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ABSTRACT
This paper describes a predominant-F0 (fundamental fre-

quency) estimation method calledPreFEst, which can detect
melody and bass lines in monaural audio signals containing sounds
of various instruments. While most previous methods premised
mixtures of a few sounds and had difficulty dealing with such com-
plex signals, our method can estimate the F0 of the melody and bass
lines without assuming the number of sound sources in compact-
disc recordings. In this paper we propose the following three exten-
sions to our previous PreFEst to make it more adaptive and flexible:
introducing multiple harmonic-structure tone models, estimating
the shape of tone models, and introducing a prior distribution of its
shape and F0 estimates. These extensions were implemented by the
MAP (MaximumA Posteriori Probability) estimation by using the
Expectation-Maximization algorithm. Experimental results with
compact-disc recordings showed that our real-time system based
on the extended PreFEst achieved performance improvement.

1. INTRODUCTION

Our goal is to build a real-time system that can detect melody and
bass lines in monaural complex real-world audio signals, such as
those sampled from commercially distributed compact discs. This
detection is an important initial step in computer emulation of hu-
man music understanding because the melody and bass lines are
fundamental to the perception of Western music. In addition, the
detected melody and bass lines are useful in various practical appli-
cations, such as automatic music indexing for information retrieval
(e.g., searching for a song by singing a melody), computer partic-
ipation in live human performances, and analysis of recordings of
outstanding performances.

Although this detection requires the estimation of the funda-
mental frequency (F0, perceived as pitch) of the melody and bass
lines, it has been considered very difficult to estimate the F0 in
complex audio signals sampled from compact discs. The main rea-
sons are: in compact-disc recordings, the number of sound sources
cannot be assumed, the frequency components of one sound of-
ten overlap frequency components of simultaneous sounds, and the
F0’s frequency component (the frequency component correspond-
ing to the F0) is sometimes missing or very weak (missing funda-
mental). Most previous F0-estimation methods [1, 2, 3, 4], how-
ever, premised that the input contained just a single-pitch sound
with aperiodic noises. Although several methods for dealing with
multiple-pitch mixtures were proposed [5, 6, 7, 8], they dealt with
at most three musical instruments or voices and had difficulty deal-
ing with compact-disc recordings.

We therefore developed a method, calledPreFEst (Predomi-

nant-F0 Estimation method), that can detect the melody and bass
lines in complex mixtures containing simultaneous sounds of vari-
ous instruments (even drums) [9]. PreFEst has the advantages that
it does not assume the number of sound sources, it does not locally
trace frequency components, and it does not rely on the existence of
the F0’s frequency component. It basically estimates the F0 of the
most predominant harmonic structure in the input sound mixture;
it simultaneously takes into consideration all the possibilities of F0
and considers that the input mixture contains every possible har-
monic structure with different weights (amplitude). It regards the
input frequency components as a weighted mixture of harmonic-
structure tone models of all possible F0s and then finds the F0 of
the maximum-weight model corresponding to the most predomi-
nant harmonic structure.

PreFEst reported in our earlier paper [9] had three limitations.
First, although various kinds of harmonic structure appear at dif-
ferent F0s and even at the same F0, just a single harmonic-structure
tone model was prepared for each F0. Second, the shape of tone
model was fixed as if one ideal tone model was always assumed:
the relative amplitude of each harmonic component was constant.
Because it did not exactly coincide with the harmonic structure
contained in the input, there was room for refining the tone-model
management in a more adaptive way. Third, even if prior knowl-
edge about very rough F0 estimates of the melody and bass lines
is available, we were not able to incorporate it into the estimation.
Such prior rough estimates can be given in some practical applica-
tions where more precise F0 with less errors is required; for exam-
ple, the analysis of expression in a recorded performance needs to
estimate the actual F0 by using its rough estimate that can be given
by a score or by playing a MIDI instrument along to the original
recorded performance.

In the following sections we describe how we extended our
previous PreFEst so that it can overcome the above three limita-
tions. We first give an overview of PreFEst described in [9] and
then describe the details of the three extensions that make it possi-
ble to overcome the above limitations. The main idea is to intro-
duce multiple adaptive tone models and prior knowledge, and to
estimate the model parameters on the basis of the MAP (Maximum
A Posteriori Probability) estimation by using theExpectation-
Maximization (EM) algorithm. Finally, we show experimental re-
sults of a real-time system based on the extended method.

