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ABSTRACT

Real-time detection and identification of man-made objects
or materials (“targets”) from airborne platforms using hyper-
spectral sensors are of great interest for civilian and military
applications. Over the past several years, different algo-
rithms for the detection of targets with known spectral sig-
nature have been developed. Most of these algorithms have
been reviewed in [1] within a unified theoretical and nota-
tional framework. In this paper we study adaptive matched
subspace detection algorithms for low probability, single-
pixel or subpixel targets. These algorithms explore the linear
mixing model to both specify the desired target and charac-
terize the interfering background. The derived algorithms
are theoretically and experimentally evaluated with regard
to two desirable properties: capacity to operate in constant
false alarm rate (CFAR) mode and target “visibility” en-
hancement. Furthermore, an approach is presented for tak-
ing into account target variability, when present, to improve
detection.

1. INTRODUCTION

A key element of hyperspectral imaging (HSI) data exploita-
tion is imaging spectroscopy, i.e., the identification of ma-
terials based on how they absorb and reflect light. In this
sense, HSI data processing attempts to accomplish from a
distance what a chemical spectroscopist does in the labora-
tory. Within the instantaneous field of view of the sensor
mixtures of materials are expected, due to the physical size
of the image pixel and the composition of natural scenes.
Therefore, the spectrum of an individual pixel is a mixture
of the individual spectra of the materials present in the pixel.

The subject of this paper is the design and analysis of
algorithms for the detection of pixel or subpixel targets with
known spectral signature in the presence of interfering back-
ground and noise. In Section 2 we formulate the subpixel tar-
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get detection problem using the linear mixing model and the
concepts of target and background subspaces. We also dis-
cuss procedures for the specification of the target subspace
and the estimation of the background subspace. In Section
3 we use a geometrical approach to develop the adaptive
matched subspace detector and characterize its performance
for Gaussian noise using the postulated linear mixing model
and the generalized likelihood ratio. The widely used orthog-
onal subspace projection algorithm [2] and the matched filter
algorithm for known signals in white noise [3] are then de-
rived by using obvious simplifications and approximations.
Finally, in Section 4, we experimentally evaluate the per-
formance of the various algorithms using hyperspectral data
collected with the HYDICE sensor.

2. THE LINEAR MIXING MODEL

In the linear mixing model (LMM), the spectrum of a mixed
pixel is represented [4] as a linear combination of compo-
nent spectra (end members). The weight of each end member
spectrum (abundance) is proportional to the fraction of the
pixel area covered by the end member. By definition, abun-
dances should be nonnegative and should sum to one. If there
are L spectral bands, the spectrum of the pixel and the spec-
tra of the end members can be represented by L-dimensional
vectors. In subpixel target detection, we wish to determine if
a pixel, x, contains some material (target) characterized by
either a single spectral signature or a linear combination of
spectral signatures. When the target is present, the spectrum
of an observed pixel can be decomposed into two compo-
nents as

x =
M∑

k=1

aksk + w =
P∑

k=1

aksk︸ ︷︷ ︸
Target st

+
M∑

k=P+1

aksk

︸ ︷︷ ︸
Background sb

+ w (1)

using the LMM. If St and Sb are the matrices formed by the
first P and the last Q columns of S (M = P + Q), we can
write (1) in matrix form as

x = Sa + w � Stat + Sbab + w (2)



where at and ab consist of the first P and the last Q com-
ponents of a, respectively. Since st = Stat we say that the
target lies in a P -dimensional subspace 〈St〉 of R

L specified
by the columns of St (target subspace). Similarly, the Q-
dimensional subspace 〈Sb〉 of R

L, specified by the columns
of Sb, is known as the background subspace.

The target subspace should be specified by the user,
whereas the background subspace should be estimated from
the data currently available to the detector. Due to changes
in atmospheric conditions, sensor geometry, and surface de-
fects, a target spectral signature can exhibit significant vari-
ability. If we have available a multitude of target spectrum
observations, say xt(n), n = 1, 2, . . . , Nt , we can model
target variability and use it in the detection algorithm to im-
prove robustness. In this paper, we account for this variabil-
ity by finding an orthogonal basis that spans, with sufficient
accuracy, the subspace spanned by the target vectors. These
basis vectors constitute the columns of the target subspace
matrix St. The background subspace matrix Sb can be esti-
mated from the HSI cube using the eigenvectors [5] of the
HSI cube correlation matrix R̂x = XT X/N or, equivalently,
the singular vectors of the data matrix XT . We form the ma-
trix, Sb, using the first Q significant eigenvectors of Rx .
It should be stressed at this point that there is no one-to-
one correspondence between the estimated Sb and spectral
properties. The lack of one-to-one correspondence is not a
problem for detection applications as long as Sb provides a
good statistical approximation of the background and there
is no leakage from the target subspace to the background
subspace.

3. THE ADAPTIVE MATCHED SUBSPACE
DETECTOR (AMSD)

When the target and background subspaces are available,
the target detection problem involves choosing between the
hypotheses

H0 : x = Sbab + w, w ∼ N (0, σ 2
wI ) (Target absent)

H1 : x = Stat + Sbab + w = Sa + w (Target present)
(3)

which is equivalent to choosing between the “full” LMM
x = Sa + w and the “reduced” LMM x = Sbab + w.

