
CORDIC REALIZATION OF THE TRANSVERSAL ADAPTIVE FILTER

USING A TRIGONOMETRIC LMS ALGORITHM

Mrityunjoy Chakraborty, Anindya S. Dhar, Suraiya Pervin
Dept. of Electronics and Electrical Communication Engineering,
Indian Institute of Technology, Kharagpur-721302, W.B., India.

e-mail: {mrityun,asd,pervin}@ece.iitkgp.ernet.in.

 ABSTRACT

This paper presents a class of pipelined CORDIC
architectures for the LMS-based transversal adaptive
filter. For this, an alternate formulation of the LMS
algorithm is considered, obtained by expressing the mean
square error as a convex function of a set of angle
variables that are monotonically related to the filter tap
weights. The proposed architectures employ microlevel
pipelining and are adjustable to strike tradeoffs between
throughput efficiency vis-à-vis hardware complexity.

 1. INTRODUCTION

Since the last two decades, the implementation and
application of CORDIC arithmetic [1] continue to evolve
into very useful areas because of its numerical stability,
efficiency in evaluating trigonometric functions and
hyperbolic transformations, hardware compactness and
computational simplicity [2]. In the field of signal
processing, CORDIC method has been employed
successfully for a wide range of applications like
performing FFT, DCT, DST, SVD and other matrix
operations, filtering and array processing [2]. For the case
of the LMS-based adaptive filters, however, the CORDIC
based approach has so far remained confined largely to
lattice filters ([3]-[4]) and seemingly has not been
extended to the transversal form, as, in the case of the
former, the computations in each stage can be related
easily to a set of hyperbolic operations, while no such
direct hyperbolic, or, trigonometric interpretation exists
for the computations present in the latter. In this paper, we
first propose an alternate formulation of the LMS
algorithm using a set of trigonometric variables which are
monotonically related to the transversal filter coefficients.
Subsequently, we present two CORDIC based
architectures which implement the proposed trigonometric
LMS (TLMS) algorithm. Simulation results highlighting

the convergence behaviour of the TLMS algorithm are
also presented.

2. A TRIGONOMETRIC FORMULATION OF THE
LMS ALGORITHM

We begin by first considering the steepest descent search
procedure that arises in the optimal FIR filtering problem.
Given an input sequence)(nx , desired response)(nd

and a N-tap filter coefficient vector =)(nw ,,,[10 Kww
t

Nw]1- , the optimal filter t
Nwww]ˆ,,ˆ,ˆ[ˆ 110 -

= Kw is

obtained by minimizing the mean square error (MSE)

function)]([22 neE=e , where)(ne is the error signal at

the filter output and is given by)()()()(nnndne t xw-= ,

with tNnxnxnxn)]1(,),1(),([)(+--= Lx . The MSE 2
e

is a convex function of the filter coefficients swk ' , ,0=k

1,,1 -NK and defines the so called error performance
surface in an N+1 dimensional space. In the proposed
alternative, we select a set of N positive numbers ,' sAk k

= ,0 1,,1 -NK , so that the minima of the error performa-
nce surface is contained in the hypercube with vertices:

,[0A± t
NAA],, 11 -

±± K (In practice 'kA s are taken to be

some powers of 2 for convenience in hardware

realization). Each tap weight kw in the above range can

then be expressed as kkk Aw qsin= , 22
pp

q +<<- k .

Since each kw Î ,[kA-]kA+ maps uniquely to a Îkq

],[22
pp

+- , the MSE 2
e , when expressed as a function of

kq ’s has a unique minima at),ˆ(sinˆ 1
kk w-

=q

,0=k 1,,1 -NK , located within a hypercube in the q

space with vertices:],,,[222
ppp

±±± L . Further, the

function kqsin is a monotonically increasing, continuous

function of kq , as kq varies from 2
p

- to + 2
p , meaning

that,
kq

e

¶

¶

2
 has the same sign as that of

kw¶
¶

2
e everywhere

within the hypercube. In other words, the MSE does not
exhibit any local minima within the specified hypercube.
 In the proposed scheme, a steepest descent search is

taken up in the q space in order to reachq̂ . The gradient
2

e
q

Ñ is easily seen to be given by 22
-=Ñ e

q

Rw)p -(DD , where K,sin,sin[1100 qq AA=w 1,
-NA

t
N n)](sin 1-q ,)]()([ndnE xp = ,)]()([nnE txxR = and

DD is a diagonal matrix with j-th diagonal entry given by

jjjj A qcos. =D , j = 0, 1,K ,N-1. The iterate)(iq

arising in the i-th step of iteration is then updated as :