2. OVERVIEW OF PREFEST

PreFEst estimates the most predominant F0 in frequency-range-
limited sound mixtures. Since the melody line tends to have
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frequency regions and the bass line tends to have the most pre-
dominant harmonic structure in a low-frequency region, we can
estimate the F0s of the melody and bass lines by applying PreFEst
with appropriate frequency-range limitation [9, 10].

To use statistical methods, we represent the input bandpass-
filtered frequency components as a probability density function
(PDF), calledobserved PDF, which is estimated by using multirate
signal-processing techniques and instantaneous-frequency-related
measure [9, 10]. We then consider that the observed PDF has been
generated from a weighted-mixture model of tone models of all
possible F0s; a tone model is the PDF corresponding to a typi-
cal harmonic structure of every possible F0. Because the weights
of tone models represent the relative dominance of every possible
harmonic structure, we can regard those weights as the PDF of the
F0 (F0’s PDF): the more dominant a tone model in the mixture,
the higher the probability of the F0 of its model. As explained in
our earlier papers [9, 10], those weights (i.e., the F0’s PDF) can be
estimated by using the EM algorithm [11].

A simple way of determining the most predominant F0 is to
find the frequency that maximizes the F0’s PDF. This result is not
stable, however, because peaks corresponding to the F0s of simul-
taneous sounds sometimes compete in the F0’s PDF for a moment
and are transiently selected, one after another, as the maximum. We
therefore consider the global temporal continuity of the F0 by using
a multiple-agent architecture in which agents track different tem-
poral trajectories of the F0, and the final F0 output is determined
on the basis of the most dominant and stable F0 trajectory.

3. THREE EXTENSIONS

To overcome the three limitations described in the Introduction, we
propose the following three extensions of the previous PreFEst.
[Extension 1] Introducing multiple tone models

We prepare multiple tone models for each F0 and consider their
mixture model.

[Extension 2] Estimating the shape of tone models
We consider, as model parameters, the relative amplitude of
each harmonic component of all the tone models (calledthe
shape of tone model) as well as their weights, and estimate them
by using the EM algorithm.

[Extension 3] Introducing a prior distribution
To estimate the model parameters on the basis of their prior dis-
tribution, we use the MAP estimation instead of the maximum
likelihood estimation used in [9, 10]. Note that we can also take
into consideration a prior distribution of the shape of tone model
added to the model parameters by[Extension 2].

All of these extensions are dealt with in the process of estimat-
ing the F0’s PDFp(t)

F 0(F ) from the observed PDF (the PDF of the
bandpass-filtered frequency components),p(t)

Ψ (x). Here,t is the
time measured in units of frame-shift (10 msec), andx andF are
the log-scale frequency denoted in units ofcents (a musical-interval
measurement). FrequencyfHz in hertz is converted to frequency
fcent in cents as follows:

fcent = 1200 log2
fHz

440× 2
3
12−5

. (1)

3.1. Weighted-mixture model of extended tone models

For [Extension 1] and [Extension 2], we prepare multiple tone
models for each F0,F , and introduce the model parameter
µ(t)(F,m) to the m-th tone model whose PDF is denoted as

Figure 1: Model parameters of multiple adaptive tone models.

p(x|F,m,µ(t)(F,m)) (Figure 1). The number of tone models is
Mi (1 ≤ m ≤ Mi) wherei denotes the melody line (i = m) or the
bass line (i = b). The tone model that indicates where the harmon-
ics of the F0,F , tend to occur is defined as

p(x|F,m,µ(t)(F,m)) =

Hi∑
h=1

p(x, h|F,m, µ(t)(F,m)), (2)

p(x, h|F,m, µ(t)(F,m))

= c(t)(h|F,m) G(x;F + 1200 log2 h,Wi), (3)

µ(t)(F,m) = {c(t)(h|F,m) | h = 1, ...,Hi}, (4)

G(x;x0, σ) =
1√

2πσ2
e
− (x−x0)2

2σ2 , (5)

where Hi is the number of harmonics considered, W2
i is the vari-

ance of the Gaussian distributionG(x;x0, σ), andc(t)(h|F,m) de-
termines the relative amplitude of theh-th harmonic component
(the shape of tone model) and satisfies

Hi∑
h=1

c(t)(h|F,m) = 1. (6)

