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ABSTRACT Where()T denotes transposition and, = —2rAsin ¢, is the
In this article we introduce a novel multiple-input-multiple-output - spatial frequency with the antenna spacifign fractions of the
(MIMO) spatial filter (SF) which can be applied as a preprocess- wavelength. Rewriting eq. (1) in vector-matrix notation leads to

ing scheme to uniform linear arrays, preserving the Vandermonde . L
structure of the steering vectors while changing the amplitude and x(t) = A -diag{pn}n=y -s(t) + n(t). ©)
the phase gradient of the steering vector in a nonlinear fashion.  |n the following we will derive a transformation matri® €
The new scheme is therefore titled Vandermonde Invariance Trans-c <3 \yhich is applied to the data vectsi#). The new output
formation. reads as

The introduced degrees of freedom due to this preprocessing
transformation can be used to beneficially influence the properties y(t) = T-A-diag{p,}noy-s(t) + Ton(t). (4
of the channel to achieve an enhanced performance of the subse- B ?(;T

guent signal processing algorithm.
Thereby, we desigT such, that the matriB is again a steering
1. INTRODUCTORY MOTIVATION matrix of a ULA having Vandermonde structure. The vegtaan
be regarded as the output of a virtual ULA with noisg).
Some years ago the application of antenna arrays has been pro-

posed for mobile communication systems to attain an increase in Lﬁ

capacity and interference reduction by additionally exploiting the e —§ —

spatial separation of the mobile users. Lg Vandermonde | |2 _ _
Using more then one antenna for the receiver and/or sender pro- S variant g Signal Processing
vokes a noticeable increase of the system performance by achiev- L g — < Algorithm
ing antenna gain, enhanced interference cancellation, and also transmit- . Tam feprocesis L S

receive diversity. Exploiting these properties requires the knowl- = g

edge of the channel. Therefore channel estimation has to be ap- L (- L

plied to determine the parameters of the channel. These channel
estimation schemes work better for higher signal-to-noise ratios : :
(SNR). To this end preprocessing schemes can be applied to thql:hlg.ré.cesi\ﬁggrgﬁtg;rt]geafrgﬁosed preprocessing transformation at
antenna output to amplify the user signal over the noise and inter-
ference.

The most commonly used structure of an antenna array is the
Uniform Linear Array (ULA). In this caseM antennas are ar-
ranged in a line with equal distance to their neighboring antennas. 2. VANDERMONDE INVARIANCE TRANSFORMATION
AssumingL different propagation paths impinging at a ULA with
M antennas under the influence of additive, possibly colored noise
produces the data model

We start with two Vandermonde vectatsy € C¥

I—1,T
L x:[l.:l;,:1;2,...,:1:M 1

x(t) = Z pn - 8n -0 (t) + (), (@))]
n=1
wherep,,, a,, s,(t), andn(t) denote the complex amplitude of
pathn, the steering vector of path, the arriving signal of path, wherez andy are unimodular complex numbers
and complex, possibly colored noise, respectively. i .
Under the assumption of discrete wavefronts [1], the steering vec- e=¢€" y=¢%5 preRr ®)

torsa,, are parameterized only by one anglebetween the prop- — 5n4..(,.) is the amplitude function, that is usually nonlinear with
agation path and the ULA. The steering vector can be written as respect toz. In the sequel we will investigate matric&® e

CM*M that mapx to y:
_ drn d(M—Dun T 2 ey
a,L_[l, SRR ] , (2) y=T-x (6)

2 M—1,T
y = o) [Lygseeey™ ]



Matrices having this property will be callédhindermonde Invari- 3. SOME PROPERTIES OF THE VANDERMONDE

ant Matrices the transformation from to y Vandermonde Invari- INVARIANCE TRANSFORMATION
ance TransformatiofVIT). After the vector-matrix multiplication
the n-th componeny,, of vectory is a polynomial inz, that we In this Section we will investigate two interesting properties of
will write in sum and product form the VIT. For simplicity we restrict our consideration to real-valued
rootsr for constructing a Vandermonde invariant mafitx
M M-1
ay — Pl . PO, g .
Yn = th * = bu H (@ = 7up), @ 3.1. Phase amplification
r=1 p=1
) Recall that the variables andy have been defined on the unit

wherer, , eC are_the complex roots of the polynomnaﬁ(:;:) ~circle: = = €* andy = €” with y,v € [—7,x]. From (10) and
andb,, € Cis a scaling factor. FdT' to be a Vandermonde invari-  (12) follows, that can be expressed as a functioryoéindr as
ant matrix, it must provide the vectgrwith the property follows

T ) t < r=p) sinp ) 14)

T — Tny1,p v = arctan I - .
) ; s —24(r+ =) -cos
dv = Ynt1 _ b’;+1 . Ple1 =: H(z). (8) ( 1 ) g
Yn on I (2 = r0) See also Figure 2.
p=1

