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ABSTRACT nant-F Estmation method), that can detect the melody and bass

This paper describes a predominant-FO (fundamental fre- lines in complex mixtures containing simultaneous sounds of vari-
guency) estimation method callereFEst, which can detect  ous instruments (even drums) [9]. PreFEst has the advantages that
melody and bass lines in monaural audio signals containing soundst does not assume the number of sound sources, it does not locally
of various instruments. While most previous methods premised trace frequency components, and it does not rely on the existence of
mixtures of a few sounds and had difficulty dealing with such com- the FO's frequency component. It basically estimates the FO of the
plex signals, our method can estimate the FO of the melody and bassnost predominant harmonic structure in the input sound mixture;
lines without assuming the number of sound sources in compact-it simultaneously takes into consideration all the possibilities of FO
discrecordings. Inthis paper we propose the following three exten- and considers that the input mixture contains every possible har-
sions to our previous PreFEst to make it more adaptive and flexible: monic structure with different weights (amplitude). It regards the
introducing multiple harmonic-structure tone models, estimating input frequency components as a weighted mixture of harmonic-
the shape of tone models, and introducing a prior distribution of its structure tone models of all possible FOs and then finds the FO of
shape and FO estimates. These extensions were implemented by thtae maximum-weight model corresponding to the most predomi-
MAP (MaximumA Posteriori Probability) estimation by using the  nant harmonic structure.

Expectation-Maximization algorithm. Experimental results with PreFEst reported in our earlier paper [9] had three limitations.
compact-disc recordings showed that our real-time system basedkjrst, although various kinds of harmonic structure appear at dif-
on the extended PreFEst achieved performance improvement.  farent FOs and even at the same FO, just a single harmonic-structure
tone model was prepared for each FO. Second, the shape of tone
1. INTRODUCTION model was fixed as if one ideal tone model was always assumed:
the relative amplitude of each harmonic component was constant.
Because it did not exactly coincide with the harmonic structure
contained in the input, there was room for refining the tone-model

Our goal is to build a real-time system that can detect melody and
bass lines in monaural complex real-world audio signals, such as

those sampled from commercially distributed compact discs. This manadement in a more adaptive wav. Third. even if prior knowl-
detection is an important initial step in computer emulation of hu- 9 P Y: ' P

man music understanding because the melody and bass lines argdge about very rough FO estimates of the melody and bass lines

fundamental to the perception of Western music. In addition, the gui\f]a"ﬁglrer’ovger‘:f;ﬁgg:;bégoﬁgC?\r,g?lrﬁtigrﬁneto :ggtij;r;a“ﬁcné_
detected melody and bass lines are useful in various practical appli- P 9 Y P pp

cations, such as automatic music indexing for information retrieval tl(l)enstr\:\zle hsrrlzumsci)geo?f)flfgs':s?o\glitrr: ff:ci';ré’éz 'iﬁg?;gﬂ;?;g;ﬁ?;o
(e.g., searching for a song by singing a melody), computer partic- pe, y P P

ipation in live human performances, and analysis of recordings of ESt!n?CtﬁrZ‘i?gtua'l;ci)nby:Sh'/lr:gD:tisnrs")tz?r::r?tt'g“l;‘;e t:‘giﬁg%geig;en
outstanding performances. Yy y playing g g

Although this detection requires the estimation of the funda- recorded performance. . )
mental frequency (FO, perceived as pitch) of the melody and bass !N the following sections we describe how we extended our
lines, it has been considered very difficult to estimate the FO in Prévious PreFEst so that it can overcome the above three limita-
complex audio signals sampled from compact discs. The main rea-tions. We first give an overview of PreFEst described in [9] and
sons are: in compact-disc recordings, the number of sound sourceghen describe the details of the three extensions that make it possi-
cannot be assumed, the frequency components of one sound ofble to overcome the' above limitations. The'maln idea is to intro-
ten overlap frequency components of simultaneous sounds, and théluce multiple adaptive tone models and prior knowledge, and to
FO's frequency component (the frequency component correspond-estimate the model parameters on the basis of the MAP (Maximum
ing to the FO) is sometimes missing or very wertkséing funda- A Posteriori Probability) estimation by using thExpectation-
mental). Most previous FO-estimation methods [1, 2, 3, 4], how- Maximization (E_M) algorithm. Finally, we show experimental re-
ever, premised that the input contained just a single-pitch soundSults of a real-time system based on the extended method.
with aperiodic noises. Although several methods for dealing with

