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ABSTRACT
In this article we introduce a novel multiple-input-multiple-output
(MIMO) spatial filter (SF) which can be applied as a preprocess-
ing scheme to uniform linear arrays, preserving the Vandermonde
structure of the steering vectors while changing the amplitude and
the phase gradient of the steering vector in a nonlinear fashion.
The new scheme is therefore titled Vandermonde Invariance Trans-
formation.

The introduced degrees of freedom due to this preprocessing
transformation can be used to beneficially influence the properties
of the channel to achieve an enhanced performance of the subse-
quent signal processing algorithm.

1. INTRODUCTORY MOTIVATION

Some years ago the application of antenna arrays has been pro-
posed for mobile communication systems to attain an increase in
capacity and interference reduction by additionally exploiting the
spatial separation of the mobile users.
Using more then one antenna for the receiver and/or sender pro-
vokes a noticeable increase of the system performance by achiev-
ing antenna gain, enhanced interference cancellation, and also transmit-
receive diversity. Exploiting these properties requires the knowl-
edge of the channel. Therefore channel estimation has to be ap-
plied to determine the parameters of the channel. These channel
estimation schemes work better for higher signal-to-noise ratios
(SNR). To this end preprocessing schemes can be applied to the
antenna output to amplify the user signal over the noise and inter-
ference.

The most commonly used structure of an antenna array is the
Uniform Linear Array (ULA). In this caseM antennas are ar-
ranged in a line with equal distance to their neighboring antennas.
AssumingL different propagation paths impinging at a ULA with
M antennas under the influence of additive, possibly colored noise
produces the data model

x(t) =

LX
n=1

�n � an � sn(t) + n(t); (1)

where�n, an, sn(t), andn(t) denote the complex amplitude of
pathn, the steering vector of pathn, the arriving signal of pathn,
and complex, possibly colored noise, respectively.
Under the assumption of discrete wavefronts [1], the steering vec-
torsan are parameterized only by one angle�n between the prop-
agation path and the ULA. The steering vector can be written as

an =
h
1; ej�n ; � � � ; ej(M�1)�n

iT
; (2)

where()T denotes transposition and�n = �2��sin�n is the
spatial frequency with the antenna spacing� in fractions of the
wavelength. Rewriting eq. (1) in vector-matrix notation leads to

x(t) = A � diagf�ngLn=1 � s(t) + n(t): (3)

In the following we will derive a transformation matrixT 2
C
M�M which is applied to the data vectorx(t). The new output

reads as

y(t) = T �A| {z }
B

�diagf�ngLn=1 � s(t) + T � n(t)| {z }
~n(t)

: (4)

Thereby, we designT such, that the matrixB is again a steering
matrix of a ULA having Vandermonde structure. The vectory can
be regarded as the output of a virtual ULA with noise~n(t).
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Fig. 1. Scheme of the proposed preprocessing transformation at
the receiving antenna array.

2. VANDERMONDE INVARIANCE TRANSFORMATION

We start with two Vandermonde vectorsx;y 2 C
M

x = [1; x; x2; : : : ; xM�1]
T

y = c(x) � [1; y; y2; : : : ; yM�1]
T

wherex andy are unimodular complex numbers

x = ej�; y = ej� ; �; � 2 R (5)

andc(x) is the amplitude function, that is usually nonlinear with
respect tox. In the sequel we will investigate matricesT 2
C
M�M that mapx to y:

y = T � x (6)



Matrices having this property will be calledVandermonde Invari-
ant Matrices, the transformation fromx toy Vandermonde Invari-
ance Transformation(VIT). After the vector-matrix multiplication
the n-th componentyn of vectory is a polynomial inx, that we
will write in sum and product form

yn =

MX
p=1

tn;p � xp�1 = bn �
M�1Y
p=1

(x� rn;p); (7)

wherern;p 2 C are the complex roots of the polynomialsyn(x)
andbn 2 C is a scaling factor. ForT to be a Vandermonde invari-
ant matrix, it must provide the vectory with the property

ej� =
yn+1
yn

=
bn+1
bn

�

M�1Q
p=1

(x � rn+1;p)

M�1Q
p=1

(x� rn;p)

=: H(x): (8)

This equation must hold for all complex values ofx on the unit
circle. We can split this condition into its absolute value and its
angle. The absolute value of the right hand side has to be constant
for all possible values ofjxj = 1. To fulfill this equation we find
a correspondence in filter theory. The only class of filter functions
satisfying a constant absolute value for the whole frequency range
are the all-pass functions. It is well known, that the poles and
zeros of an all-pass function have to be symmetric with respect to
the unit circle. The distribution of the poles and zeros can further
be inspected by considering the angle of (8). The angle condition
requires, that two subsequent rows ofy are related by the same
change of the angle. This requires, that two subsequent rows are
related by the same transfer function H(x), hence

yM

y1
= HM�1(x): (9)

As the total number of zeros in (7) is(M � 1), H(x) must be an
all-pass function of first order

H(x) =
bn+1
bn

� x� r�

x� r
; (10)

wherebn+2 � bn = b2n+1 and()� denotes the mirror operator on
the unit circle. This leads to

rn;p =

�
r for p � n

r� else
(11)

For convenience we require, that (6) maps an all-ones vector again
onto an all-ones vector, which translates to

bn = (1� r)n�M � (1� r�)1�n (12)

Plugging (12), (11) and (5) into (7) gives the transformed vectory

from (6) in its compact form as

y = T � x =

 
ej� � r

1� r

!M�1

| {z }
c(�)

�

0
BBB@

1

ej�

...
ej�(M�1)

1
CCCA : (13)

Note that there is just one degree of freedom remaining.