 -=+)()1(ii qq m
2

e
q

Ñ
=qq)(iq

where m is some appropriate step size. To move from

the steepest descent to the LMS form, we simply replace

R and p by)()(nn txx and)()(ndnx respectively in the

expression for 2
e

q
Ñ in order to obtain an estimate of the

gradient at index n. This leads to the so called
“Trigonometric LMS (TLMS)” algorithm as follows:
 +=+)()1(nn qqqq m)()()(nenn xDD , (1)

 �
-

=

--=

1

0

)()(sin)()(
N

k
kk knxnAndne q (2)

The TLMS algorithm is particularly suitable for
CORDIC based realization, since the two quantities:

)()(sin knxnA kk -q and)()(cos knxnA kk -q , ,0=k

1,,1 -NK , required for filtering by and updatation of
the k-th coefficient respectively can be computed
simultaneously by engaging only one CORDIC proce-
ssor. For pipelined realization, it may, however, be more
appropriate to consider the trigonometric analog of an
approximate version of the LMS algorithm, popularly
known as the “Delayed LMS”(DLMS) algorithm [5],
where the filter coefficients at the n-th index are updated
using a past estimate of the gradient, say, for index

)(Ln - , where L is an integer. The correction term in the

weight update formula then gets modified to
)()(LneLn --xm and the resulting L cycle delay in the

error feedback path is used for retiming purpose. The
trigonometric analog of the DLMS algorithm can be
easily worked out by substituting R, p and w in the

gradient expression by)(LnL)n t
-- xx(, -- d(nLn)(x

)L and),(sin[00 LnA -q sin,),(sin 111 -

- NALnA Kq

t
N Ln)](1 -
-

q respectively and is given by

 +=+)()1(nn qqqq)()()(LneLnLn --- xDDm (3)

 It may, however, be noted that unlike the
conventional LMS, it is very difficult to prove
convergence of the TLMS and the delayed TLMS
(DTLMS) algorithms analytically owing to the presence
of nonlinearities in the form of trigonometrical quantities

in (1), (2) and (3). Both the TLMS and the DTLMS
algorithms, however, have been simulated extensively in
the context of a wide class of applications and promising
convergence results observed in each case. In this paper,
we present simulation results for equalizing an AWGN

channel with transfer function)21()(1-
+= zzH

)1(1
2
1 -

- z and noise variance .077. The transmitted sy-

mbols were chosen from an alphabet of 16 equispaced,
equiprobable discrete amplitude levels with transmitted
signal power of 10 dB. A 9 tap equalizer with centre
placed at the 5-th tap position was used for equalizing
the channel and a step size of m = .0004 was adopted for

weight updatation by the DTLMS algorithm. The
resulting output error characteristics, displayed in Fig. 1
by plotting)(ne vs. n, confirms satisfactory convergence

properties of the proposed method.

3. PROPOSED CORDIC ARCHITECTURE

The CORDIC algorithm [1] provides an efficient way of
implementing (2) and (3). This algorithm essentially
rotates a two dimensional vector by running the iterati-

ons: i
i

iii yxx -

+

-= 21 d , ii
i

ii yxy +=
-

+

21 d and =
+1ie

arctanii de -)2(i- , where)sgn(ii ed = , i=0, 1,…, M-1,

M being the wordlength of implementation. After M
iterations, for large M,),sincos(00 qq yxkxM -®

+® qsin(0xkyM)cos0 qy and 0®Me where =k

�
-

=

1
0 cos(arctan/1 M

i))2(i- is the so called scale factor

having a constant value for a particular machine with
wordlength M and),(00 yx is the initial two dimensio-

nal vector, qe =
0

 being the desired angle of rotation.