multiple-pitch mixtures were proposed [5, 6, 7, 8], they dealt with 2. OVERVIEW OF PREFEST
at most three musical instruments or voices and had difficulty deal-
ing with compact-disc recordings. PreFEst estimates the most predominant FO in frequency-range-

We therefore developed a method, calR@FESst (Predomi- limited sound mixtures. Since the melody line tends to have



the most predominant harmonic structure in middle- and high- Tone Model (m=2)
frequency regions and the bass line tends to have the most pre- p(x | F,2u"(F,2))
dominant harmonic structure in a low-frequency region, we can

estimate the FOs of the melody and bass lines by applying PreFESione Model (m=1)
with appropriate frequency-range limitation [9, 10]. p(x | F,1uO(F, 1))

To use statistical methods, we represent the input bandpass-

filtered frequency components as a probability density function F
(PDF), callecbbserved PDF, which is estimated by using multirate fundamental _ >3
signal-processing techniques and instantaneous-frequency-related frequency F+190!
measure [9, 10]. We then consider that the observed PDF has been F+2400
generated from a weighted-mixture model of tone models of all

possible FOs; a tone model is the PDF corresponding to a typi-
cal harmonic structure of every possible FO. Because the weights

of tone models represent the relative dominance of every possible, (.| F, m, ) (F,m)) (Figure 1). The number of tone models is
harmonic structure, we can regard those weights as the PDF of thav; (1 < m < M;) wherei denotes the melody liné € m) or the

FO (FO's PDF): the more dominant a tone model in the mixture, pass line { = b). The tone model that indicates where the harmon-
the higher the probability of the FO of its model. As explained in jcs of the FO,F, tend to occur is defined as
our earlier papers [9, 10], those weights (i.e., the FO's PDF) can be H;
estimated by using the EM algorithm [11]. p(z|F,m, i (F,m)) = Zp(% h|F,m, i (F, m)), 2
A simple way of determining the most predominant FO is to

- P(x%,1 | F,2u0(F,2))
cO(1F,2)
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Figure 1: Model parameters of multiple adaptive tone models.

find the frequency that maximizes the FO’s PDF. This result is not @ e
stable, however, because peaks corresponding to the FOs of simul- Pz, h|F,m, p(F, m))
taneous sounds sometimes compete in the FO’s PDF for a moment = c(t)(h|F, m) G(z; F +1200log h, W;), 3)
and are transiently selected, one after another, as the maximum. We () 0 _ _
therefore consider the global temporal continuity of the FO by using o (Em) ={cE ([ m) | hz_ Lo M}, @)
a multiple-agent architecture in which agents track different tem- Gz x - 1 .

. . . . . » L0, U) € 20 ) (5)
poral trajectories of the FO, and the final FO output is determined V2ro?
on the basis of the most dominant and stable FO trajectory. where H is the number of harmonics considered? &the vari-

ance of the Gaussian distributi6i{(z; zo, o), andc) (h| F, m) de-
3. THREE EXTENSIONS termines the relative amplitude of theth harmonic component
o ) ) ) (the shape of tone model) and satisfies

To overcome the three limitations described in the Introduction, we H;
propose the following three extensions of the previous PreFEst. Z C(t)(h‘F m) =1 ®)
[Extension 1] Introducing multiple tone models ’

h=1
We then consider that the observed PDF was generated from
the following modep(x|6™®) that is a weighted mixture of all pos-
sible tone modelg(z|F, m, n(F, m)):