3. SOME PROPERTIES OF THE VANDERMONDE
INVARIANCE TRANSFORMATION

In this Section we will investigate two interesting properties of
the VIT. For simplicity we restrict our consideration to real-valued
rootsr for constructing a Vandermonde invariant matrixT.

3.1. Phase amplification

Recall that the variablesx and y have been defined on the unit
circle: x = ej� andy = ej� with �; � 2 [��; �]. From (10) and
(12) follows, that� can be expressed as a function of� andr as
follows

� = arctan

 �
r � 1

r

� � sin�
�2 +

�
r + 1

r

� � cos�
!
: (14)

See also Figure 2.
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Fig. 2. Plot of the phase transformation forK = 2 and K=1=2.

Note that� = 0 is mapped to� = 0. At this point the second
derivative of� with respect to� vanishes. This indicates, that
the nonlinear relation (14) may be linearly approximated in the
vicinity of � = 0 as

� lin = K � �; (15)

with phase amplificationK = (r + 1)=(r� 1).

3.2. Amplitude amplification

While the norm of the input vectorx is always constant tojjxjj2 =p
M , the norm of the transformed vectory depends on� in a

nonlinear fashion. Using (13) we can write the squared norm ofy

as

jjyjj22 = M � 21�M � �1 +K2 + (1�K2) cos�
�M�1

: (16)

From this it is clear that for� = 0 the norms ofy andx are
identical, whereas the amplitude for� 6= 0 heavily depends onK
and�. E.g.

jjy(� = �)jj22 = M �K2M�2: (17)

The ratio of the maximum and the minimum value ofjjyjj22 is

max
�jjyjj22	

minfjjyjj22g
=

�
max

�
jKj; 1

jKj
��2M�2

(18)



and is therefore exponential inM but only polynomial injKj or
1

jKj , respectively.

4. INTERPRETATION

4.1. Virtual Arrays and Nonlinear Channel Transformation

Assuming a single planar wave arriving at the ULA at an azimuth
angle of� and carrying a narrow-band baseband signals(t), the
array outputx(t) reads in the absence of noise as

x(t) =
�
1 ej� : : : ej(M�1)�

�T � s(t): (19)

Since (19) is a Vandermonde vector its structure is not changed
by premultiplication with a Vandermonde invariant matrixT. Re-
calling (13) and (14) we see that the vectory is the output vector
of a virtual array, that operates in a different environment (chan-
nel), since the spatial characteristics of the real and virtual array,
represented by the spatial frequencies� and�, respectively, are
different. Since (14) is nonlinear with respect to� the spatial prop-
erties are changed in a nonlinear fashion, which leads to anonlin-
ear channel transformation. The change in the norms of the array
output vectorsx andy due to the VIT may be interpreted in two
different ways.
Either the angular response (radiation pattern) of the virtual array
has changed, or alternatively the channel has changed its angu-
lar amplitude characteristic just like the spatial frequency (phase)
characteristic before.

4.2. Adaptive Antenna Aperture Zoom

When looking at the linear region of (14) around� = 0, the spatial
separation�� of two wavefronts looks like�� = K � �� at the
virtual array. If jKj > 1 we get a zooming effect, similar to the
one of an optical lens:

�lin = �2�
K ��
�

sin�: (20)

The expressionK��
�

can be seen as an increase of the effective
antenna spacing for a region in the vicinity of� = 0. For this par-
ticular region the antenna aperture is virtually increased. However,
the increasing phase amplification leads also to a reduction of the
size of the region of linearity. As in an optical system this effect
corresponds to the decrease of depth of focus by increasing focal
length.

Unfortunately this software zoom effect comes at rather a high
price, since it leads to a large amplification of noise power. On the
other hand using a phase attenuation (inverse-zoom), a consider-
able noise suppression may be achieved at a fairly low price, which
will be shown in the next subsection and will form the basis of ap-
plications described in the next section.