We then consider that the observed PDF was generated from
the following modelp(x|θ(t)) that is a weighted mixture of all pos-
sible tone modelsp(x|F,m,µ(t)(F,m)):

p(x|θ(t)) =

∫ Fhi

Fli

Mi∑
m=1

w(t)(F,m) p(x|F,m, µ(t)(F,m)) dF, (7)

θ(t) = {w(t), µ(t)}, (8)

w(t) = {w(t)(F,m) | Fli ≤ F ≤ Fhi,m = 1, ...,Mi}, (9)

µ(t) = {µ(t)(F,m) | Fli ≤ F ≤ Fhi,m = 1, ...,Mi}, (10)
where Fli and Fhi denote the lower and upper limits of the possible
(allowable) F0 range andw(t)(F,m) is the weight of a tone model
p(x|F,m,µ(t)(F,m)) which satisfies∫ Fhi

Fli

Mi∑
m=1

w(t)(F,m) dF = 1. (11)

Because we cannot knowa priori the number of sound sources,
it is important that we simultaneously take into consideration all
the possibilities of the F0 as expressed in Equation (7). If we
can estimate the model parameterθ(t) such that the observed PDF
p(t)

Ψ (x) is likely to have been generated from the modelp(x|θ(t)),
the weightw(t)(F,m) can be interpreted as the F0’s PDFp(t)

F 0(F )
becausew(t)(F,m) represents the relative dominance of the har-
monic structure:

p(t)
F 0(F ) =

Mi∑
m=1

w(t)(F,m) (Fli ≤ F ≤ Fhi). (12)



3.2. Introducing a prior distribution

For [Extension 3], we define a prior distributionp0i(θ(t)) of the
model parameterθ(t) as follows:

p0i(θ
(t)) = p0i(w

(t)) p0i(µ
(t)), (13)

p0i(w
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1
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e
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(15)
Here,p0i(w(t)) andp0i(µ(t)) are unimodal distributions;p0i(w(t))
takes the maximum value atw(t)

0i (F,m) and p0i(µ(t)) takes the
maximum value atµ(t)

0i (F,m), wherew(t)
0i (F,m) andµ(t)

0i (F,m)
(c(t)

0i (h|F,m)) are the most probable parameters.Zw andZµ are
the normalization factors, andβ(t)

wi andβ(t)
µi(F,m) are the parame-

ters determining how much emphasis is put on the maximum value;
β(t)

wi = 0 andβ(t)
µi(F,m) = 0 represent the noninformative prior

distribution (uniform distribution). In Equations (14) and (15),
Dw(w(t)

0i ;w(t)) andDµ(µ(t)
0i (F,m);µ(t)(F,m)) are defined as the

following Kullback-Leibler’s information:

Dw(w(t)
0i ;w(t)) =

∫ Fhi

Fli

Mi∑
m=1

w(t)
0i (F,m) log

w(t)
0i (F,m)

w(t)(F,m)
dF, (16)

Dµ(µ(t)
0i (F,m);µ(t)(F,m))

=

Hi∑
h=1

c(t)
0i (h|F,m) log

c(t)
0i (h|F,m)
c(t)(h|F,m)

. (17)

3.3. MAP estimation using EM algorithm

The problem to be solved is to estimate the model parameterθ(t) on
the basis of the prior distributionp0i(θ(t)) when we observep(t)

Ψ (x).
The MAP (MaximumA Posteriori Probability) estimator ofθ(t) is
obtained by maximizing∫ ∞

−∞
p(t)

Ψ (x) (logp(x|θ(t)) + logp0i(θ
(t))) dx. (18)

Because this maximization problem is too difficult to be solved an-
alytically, we use the EM algorithm to estimateθ(t). While the EM
algorithm is usually used for computing maximum likelihood esti-
mates from incomplete observed data, it can also be used for com-
puting MAP estimates as described in [11]. In the maximum like-
lihood estimation, the EM algorithm iteratively applies two steps,
the expectation step (E-step) computing the conditional expecta-
tion of the mean log-likelihood and themaximization step (M-step)
maximizing its expectation. On the other hand, in the MAP esti-
mation, it iteratively applies the E-step computing the sum of the
conditional expectation and the log prior distribution and the M-
step maximizing it. With respect toθ(t), each iteration updates the
‘old’ estimateθ′(t) = {w′(t), µ′(t)} to obtain the ‘new’ improved
estimateθ(t) = {w(t), µ(t)}.