We prepare multiple tone models for each FO and consider their
mixture model.
[Extension 2] Estimating the shape of tone models
We consider, as model parameters, the relative amplitude of Fh,
each harmonic component of all the tone models (catlted p(xw(t)) - /
Fl;

M7,
(t) (t)
shape of tone model) as well as their weights, and estimate them Z w(F,m) p(a|F,m, p 7 (Fym)) dF, - (7)

by using the EM algorithm. © o "(Ltz)l
[Extension 3] Introducing a prior distribution 0 = {w™, 7}, (8)
To estimate the model parameters on the basis of their prior dis- w? = {w(F,m) | Fl, < F <Fh,m=1,..,M;}, (9)

tribution, we use the MAP estimation instead of the maximum ®_® _
likelihood estimation used in [9, 10]. Note that we can also take p ={p(Fym) | Fli < F < Fhy,m = 1., M:}, (10)_
into consideration a prior distribution of the shape of tone model Where Fl and Fh denote the lower and upper limits of the possible

added to the model parameters[tension 2] (allowable) FO range and®(F, m) is the weight of a tone model
. : . .
All of these extensions are dealt with in the process of estimat- P(%/Fm; pt(F, m)) which satisfies
ing the FO's PDRY) (F) from the observed PDF (the PDF of the Fhy Mi ©
bandpass-filtered frequency componemtxé?(w). Here,t is the /FI Zw (Fym) dF = 1. (1)
i m=1

time measured in units of frame-shift (10 msec), arahd F' are
the log-scale frequency denoted in unitsafts (a musical-interval
measurement). Frequengy; in hertz is converted to frequency
feentin cents as follows:

feent=1200l0g,

Because we cannot knowpriori the number of sound sources,

it is important that we simultaneously take into consideration all

the possibilities of the FO as expressed in Equation (7). If we

itz can es_tim_ate the model paramef€t such that the observed PDF
) p{)(x) is likely to have been generated from the mogil|6®),

the weightw®(F, m) can be interpreted as the FO's PPE,(F)

3.1. Weighted-mixture model of extended tone models becausev®)(F, m) represents the relative dominance of the har-
monic structure:

440 % 2525

For [Extension 1] and [Extension 2], we prepare multiple tone M;

models for each FO,F, and introduce the model parameter W (F) = w(F,m) (Fl; < F <Fh). (12)
(t) . Pro ) i SIS

p(F,m) to the m-th tone model whose PDF is denoted as

m=1



3.2. Introducing aprior distribution

For [Extension 3], we define a prior distributiopo; (§)) of the
model paramete?® as follows:

poi(0) = pos(w™) poi (1), (13)
1 _50 ()., (£)
pOz(w(t)) _ Z_ B f Doy (w, 00 W )7 (14)
i (t) (t) (t)
O _ f SN 8O FEm) Dy Em) dF
poi(p’) = —
(15)

Here, pos(w®) andpoi (1) are unimodal distributiongjo; (w®)
takes the maximum value at{’(F,m) and po;(u(") takes the
maximum value ap{)(F, m), wherew()(F,m) and u$)(F, m)
((h|F,m)) are the most probable parametets, and Z,, are
the normalization factors, angf!; and3)(F, m) are the parame-

ters determining how much emphasis is put on the maximum value;
B = 0 andp)(F,m) = 0 represent the noninformative prior
In Equations (14) and (15),
Do (wl;w®) and D, (u(F, m); u®(F, m)) are defined as the

distribution (uniform distribution).

following Kullback- Lelbler s information:

w) (F,m)
paiinty= [ S e m g B up o
m=1
Dyu(u)(F, m); pO(F, m))
H; (t)
N0 co; (h|F,m)
= th co; (R|F,m) log CO(R| F, m) 17)

3.3. MAP estimation using EM algorithm

The problem to be solved is to estimate the model parariéten
the basis of the prior distributigm;(#”) when we observe{?(z).
The MAP (MaximumA Posteriori Probability) estimator of® is
obtained by maximizing

