling timing, and maximum
peak component is not an exact symbol rate component. Therefore,
maximum peak component and largest one among the adjacent
components are chosen as the symbol rate components and processed by
inverse-FFT.

Real components and imaginary components obtained by inverseFFTae
the phase components of symbol rate which is given by

Re al = cos(27E,nT, +6), (4)
where f,is the symbol rate frequency. Symbol rate phase can be obtained by
arctangent between the real component and imaginary component and

expressed as
Symbol points are defined as the middle points of each symbols where
Im ag =sin (278,nT, + 6), (5
(nTg) equals to . However, symbol points should be decided by
interpolation in this case because symbol timing is asynchronous to sampling
timing. We used the spline curve method for interpolation.

@nT,) =[27%,nT, + @ mod 277 (6)
Fig.2 shows the estimation result of symbol rate obtained by block
demodulation method. The conditions for computer simulations are as
follows.
3.7 carriers per symbol period
4.7 sampling points per carrier period
initial phase error to true carrier : 0.1rad
cosine roll-off factor of band-limitation filter : 1.0
8192 sampling points per analysis block
Modulating signals are generated by FSR sequences which is given by
Inthis study, constellation configurations of QAM signals are supposed to
1+x*+x7 =0. (7)
be square type.

Inthe figure, estimation error is expressed as the relative error to the true
value. 100 simulations are carried out for each modulation type and SNR,
and averages are shown in the figure. It can be known that estimation errors
are below 0.02% for all cases and symbol rate can be estimated precisely.

Fig.2. Estimation result of symbol rate.
3 NEURAL NETWORK MODEL

‘Wehave used three layer neural networks with a hidden association layer for
the classification of QAM signals. The input to networks is the histogram
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distribution of instantaneous amplitude at symbol points. The division
number of histogram, which equals to the number of units in the input layer,
is chosen to be 50 for minimizing the correlations between QAM signals.



The input-output function of input layer units is the linear function, and the
ones of association layer units and output layer units are the log-sigmoid
function. Back propagation leaming method is used for training networks.
‘We have chosen the leaming rate and stabilized constant which decide the
leaming speed to be 0.1 and 0.9 respectively.

Furthermore, we have applied some methods to optimize the network
structure. Generally, the optimum number of association layer units is
unknown and decided empirically. In this study, we have used goodness
factor G [8] to decide the optimum number of association layer units.
Goodness factor is defined as

f= 3 3 Wroi(e) ®)

where p is the pattern of input data, w is the weight function andOis the
output of unit. Goodness factor expresses the total output which propagates
into the forward direction in the leaming process. Therefore, an unit with
minimum value of goodness factor can be regarded as most useless unit
from the viewpoint of recognition and removed from networks. And there is
also a problem that neural networks fall into the local mininmum and cannot
escape from there. We have used Network excitation method [9] to prevent
networks from falling into the local minimum. This method maintains the
output of each unit between 0.1 and 0.9, therefore the networks can be
activated continually.

Fig.3 shows the iterative leaming algorithm. If leaming is practiced in the
predetermined times and the recognition is successful for all leaming data,
most useless unit detected by goodness factor is removed and networks is
initialized by Network excitation method. If recognition failed and iterative
number of leamning is above the predetermined threshold value, an unit is
added to the association layer and learning continues.

The histogram of 16QAM, 64QAM and 256QAM signals at
SNR=30,20 and 10dB are used for the leaming. Two cases when symbol
timing is ensured (synchronous case) or estimated by block demodulation
method (asynchronous case) are leamed.

Namely, 18 leaming data sets are used. Numbers of symbol
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points used for the calculation of histograms are 2000 for synchronous case
and 471 for asynchronous case respectively.

Fig4 shows the change of number of association layer units in the leaming
process. It can be known that the number of units is decreased continuously
by the removal of useless units. We have chosen the number of units tobe 34
in consideration of the error between teaching signal and actual network
output.

4 PERFORMANCE EVALUATION

Fig.5 and 6 show the results of performance evaluation of neural networks.
500 trials are practiced for each modulation types and SNR, and 400 symbol
points are used for the calculation of histogram. Ifall outputs of output layer
units do not exceed 0.5, input signal is regarded as unknown modulation
type. As for the synchronous case, good classification results are obtained
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Fig.7.Change by number of symbol points (synchronous case).

for all modulation typesat SNR  10dB. However, as for the asynchronous
case, classification performance for 64 QAM begins to be worse at
SNR 15dB. Good classification performance is obtained for 256QAM
even at low SNR. It is because distribution of instantaneous amplitude
becomes uniform atlow SNR and all QAM signals tend to be classified as
256QAM.

Fig.7 shows the change of successful classification rate by the number of
symbol points used for the calculation of histogram. It

can be known that 256QAM signal is most influenced and the classification
rate begins to fall at number=200. Threshold number of symbol points for
64QAM is about 50, and as for 16QAM, good classification performance is
obtained even at number=13.

5. CONCLUSIONS

We have evaluated the classification performance of three layer neural
networks for QAM signals. Threshold SNR for correct classification are
about 10dB for synchronous case and 15dB for asynchronous case
respectively. All QAM signals tend to be classified as 256QAM signal at low
SNR becausedistribution of instantaneous amplitude becomes uniform.
Threshold number of symbol points for the correct classification of each
modulation signal is also obtained.
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