This equation must hold for all complex valuesaobn the unit 3 [ B oo 2 |

circle. We can split this condition into its absolute value and its

angle. The absolute value of the right hand side has to be constant
for all possible values ofc| = 1. To fulfill this equation we find 1
a correspondence in filter theory. The only class of filter functions

satisfying a constant absolute value for the whole frequency range z 0
are the all-pass functions. It is well known, that the poles and b
zeros of an all-pass function have to be symmetric with respect to

the unit circle. The distribution of the poles and zeros can further -2r
be inspected by considering the angle of (8). The angle condition
requires, that two subsequent rowsyofare related by the same
change of the angle. This requires, that two subsequent rows are
related by the same transfer function H(x), hence

. . _9 /o

?/_M _ H‘“”*l(a:). ©) Fig. 2. Plot of the phase transformation f&ar and K=1/2

Y1
As the total n_umber_of zeros in (7) (4 — 1), H(x) must be an Note thatu. = 0 is mapped ter = 0. At this point the second
all-pass function of first order derivative ofv with respect tox vanishes. This indicates, that

. the nonlinear relation (14) may be linearly approximated in the
H(z) = bz“ Lz (10) vicinity of 1 = 0 as
n r—7T
Vin = K -, (15)

whereb, 42 - b, = b2, and()* denotes the mirror operator on

the unit circle. This leads to with phase amplificatio®” = (r + 1)/(r — 1).

*

- :{ : fe?;epz n 11) 3.2. Amplitude amplification

While the norm of the input vector is always constant tiix||, =
For convenience we require, that (6) maps an all-ones vector again/ M, the norm of the transformed vectgrdepends on: in a
onto an all-ones vector, which translates to nonlinear fashion. Using (13) we can write the squared norgn of
! as
bn, — (1 _ T)n—AI X (1 _ T*)l—n (12) R e
llyll; = M Lot M (1+ K’ +(1-K% cos j1) Mo (16)
Plugging (12), (11) and (5) into (7) gives the transformed vegtor

from (6) in its compact form as From this it is clear that fop = 0 the norms ofy andx are

identical, whereas the amplitude for# 0 heavily depends oK
1 andp. E.g.

(ei“ : T)Ml' ¢ (13) lly (s =mll; = M- K>, (7)
1—r : ’

N——r é‘l/(l\:{—l)

c(n) max{|lyll3} _ (max{|K|, L})W—z (18)

Note that there is just one degree of freedom remaining. min{lly[l3} |K|

y =T-x =
The ratio of the maximum and the minimum value |of| |3 is



and is therefore exponential # but only polynomial in| K| or

, respectively.
|K|

4. INTERPRETATION

4.1. Virtual Arrays and Nonlinear Channel Transformation

Assuming a single planar wave arriving at the ULA at an azimuth
angle of¢ and carrying a narrow-band baseband sigié), the
array outputx(¢) reads in the absence of noise as

[1 &+

Since (19) is a Vandermonde vector its structure is not changed
by premultiplication with a Vandermonde invariant mafiix Re-
calling (13) and (14) we see that the vecyois the output vector

of avirtual array, that operates in a different environment (chan-
nel), since the spatial characteristics of the real and virtual array,
represented by the spatial frequencieand v, respectively, are
different. Since (14) is nonlinear with respecjithe spatial prop-
erties are changed in a nonlinear fashion, which leadsimnéin-

ear channel transformatioriThe change in the norms of the array
output vector andy due to the VIT may be interpreted in two
different ways.

Either the angular response (radiation pattern) of the virtual array
has changed, or alternatively the channel has changed its angu
lar amplitude characteristic just like the spatial frequency (phase)
characteristic before.

x(t) dr—nu 1T gt).  (19)

4.2. Adaptive Antenna Aperture Zoom

When looking at the linear region of (14) arousad= 0, the spatial
separatiom\ . of two wavefronts looks likeAv = K - Ay at the
virtual array. If|K| > 1 we get a zooming effect, similar to the
one of an optical lens:

Uin = =27 sin ¢. (20)
The expressiorfs2 can be seen as an increase of the effective
antenna spacing for a region in the vicinityof= 0. For this par-

ticular region the antenna aperture is virtually increased. However,

1

the increasing phase amplification leads also to a reduction of the

size of the region of linearity. As in an optical system this effect
corresponds to the decrease of depth of focus by increasing foca
length.

Unfortunately this software zoom effect comes at rather a high
price, since it leads to a large amplification of noise power. On the

Fig. 3. Spatial noise power density at the output of the virgsal
ULA for different values for the phase amplificatid. Spatially
white noise with unity power density is assumed at the input.

density of transformed white noise at the output of the virtual ar-
ray for M = 8 antennas. First of all it shows, that even for a small
positive zoom effect (her& = 1.05) the penalty in noise ampli-
fication is severe and gets even worse, by increasing the antenna
numberM. On the other hand even a very moderate loss of phase
amplification, e.gK = 0.9 leads to a considerable suppression of
noise.

