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ABSTRACT 
In this paper, automatic classification of QAM signals including 64-state 

QAM and 256-state QAM is discussed. Three layer neural networks whose 

input data is the histogram distribution of instantaneous amplitude at symbol 

points is used for the classification. The evaluations of classification 

performance are carried out for both cases in which the synchronization of 

symbol timing is assured at the receiver and not assured. Good classification 

results are obtained by the computer simulations at SNR 10dB. The 

influence of the number of symbol points which are used for the calculation 

of histogram is also discussed.  

 
1. INTRODUCTION 

 

Automatic modulation classifier can be defined as the system which 

identifies the modulation type of input signal automatically and reports the 

estimation results, and has many applications in the field of communication. 

For example, this technique can be applied to the universal demodulator 

which can recognize the opposite modulation types in real time and choose 

the optimum demodulator.  

   Many investigations about automatic classification of modulation signals 

have been carried out in the past. As for the classification of digital 

modulation signals, there are following investigations. Soliman et al 

developed the classification algorithm based on the nth moment of signal 

phase to classify M-ary PSK signals [1,2]. Nandi et al classified some digital 

modulation signals by the spectrum symmetry around carrier frequency, 

standard deviation of instantaneous amplitude and so forth [3].  

   Those abovementioned investigations did not discuss the classification of 

QAM signals, because QAM has not been generally used in the past. 

However, with the recent advance of communication technologies, QAM 

has become used especially for high capacity radio communication. 

Therefore, interest for QAM signal classification is increasing, and some 

investigations have been carried out recently. Sills proposed the maximum-

likelihood algorithm which is based on the probability density function of 

amplitude and phase difference [4]. Yang et al proposed the log-likelihood 

function-based algorithm for QAM  classification based on the probability 

density function of amplitude and classified 16QAM and 32QAM 

signals[5]. However, the classification method based on the maximum-

likelihood algorithm is difficult to be applied to QAM signals whose 

constellations are square and mutually close[6]. Therefore, it is desirable that 

the pattern recognition method such as neural networks with generalization 

ability which enables to recognize unknown patterns is applied to the 

classification of QAM signals. In this study, neural networks whose input 

expresses the distribution of instantaneous amplitude at symbol points is 

applied to the classification of QAM signals including 64-state QAM and 

256-state QAM. And we also evaluate the case in which the synchronization 

of symbol timing is unknown at the receiver (asynchronous case). For the 

estimation of symbol timing, the block demodulation method based on the 

block processing of input signal [7] is used in this study.    

   This paper is organized as follows. In Section 2, the block demodulation 

method and its estimation performance of symbol timing are shown. The 

structure and learning algorithm of neural networks are explained in Section 

3. The evaluation results of classification performance are discussed in 

Section 4, and conclusions are presented in Section 5.  

 

2. BLOCK DEMODULATION 
 

In this section, block demodulation method to estimate the symbol timings of 

input signal by block processing is explained. Fig.1 shows a block diagram 

of block demodulator. Block demodulator consists of three parts as follows, 

the quasi synchronous orthogonal demodulator, the estimator of symbol 

timing based on    
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g.1.  Block demodulator. 

FFT processing and the estimator of carrier information based on the least 

square method. In this study, exact estimation of carrier information is not 

necessary. Therefore, the explanation of estimator of carrier information is 

omitted. 

   In the quasi synchronous orthogonal demodulator, received signal is 

multiplied by a fixed reference carrier which is adjusted around the true 

carrier frequency. Therefore, quasi in-phase(I) and quadrature-phase(Q) 

components obtained by the demodulator have the carrier frequency offset 

and initial phase error. Those components can be given by 

where a(t) and b(t) are true I and Q components, f is the carrier frequency 

offset, and 0 is the initial phase error. The influence of carrier frequency and 

initial phase error can be eliminated by the calculation of square sum of I 

component and Q component. The square sum component can be 

expressed as 

where Ts is the sampling period of AD conversion. These square sum 

components can be regarded as the symbol rate components. Therefore, 

symbol rate components can be obtained by FFT processing of these square 

sum data and choice of maximum peak component. However, symbol 

timing is generally asynchronous to the sampling timing, and maximum 

peak component is not an exact symbol rate component. Therefore, 

maximum peak component and largest one among the adjacent 

components are chosen as the symbol rate components and processed by 

inverse-FFT.   

   Real components and imaginary components obtained by inverse-FFT are 

the phase components of symbol rate which is given by  

where fb is the symbol rate frequency. Symbol rate phase can be obtained by 

arctangent between the real component and imaginary component and 

expressed as   

   Symbol points are defined as the middle points of each symbols where 

(nTs) equals to . However, symbol points should be decided by 

interpolation in this case because symbol timing is asynchronous to sampling 

timing. We used the spline curve method for interpolation. 

   Fig.2 shows the estimation result of symbol rate obtained by block 

demodulation method. The conditions for computer simulations are as 

follows.  