/ h P (x) (logp(x|6™) +logpos(0)) dz.  (18)

oo

Because this maximization problem is too difficult to be solved an-

alytically, we use the EM algorithm to estimat®. While the EM

algorithm is usually used for computing maximum likelihood esti-
mates from incomplete observed data, it can also be used for com- — 89 wd)(F, m) log
puting MAP estimates as described in [11]. In the maximum like- e
lihood estimation, the EM algorithm iteratively applies two steps,
the expectation step (E-step) computing the conditional expecta-

tion of the mean log-likelihood and thmeaximization step (M-step)

maximizing its expectation. On the other hand, in the MAP esti-
mation, it iteratively applies the E-step computing the sum of the
conditional expectation and the log prior distribution and the M-
step maximizing it. With respect @?, each iteration updates the
1/} to obtain the ‘new’ improved

‘old’ estimated’® = {w'®,
estimated®) = {w®, 1},
By introducing hidden (unobservable) variablEs m, and

h, which respectively describe which FO, which tone model, and
which harmonic component were responsible for generating each
observed frequency componentiatwe can specify the two steps

as follows:
1. (E-step)
Compute the followingQwar (8 ]6’®) for the MAP estimation:
Quar(010'?) = Q(6“[6") + logpos (6), (19)

QW) = / T @)

Er.m nllog p(z, F,m, h|6) | 2,60 dz,  (20)
where Q(#®|9'®)) is the conditional expectation of the
mean log-likelihood for the maximum likelihood estimation.
Er,m,n[a|b] denotes the conditional expectation @fwith re-
spect to the hidden variablds, m, andh with the probability
distribution determined by conditidn

2. (M-step)

Maximize Quar (6)|6'®") as a function o6 in order to obtain
the updated (improved) estimate):
6@ = argmaxQwar (616'™). (21)
o(t)

In the E-stepQ(8®]6'®) is expressed as

Fh; M Hi
(e(t)w’(t)) - / / Z Z p(t)(w)
A,

m=1 h=1
p(F,m, hlz, 0D logp(x, F,m, h|0D)dFdz, (22)
where the complete-data log-likelihood is given by
logp(z, F,m, h|9(t))
= log(w™(F, m) p(z, h|F,m, u(F, m))). (23)
From Equation (13) the log prior distribution is given by
log po:(0)) = — log Zw Z,,

Fh; M 0}
/ < B0 (Fym) log Lo (")

wt(F,m)
(t) o () (t)(h\F m)
+B(F,m) Y c§)(h|F,m) log %o

S )dF. (24)

Regarding the M-step, Equation (21) is a conditional problem
of variation, where the conditions are given by Equations (6) and
(11). This problem can be solved by using the following Euler-
Lagrange differential equations with Lagrange multiplizrsand
Au

H.

8 oo K3
o) ( / > v p(F,m, hlz, 8'0)

—° p=1

(logw®(F, m) +logp(z, h|F,m, u(F,m))) dz
wi(F,m)
wO(F, m)

— A (w?(F,m) — ML(Fhi—FIl))> =0, (25

0

8()< / P (@) p(F,m, hlz, 0"7) (Iogw(F, m)

+logc?(h|F, m) + log G(z; F + 1200 log h, W;,)) dz
$)(n|F, m)
cO(h|F,m

A > =0. (26)

— B(F,m) ) (h|F,m) log

— (O (| F,m) —

From these equations we get
Y (@) p(F,m|z,0") do

=5 ([

+ B wi(F, m)>, 27)



P (@)p(F, m, hlz, 0'?V) dx

c(t)(h|F, m) = 1 (/
w\J L

In these equations\,, and\,, are determined from Equations (6)
and (11) as
Aw =148,

Ay = / P (@)p(F, mz,0'P) d + BU(F,m).  (30)