Fig. 2 shows a CORDIC realization of a N tap TLMS-
based adaptive filter which achieves microlevel
pipelining by using pipelined CORDIC processor units.
Note that each stage within the CORDIC processor needs
to employ only adder/subtractors, while the shifting

operations implicit in the multiplications by i-2 can be
carried out simply by adopting fixed oblique bus
connection instead of hardware-hungry variable shifters.
Since the critical path delay arising from the CORDIC
processors as well as from the pipelined multipliers
amounts to that of a single adder/subtractor, this
architecture can indeed process very high throughput
data, typically of the order of hundreds of megahertz.
 It is, however, possible to achieve considerable
reduction in hardware complexity, as well as in latency
if the architecture is allowed to operate at a clock faster
than the input. This will involve replacing group of
CORDIC blocks (also the pipelined multipliers) by
single units and adopting appropriate sequencing of the
data through these units. As a special case, we consider

the architecture shown in Fig. 3 which employed a single
pipelined CORDIC processor and a single pipelined
multiplier driven by a primary clock that is N+1 times
faster than the input. Three FIFOs, R1, R2 and R3 are
used for proper sequencing of the input data, tap weights,
and intermediate results required for weight updating. N
number of samples are circulated through R1 at the
primary clock rate, while a new sample is introduced at
every N+1-th clock cycle by flipping a MUX. The
CORDIC pipeline computes)()(sin knxnA kk -q and

)()(cos knxnA kk -q concurrently. However, as it takes

N+1 additional clock cycles for the hardware to compute
the error term)(ne in (2), the latter terms are buffered in

R2 of length N+1 to maintain the synchronism required
between the indices of (.)e and (.)(.)xDD while evaluating

(3). Note that after every N clock cycles, a don’t care state
is introduced into the CORDIC pipe to balance one extra
clock cycle (N+1-th cycle for a N tap filter) required for
computing (2). The FIFO R3, having length N+1, is used

to store the angles kq and the position of the tapping from

R3 is adjusted to maintain correctness of the input of the
CORDIC unit vis-à-vis the data input. Finally, the
CORDIC pipeline introduces a scale factor)6.1(»

implying that the stepsize in (3) should be chosen as
56.2/m .

 4. DISCUSSION AND CONCLUSION

In this paper, we have presented an alternate formulation
of the LMS algorithm by mapping the filter tap weights to
a set of trigonometric variables. The resulting algorithm
directly conforms to CORDIC based realizations and two
architectures have been presented both of which employ
microlevel pipelining by engaging pipelined CORDIC
blocks. The proposed algorithm has also been shown to
process satisfactory convergence characteristics through
extensive simulation studies.

Fig. 1. Convergence behaviour of the delayed TLMS algorithm.

0

5

10

15

20

25

1 66 131 196 261 326 391 456 521 586 651 716 781 846 911 976

number of iterations

M
S

E

 5. REFERENCES

[1] J. E. Volder, “The CORDIC trigonometric computing
technique,” IRE Trans. Electron. Comput., vol. EC-8,
no. 3, pp. 330-334, Sept. 1959.

[2] Y. H. Hu, “CORDIC-Based VLSI architecture for
digital signal processing”, IEEE Signal Processing
Magazine, vol. 9, no 3, pp 16-3, July 1992..

[3] Y. H. Hu and H. E. Liao, “CALF: a CORDIC
adaptive lattice filter”, IEEE Trans. Signal
Processing”, vol. 40, no. 4, pp. 990-993, April 1992.

[4] Yu Hen Hu, “On the convergence of the CORDIC
adaptive lattice filtering (CALF) algorithm”, IEEE

Trans. Signal Processing, vol. 46, no. 7, pp. 1861-
1871, July 1998.

[5] G.Long, F. Ling, J. G. Proakis, “The LMS algorithm
with delayed coefficient adaptation”, IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-37,
pp. 1397-1405, September 1989.

[6] M. Chakraborty, A. S. Dhar and S. Pervin, “CORDIC
realization of transversal adaptive filters using a
Trigonometric/Hyperbolic LMS algorithm”, commu-
nicated to IEEE Trans. Circuits and Systems, part II .

+ D

2D

+ +
y(n-L)

+

e(n-L)q0 q1 qN-1

x(n)

0

me(n-L)

+L ¢ L¢L ¢ +

D D

2D

D +

xsinqxcosq

x(n) 0

m

x(n-1) x(n-N)x(n-2)

+

+

M
U

X

+

e(n-L)

y(n-L)

)(0 nq

Fig. 2. Transversal adaptive filter architecture using N number
 of pipelined CORDIC blocks(C) and pipelined multipliers (M).

Fig. 3. Transversal adaptive filter architecture using one
 pipelined CORDIC block and one pipelined multiplier.

d(n-L)

d(n-L)

+

-

+

-

C C C

M M M

C

M