To better understand the noise suppression effect of noise shaping
we have a look at the total noise powRrat the output of the vir-

tual array when the noise is of unity power density and white with
respect tq:. Choosing K| < 1 leads to an effective gain in SNR

as can be seen from Table 1. However the noise covariance matrix
is changed int®y = T - Ry - TH.

Searching for a optimurk” we have to keep in mind, that we
want to have a lowP value to achieve as much noise suppression
as possible and we simultaneously want to hdvgclose tol, in
order to get a low phase attenuation. In trying to fulfill both con-
ditions simultaneously we maximize the cost functi%}él. Note
that P is a value of second order. The optimum value settles to
K,,: ~ 0.8largely independent of the ULA sizd.

K.4. Multiple-Input Multiple-Output Spatial Filter

In contrast to the classical form of a spatial filter, which maps a
vector input to a scalar output, the VIT maps vectors onto vec-

other hand using a phase attenuation (inverse-zoom), a considert©'s: and therefore is a MIMO spatial filter. The VIT can also be

able noise suppression may be achieved at a fairly low price, which
will be shown in the next subsection and will form the basis of ap-

plications described in the next section.

4.3. Noise Shaping

Assume a ULA with omni-directional antennas that only receives
spatially white noise of unity power density. The power density
measured at the virtual array is given by the squared norm of its
output vector, c.f. (16). This means, that {d¢| # 1 the spa-

tial distribution of noise power density will change due to the VIT,
hence noise changes its color. This effect will be catlede shap-

ing and is illustrated in Figure 3 which shows the spatial power

thought of as a bank of spatial filters, that have tuned phase and
amplitude relationships to preserve the Vandermonde structure of
the input signal. Note that the VIT is linear in terms of its input
and output Vandermonde vectors, but nonlinear in terms of their
spatial frequencies.

|K]|
ASNR

1
0

0.9
2.5

0.8
4.2

0.7
51

0.1
6.76

— 0
6.79

6.10

Table 1. Noise suppression in dB due to noise shaping for different
phase amplifications and = 8



5. APPLICATION EXAMPLE we get the plot shown in Figure 5. In the case of four wavefronts
we can see that we gain a factor of approximateBs with re-
5.1. VAP-DOA Algorithm spect to the number of samples, which meag5% reduction in

i the sample count and38% higher velocity threshold for moving
In the conventional setugy samples of the ULA outpuk(¢) € objects.

CM are measured at successive time instants and collected into a

data matrixX € C*>*¥ [2]. The measured data is then fed into o

one of the well known high resolution DOA estimation algorithms
like MUSIC or ESPRIT [3, 2] that returns a set of estimated di-

rections of arrival{i;. ... ,/iz}*. The quality of estimation de-

pends on the reliability of the measured array output, i.e. the SNR,
and also on the number of snapshMtshat can be obtained dur-

ing the coherence time of the channel. By introducing a VIT based
preprocessing scheme we can achieve the same accuracy at a lowe
SNR level and/or with fewer snapshots. The second property en-
ables us to track DOAs of faster changing channels.

This idea ofVirtual Array ProcessingVAP) is to start with raw
estimates ofZ. directions of arrival and then sequentially apply a
set of VITs that are focused on these estimated directions, followed
by subsequent DOA estimations based on the transformed data set.
Due to the noise shaping effect of VIT this will lead to a more ac-
curate estimate, for the price offlat 1 times higher computational

RMSE in degrees
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5.2. Simulation Results Fig. 5. RMSE of four wavefrontg = {—32°,2°,8°,57°} with a

We assume one wavefront impinging frafm= 27° at an8-ULA SNR of5dB at ans-ULA as a function of the samples.

with A = 0.5 spacing in spatially white noise and being estimated
with the Standard ESPRIT algorithm. In the sequel we will com-
pare the performance of the ESPRIT algorithm to its VAP variant.
Figure 4 shows the RMSE of Standard ESPRIT as a function of the 6. CONCLUSION
SNR. The upper line corresponds to the estimation without prepro-
cessing and the lower line to the case of VAP enhanced estimationa novel class of MIMO spatial filters was introduced that well
for K = 0.8. The simulation validated the previous results, that a syites as a preprocessing scheme for signal processing algorithms
choice of K = 0.8 is optimal in terms of lowest RMSE. For this  operating on ULAs. These filters preserve the Vandermonde struc-
value of K’ the VAP enhanced estimation achieves a gain in SNR ture of the ULA steering vectors while changing their amplitude
of approximately2 dB for a reasonable SNR range. and phase-gradient in a nonlinear fashion. The filters can be de-
If we plot the RMSE as a function of the number of samglgs  scribed by means of the introduced VIT, which may be seen both
as linear and non-linear. Effects like noise-shaping can be used
10? ‘ ‘ : to achieve enhanced performance of subsequent signal process-
s B?egrrggfolff%fg‘g ‘ ing algorithms. Simulation results for a proposed enhancement of
DOA estimation show that substantial gains in performance can be
achieved.
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Fig. 4. RMSE of one wavefront fromp = 27°.

1The number of wavefronts results from a model-order detection.