From the Bayes’ theorenp(F, m, h|z, 0'®) andp(F, m|z, 8’®)
are given by

+ BO(E, m)cQ(h|F, m)) . (28)

(29)

w'(F, m) pla, h|F, m, 1/ (F, m))

(t)y —
p(F7 m, h|$7 0/ ) - p(xw,(t)) ’ (31)
/(t) /(t)
)y — w (va) p(x|F,m,,u (F7 m))
p(Fa m|x, 9/ ) - p(xw/(t)) . (32)

Finally we obtain the ‘new’ parameter estimate)(F, m) and
O (h|F, m):

wi (P m) + B wg) (F, m)

wO(F, m) = 1 +5(t)' ) (33)
cW(h|F,m) =
w (F.m) d (WIF m) + B m)) P m) o

wii) (F,m) + BOU(F, m)

wherew(!) (F, m) and ) (h|F,m) are the following maximum
likelihood estimates when the noninformative prior distribution

(8Y) = 0 andg{)(F, m) = 0) is given:
P9 @)
wO(F, m) p(a|F,m, p'(F, m))
Souy WO, v) plaln,v, W O(F, v) dn
. (F,m)
w'O(F, m) p(x, h|F,m, p"(F,m))
Fh; i
Jan S w O, v) pleln, v, wO(F,v)) dn
estimated by considering the prior distribution can be obtained
from w®(F, m) according to Equation (12). We can also obtain
component of all the multiple tone modelgc|F, m, u®@(F, m)).
All three extensions are thus fulfilled.

" dz, (35)
[
@

o (h|F,m) =

dz. (36)

1 oo
e
wML —o0
After the above iterative computation, the FO's PBE (F)
A (h|F, m), which is the relative amplitude of each harmonic

4. EXPERIMENTAL RESULTS

The extended PreFEst has been implemented in a real-time system
that takes a musical audio signal as input and outputs the detected [8]
melody and bass lines in several forms, such as audio signals for

auralization and computer graphics for visualization [9, 10]. The
current implementation uses the following parameter values with
two adaptive tone models: Rk 8400 cent, R = 3600 cent, M, =

2, Hn =16, Wy, =17 cent, Fh=4800 cent, = 1000 cent, =2,

Hp =6, and W, = 17 cent. For the prior distribution of the shape of
tone models, we us€) (k| F, m) = ci.m gm.n G(h;1,U;), where
mis 1lor2,«; , isanormalization factog,,  is 2/3 (n = 2 and

h is even) or 1 (otherwise), k)=5.5, and Y = 2.7.

The system was tested on excerpts of 10 songs in popular, jazz,
and orchestral genres. The input monaural audio signals — each
containing a single-tone melody and the sounds of several instru-
ments — were sampled from compact discs. We evaluated the de-
tection rates by comparing the estimated FOs with the correct FOs
that were hand-labeled by using the FO editor program we previ-
ously developed [9].

In our experiment the system correctly detected the melody
and bass lines for most of each audio sample; the average detec-
tion rate for the melody line was 88.4% and that for the bass line
was 79.9%. The results of comparing the extended PreFEst (with
the two adaptive tone models) with the previous PreFEst without
any extension showed that the detection rates for three songs were
greatly improved (at most 29.2% improvement).

5. CONCLUSION

We have described how to improve a method called PreFEst that
detects the melody and bass lines in complex real-world audio sig-
nals. The MAP estimation executed by using the EM algorithm en-
abled three extensions: introducing multiple tone models, estimat-
ing the shape of tone models, and introducing a prior distribution
of its shape and FO estimates. Experimental results showed that a
real-time system using the extended PreFEst improved in perfor-
mance and is robust enough to estimate the FOs of the melody and
bass lines in compact-disc recordings.

Although the three extensions we made have great potential,
we have not fully exploited them. In the future, for example, a
lot of tone models could be prepared by analyzing various kinds
of harmonic structure appearing in a music (sound) database. We
also plan to report experimental results that have shown the effec-
tiveness of using a prior distribution of FO estimates.
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