By introducing hidden (unobservable) variablesF , m, and
h, which respectively describe which F0, which tone model, and
which harmonic component were responsible for generating each
observed frequency component atx, we can specify the two steps
as follows:

1. (E-step)
Compute the followingQMAP(θ(t)|θ′(t)) for the MAP estimation:

QMAP(θ(t)|θ′(t)) = Q(θ(t)|θ′(t)) + logp0i(θ
(t)), (19)

Q(θ(t)|θ′(t)) =

∫ ∞

−∞
p(t)

Ψ (x)

EF,m,h[log p(x,F,m, h|θ(t)) | x, θ′(t)] dx, (20)
where Q(θ(t)|θ′(t)) is the conditional expectation of the
mean log-likelihood for the maximum likelihood estimation.
EF,m,h[a|b] denotes the conditional expectation ofa with re-
spect to the hidden variablesF , m, andh with the probability
distribution determined by conditionb.

2. (M-step)
MaximizeQMAP(θ(t)|θ′(t)) as a function ofθ(t) in order to obtain
the updated (improved) estimateθ(t):

θ(t) = argmax
θ(t)

QMAP(θ(t)|θ′(t)). (21)

In the E-step,Q(θ(t)|θ′(t)) is expressed as

Q(θ(t)|θ′(t)) =

∫ ∞

−∞

∫ Fhi

Fli

Mi∑
m=1

Hi∑
h=1

p(t)
Ψ (x)

p(F,m,h|x, θ′(t)) logp(x, F,m, h|θ(t))dFdx, (22)
where the complete-data log-likelihood is given by

logp(x, F,m, h|θ(t))

= log(w(t)(F,m) p(x, h|F,m, µ(t)(F,m))). (23)
From Equation (13) the log prior distribution is given by

logp0i(θ
(t)) = − logZwZµ

−
∫ Fhi

Fli

Mi∑
m=1

(
β(t)

wiw
(t)
0i (F,m) log

w(t)
0i (F,m)

w(t)(F,m)

+ β(t)
µi(F,m)

Hi∑
h=1

c(t)
0i (h|F,m) log

c(t)
0i (h|F,m)
c(t)(h|F,m)

)
dF. (24)

Regarding the M-step, Equation (21) is a conditional problem
of variation, where the conditions are given by Equations (6) and
(11). This problem can be solved by using the following Euler-
Lagrange differential equations with Lagrange multipliersλw and
λµ:

∂

∂w(t)

(∫ ∞

−∞

Hi∑
h=1

p(t)
Ψ (x) p(F,m,h|x, θ′(t))

(logw(t)(F,m) + logp(x, h|F,m, µ(t)(F,m))) dx

− β(t)
wi w

(t)
0i (F,m) log

w(t)
0i (F,m)

w(t)(F,m)

− λw(w(t)(F,m) − 1
Mi(Fhi−Fli) )

)
= 0, (25)

∂

∂c(t)

(∫ ∞

−∞
p(t)

Ψ (x) p(F,m, h|x, θ′(t)) (logw(t)(F,m)

+ logc(t)(h|F,m) + logG(x;F + 1200 log2 h,Wi)) dx

− β(t)
µi(F,m) c(t)

0i (h|F,m) log
c(t)

0i (h|F,m)
c(t)(h|F,m)

− λµ(c(t)(h|F,m) − 1
Hi

)

)
= 0. (26)

From these equations we get

w(t)(F,m) =
1
λw

(∫ ∞

−∞
p(t)

Ψ (x) p(F,m|x, θ′(t)) dx

+ β(t)
wiw

(t)
0i (F,m)

)
, (27)



c(t)(h|F,m) =
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−∞
p(t)

Ψ (x)p(F,m, h|x, θ′(t)) dx

+ β(t)
µi(F,m)c(t)

0i (h|F,m)

)
. (28)

In these equations,λw andλµ are determined from Equations (6)
and (11) as

λw = 1 +β(t)
wi, (29)

λµ =

∫ ∞

−∞
p(t)

Ψ (x)p(F,m|x, θ′(t)) dx + β(t)
µi(F,m). (30)

From the Bayes’ theorem,p(F,m, h|x, θ′(t)) andp(F,m|x, θ′(t))
are given by

p(F,m, h|x, θ′(t)) =
w′(t)(F,m) p(x, h|F,m, µ′(t)(F,m))

p(x|θ′(t))
, (31)

p(F,m|x, θ′(t)) =
w′(t)(F,m) p(x|F,m, µ′(t)(F,m))

p(x|θ′(t))
. (32)