3.7 carriers per symbol period 

4.7 sampling points per carrier period 

initial phase error to true carrier : 0.1rad 

cosine roll-off factor of band-limitation filter : 1.0 

8192 sampling points per analysis block 

   Modulating signals are generated by FSR sequences which is given by  
   In this study, constellation configurations of QAM signals are supposed to 

be square type.  

   In the figure, estimation error is expressed as the relative error to the true 

value. 100 simulations are carried out for each modulation type and SNR, 

and averages are shown in the figure. It can be known that estimation errors 

are below 0.02% for all cases and symbol rate can be estimated precisely.    
Fig.2.  Estimation result of symbol rate. 

3. NEURAL NETWORK MODEL 
  

We have used three layer neural networks with a hidden association layer for 

the classification of QAM signals. The input to networks is the histogram 

distribution of instantaneous amplitude at symbol points. The division 

number of histogram, which equals to the number of units in the input layer, 

is chosen to be 50 for minimizing the correlations between QAM signals. 
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The input-output function of input layer units is the linear function, and the 

ones of association layer units and output layer units are the log-sigmoid 

function. Back propagation learning method is used for training networks. 

We have chosen the learning rate and stabilized constant which decide the 

learning speed to be 0.1 and 0.9 respectively.  

   Furthermore, we have applied some methods to optimize the network 

structure. Generally, the optimum number of association layer units is 

unknown and decided empirically. In this study, we have used goodness 

factor Gi
k
 [8] to decide the optimum number of association layer units. 

Goodness factor is defined as 

where p is the pattern of input data, w is the weight function and O is the 

output of unit. Goodness factor expresses the total output which propagates 

into the forward direction in the learning process. Therefore, an unit with 

minimum value of goodness factor can be regarded as most useless unit 

from the viewpoint of recognition and removed from networks. And there is 

also a problem that neural networks fall into the local minimum and cannot 

escape from there. We have used Network excitation method [9] to prevent 

networks from falling into the local minimum. This method maintains the 

output of each unit between 0.1 and 0.9, therefore the networks can be 

activated continually. 

   Fig.3 shows the iterative learning algorithm. If learning is practiced in the 

predetermined times and the recognition is successful for all learning data, 

most useless unit detected by goodness factor is removed and networks is 

initialized by Network excitation method. If recognition failed and iterative 

number of learning is above the predetermined threshold value, an unit is 

added to the association layer and learning continues. 
   The histogram of 16QAM, 64QAM and 256QAM signals at 

SNR=30,20 and 10dB are used for the learning. Two cases when symbol 

timing is ensured (synchronous case) or estimated by block demodulation 

method (asynchronous case) are learned.  

Namely, 18  learning data sets are used. Numbers of symbol 
 
 
 
 
 
 
 
  
  
  
  
  

  
 

Fig.3.  Iterative learning algorithm. 

Fig.4.  Number of association layer units. 

  

points used for the calculation of histograms are 2000 for synchronous case 

and 471 for asynchronous case respectively. 

   Fig.4 shows the change of number of association layer units in the learning 

process. It can be known that the number of units is decreased continuously 

by the removal of useless units. We have chosen the number of units to be 34 

in consideration of the error between teaching signal and actual network 

output.  

    

4. PERFORMANCE EVALUATION 
 

Fig.5 and 6 show the results of performance evaluation of neural networks. 

500 trials are practiced for each modulation types and SNR, and 400 symbol 

points are used for the calculation of histogram. If all outputs of output layer 

units do not exceed 0.5, input signal is regarded as unknown modulation 

type. As for the synchronous case, good classification results are obtained  
    Fig.5.  Classification result (synchronous case). 

  Fig.6.  Classification result (asynchronous case). 
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  Fig.7. Change by number of symbol points (synchronous case). 

 
for all modulation types at SNR 10dB. However, as for the asynchronous 

case, classification performance for 64 QAM begins to be worse at 

SNR 15dB. Good classification performance is obtained for 256QAM 

even at low SNR. It is because distribution of instantaneous amplitude 

becomes uniform at low SNR and all QAM signals tend to be classified as 

256QAM. 

   Fig.7 shows the change of successful classification rate by the number of 

symbol points used for the calculation of histogram. It  

 

 

can be known that 256QAM signal is most influenced and the classification 

rate begins to fall at number=200. Threshold number of symbol points for 

64QAM is about 50, and as for 16QAM, good classification performance is 

obtained even at number=13.           

 

5. CONCLUSIONS 
 

We have evaluated the classification performance of three layer neural 

networks for QAM signals. Threshold SNR for correct classification are 

about 10dB for synchronous case and 15dB for asynchronous case 

respectively. All QAM signals tend to be classified as 256QAM signal at low 

SNR because distribution of instantaneous amplitude becomes uniform. 

Threshold number of symbol points for the correct classification of each 

modulation signal is also obtained.  
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