4.3. Noise Shaping

Assume a ULA with omni-directional antennas that only receives
spatially white noise of unity power density. The power density
measured at the virtual array is given by the squared norm of its
output vector, c.f. (16). This means, that forjKj 6= 1 the spa-
tial distribution of noise power density will change due to the VIT,
hence noise changes its color. This effect will be callednoise shap-
ing and is illustrated in Figure 3 which shows the spatial power
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Fig. 3. Spatial noise power density at the output of the virtual8-
ULA for different values for the phase amplificationK. Spatially
white noise with unity power density is assumed at the input.

density of transformed white noise at the output of the virtual ar-
ray forM = 8 antennas. First of all it shows, that even for a small
positive zoom effect (hereK = 1:05) the penalty in noise ampli-
fication is severe and gets even worse, by increasing the antenna
numberM . On the other hand even a very moderate loss of phase
amplification, e.g.K = 0:9 leads to a considerable suppression of
noise.
To better understand the noise suppression effect of noise shaping
we have a look at the total noise powerP at the output of the vir-
tual array when the noise is of unity power density and white with
respect to�. ChoosingjKj < 1 leads to an effective gain in SNR
as can be seen from Table 1. However the noise covariance matrix
is changed into~RN = T �RN �TH.

Searching for a optimumK we have to keep in mind, that we
want to have a lowP value to achieve as much noise suppression
as possible and we simultaneously want to havejKj close to1, in
order to get a low phase attenuation. In trying to fulfill both con-
ditions simultaneously we maximize the cost functionK2

P
. Note

thatP is a value of second order. The optimum value settles to
Kopt � 0:8 largely independent of the ULA sizeM .

4.4. Multiple-Input Multiple-Output Spatial Filter

In contrast to the classical form of a spatial filter, which maps a
vector input to a scalar output, the VIT maps vectors onto vec-
tors, and therefore is a MIMO spatial filter. The VIT can also be
thought of as a bank of spatial filters, that have tuned phase and
amplitude relationships to preserve the Vandermonde structure of
the input signal. Note that the VIT is linear in terms of its input
and output Vandermonde vectors, but nonlinear in terms of their
spatial frequencies.

jKj 1 0:9 0:8 0:7 0:5 0:1 ! 0
�SNR 0 2.5 4.2 5.1 6.10 6.76 6.79

Table 1. Noise suppression in dB due to noise shaping for different
phase amplifications andM = 8



5. APPLICATION EXAMPLE

5.1. VAP-DOA Algorithm

In the conventional setup,N samples of the ULA outputx(t) 2
C
M are measured at successive time instants and collected into a

data matrixX 2 C
M�N [2]. The measured data is then fed into

one of the well known high resolution DOA estimation algorithms
like MUSIC or ESPRIT [3, 2] that returns a set of estimated di-
rections of arrivalf�̂1; : : : ; �̂Lg1. The quality of estimation de-
pends on the reliability of the measured array output, i.e. the SNR,
and also on the number of snapshotsN that can be obtained dur-
ing the coherence time of the channel. By introducing a VIT based
preprocessing scheme we can achieve the same accuracy at a lower
SNR level and/or with fewer snapshots. The second property en-
ables us to track DOAs of faster changing channels.
This idea ofVirtual Array Processing(VAP) is to start with raw
estimates ofL directions of arrival and then sequentially apply a
set of VITs that are focused on these estimated directions, followed
by subsequent DOA estimations based on the transformed data set.
Due to the noise shaping effect of VIT this will lead to a more ac-
curate estimate, for the price of aL+1 times higher computational
load.

5.2. Simulation Results

We assume one wavefront impinging from� = 27o at an8-ULA
with � = 0:5 spacing in spatially white noise and being estimated
with the Standard ESPRIT algorithm. In the sequel we will com-
pare the performance of the ESPRIT algorithm to its VAP variant.
Figure 4 shows the RMSE of Standard ESPRIT as a function of the
SNR. The upper line corresponds to the estimation without prepro-
cessing and the lower line to the case of VAP enhanced estimation
for K = 0:8. The simulation validated the previous results, that a
choice ofK = 0:8 is optimal in terms of lowest RMSE. For this
value ofK the VAP enhanced estimation achieves a gain in SNR
of approximately2 dB for a reasonable SNR range.
If we plot the RMSE as a function of the number of samplesN ,
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Fig. 4. RMSE of one wavefront from� = 27o.

1The number of wavefrontsL results from a model-order detection.

we get the plot shown in Figure 5. In the case of four wavefronts
we can see that we gain a factor of approximately1:33 with re-
spect to the number of samples, which means a25% reduction in
the sample count and a33% higher velocity threshold for moving
objects.
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Fig. 5. RMSE of four wavefronts� = f�32o; 2o; 8o; 57og with a
SNR of5dB at an8-ULA as a function of the samplesN .

6. CONCLUSION

A novel class of MIMO spatial filters was introduced that well
suites as a preprocessing scheme for signal processing algorithms
operating on ULAs. These filters preserve the Vandermonde struc-
ture of the ULA steering vectors while changing their amplitude
and phase-gradient in a nonlinear fashion. The filters can be de-
scribed by means of the introduced VIT, which may be seen both
as linear and non-linear. Effects like noise-shaping can be used
to achieve enhanced performance of subsequent signal process-
ing algorithms. Simulation results for a proposed enhancement of
DOA estimation show that substantial gains in performance can be
achieved.
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