Finally we obtain the ‘new’ parameter estimatesw(t)(F,m) and
c(t)(h|F,m):

w(t)(F,m) =
w(t)

ML (F,m) + β(t)
wiw

(t)
0i (F,m)

1 +β(t)
wi

, (33)

c(t)(h|F,m) =

w(t)
ML (F,m) c(t)

ML (h|F,m) + β(t)
µi(F,m)c(t)

0i (h|F,m)

w(t)
ML (F,m) + β(t)

µi(F,m)
, (34)

wherew(t)
ML (F,m) andc(t)

ML (h|F,m) are the following maximum
likelihood estimates when the noninformative prior distribution
(β(t)

wi = 0 andβ(t)
µi(F,m) = 0) is given:

w(t)
ML (F,m) =

∫ ∞

−∞
p(t)

Ψ (x)

w′(t)(F,m) p(x|F,m, µ′(t)(F,m))∫ Fhi

Fli

∑Mi

ν=1 w
′(t)(η, ν) p(x|η, ν, µ′(t)(F, ν)) dη

dx, (35)

c(t)
ML (h|F,m) =

1

w(t)
ML (F,m)

∫ ∞

−∞
p(t)

Ψ (x)

w′(t)(F,m) p(x, h|F,m, µ′(t)(F,m))∫ Fhi

Fli

∑Mi

ν=1 w
′(t)(η, ν) p(x|η, ν, µ′(t)(F, ν)) dη

dx. (36)

After the above iterative computation, the F0’s PDFp(t)
F 0(F )

estimated by considering the prior distribution can be obtained
from w(t)(F,m) according to Equation (12). We can also obtain
c(t)(h|F,m), which is the relative amplitude of each harmonic
component of all the multiple tone modelsp(x|F,m,µ(t)(F,m)).
All three extensions are thus fulfilled.

4. EXPERIMENTAL RESULTS

The extended PreFEst has been implemented in a real-time system
that takes a musical audio signal as input and outputs the detected
melody and bass lines in several forms, such as audio signals for
auralization and computer graphics for visualization [9, 10]. The
current implementation uses the following parameter values with
two adaptive tone models: Fhm = 8400 cent, Flm = 3600 cent, Mm =
2, Hm = 16, Wm = 17 cent, Fhb = 4800 cent, Flb = 1000 cent, Mb = 2,
Hb = 6, and Wb = 17 cent. For the prior distribution of the shape of
tone models, we usec(t)

0i (h|F,m) = αi,m gm,h G(h; 1,Ui), where
m is 1 or 2,αi,m is a normalization factor,gm,h is 2/3 (m = 2 and
h is even) or 1 (otherwise), Um = 5.5, and Ub = 2.7.

The system was tested on excerpts of 10 songs in popular, jazz,
and orchestral genres. The input monaural audio signals — each
containing a single-tone melody and the sounds of several instru-
ments — were sampled from compact discs. We evaluated the de-
tection rates by comparing the estimated F0s with the correct F0s
that were hand-labeled by using the F0 editor program we previ-
ously developed [9].

In our experiment the system correctly detected the melody
and bass lines for most of each audio sample; the average detec-
tion rate for the melody line was 88.4% and that for the bass line
was 79.9%. The results of comparing the extended PreFEst (with
the two adaptive tone models) with the previous PreFEst without
any extension showed that the detection rates for three songs were
greatly improved (at most 29.2% improvement).

5. CONCLUSION

We have described how to improve a method called PreFEst that
detects the melody and bass lines in complex real-world audio sig-
nals. The MAP estimation executed by using the EM algorithm en-
abled three extensions: introducing multiple tone models, estimat-
ing the shape of tone models, and introducing a prior distribution
of its shape and F0 estimates. Experimental results showed that a
real-time system using the extended PreFEst improved in perfor-
mance and is robust enough to estimate the F0s of the melody and
bass lines in compact-disc recordings.

Although the three extensions we made have great potential,
we have not fully exploited them. In the future, for example, a
lot of tone models could be prepared by analyzing various kinds
of harmonic structure appearing in a music (sound) database. We
also plan to report experimental results that have shown the effec-
tiveness of using a prior distribution of F0 estimates.
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