Under the white Gaussian noise assumption, the max-
imum likelihood estimates (MLEs) of at, ab, and σ 2

w are
identical to the least-squares (LS) estimates. The fit of each
model is measured by the sum of squared errors (SSE), which
is equal to the length of the perpendicular from the tip of x to
the background subspace or the combined target and back-
ground subspace, respectively (see Figure 1). In fact, the
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Fig. 1. Geometrical illustration of subspace matched filter
detection.

generalized likelihood ratio test is given by

L(x) =
[

SSE(âb)

SSE(â)

]L/2

=
(

xT P ⊥
b x

xT P ⊥
S x

)L/2

= (cos φ)−L

(4)
which can be used to obtain a target detection algorithm.
The matrix P S � S(ST S)−1ST is known as the projection
matrix and P ⊥

S � I −P S as the orthogonal projection error
matrix. The error or residual vector is obtained by e =
x − x̂ = P ⊥

S x. Similar formulas hold for the background
subspace matrix Sb. Since SSE(â) ≤ SSE(âb), we have
L(x) ≥ 1. To make a decision we need to compare L(x)

to a given threshold �0 and decide H1 when L(x) ≥ �0
and H0 otherwise. Since the threshold determines both PD

and PFA, we need to determine the probability distribution
of GLR(x). Since PS⊥SB, the random vectors e = P ⊥

S x

and
−→
BS = eb − e = (P ⊥

b − P ⊥
S )x are orthogonal (that

is uncorrelated). Furthermore, since e and
−→
BS are normal

(as linear transformations of normal vector x) they are also
independent. Therefore, in practice we use the ratio

TAMSD(x) �
xT (P ⊥

b − P ⊥
S )x

xT P ⊥
S x

= (BS)2

(PS)2

= (tan φ)2 = [L(x)]2/L − 1 (5)

whose distribution can be more easily determined due to
the independence of numerator and denominator terms. In-
deed, it can be shown [3, 6] that xT (P ⊥

b − P ⊥
S )x/(σ 2

wP ) ∼
x2
P (SINRo) andxT P ⊥

S x/
[
σ 2

w(L − P − Q)
] ∼ x2

L−P−Q(0).

Note that (BS)2 = ‖eb‖2 − ‖e‖2 and (PS)2 = ‖e‖2. Since



the two quadratic forms are independent

T (x) = (BS)2

(PS)2

L − P − Q

P
∼ FP,L−P−Q(SINRo) (6)

where FP,L−P−Q(SINRo) is noncentral F distribution with
P numerator degrees of freedom, L − P − Q denominator
degrees of freedom, and noncentrality parameter SINRo

SINRo = (Stat)
T P ⊥

b (Stat)

σ 2
w

=
∥∥P ⊥

b (Stat)
∥∥2

σ 2
w

(7)

Since the termP ⊥
b (Stat) is the component of the target which

is orthogonal to the background subspace, SINRo can be in-
terpreted as the theoretical signal to interference-plus-noise
ratio. In the statistical literature T (x) is denoted by F(x)

and is known as the F-test1. The detection test is given by

T (x) = (BS)2

(PS)2

L − P − Q

P

H1
≷
H0

η0 (8)

where the threshold η0 is specified2 by the required proba-
bility of false alarm

PFA = 1 − FP,L−P−Q(0, η0) (9)

because SINRo = 0 under H0. Since the distribution of
T (x) under H0 is known, we can set the threshold η0 to
attain CFAR operation. The probability of detection

PD = 1 − FP,L−P−Q(SINRo, η0) (10)

depends on the unknown at, σ 2
w and therefore it cannot be

maximized to obtain an optimum Neyman-Pearson detector.
Plots derived from the above relations [1] show that per-

formance deteriorates as the dimensionality of the target sub-
space increases (that is as the a-priori information about the
target decreases) as expected. For a given probability of de-
tection, there is a loss in SINR due to the need to estimate
the target abundance (clairvoyant detector) plus the noise
variance (adaptive detector). As is intuitively expected, per-
formance improves as the number of band increases, that is
as we supply more information into the detector. It can be
shown that, independent of the normality assumption, the
detectors maximize the signal to interference ratio [3].

Special cases When P = 1 the abundance of the target
is given by

ât = sT
t P ⊥

b x

sT
t P ⊥

b st
∼ N (at, σ

2
w sT

t P ⊥
b st) . (11)

1TheL(x) and T (x) tests are monotonically related, and the distribution
of the GLRT can be expressed in terms of the beta distribution by exploiting
its relationship with the F distribution [7].

2With a slight abuse of notation, we use FP,L−P−Q(SINRo, η0) to
denote the cumulative distribution function of the non-central F random
variable.

The numerator of the abundance estimator (11) has been
proposed in [2] as a detection statistic under the name Or-
thogonal Subspace Projection (OSP) algorithm. However, it
is better to use the normalized statistic TOSP(x) = ât because
it corresponds to the abundance estimate for the desired tar-
get. The resulting algorithm is not CFAR because the abun-
dance of the target and the variance of the sensor noise are
unknown. Clearly, the theoretically predicted Gaussian dis-
tribution of the target abundance conflicts with the physical
constraint 0 ≤ at ≤ 1.

If there is no background, or we choose to ignore its
existence, i.e., we set Sb = 0, the statistic (5) reduces to

TMF(x) = TAMSD(x)|Sb=0 = xT P tx

xT P ⊥
t x

(12)

which is the well-known matched filter3 for signals in white
noise.

4. EXPERIMENTAL RESULTS

To assess the performance of the different algorithms, we use
the Forest Radiance I data collected with the HYDICE sen-
sor. Although, we have experimented with different back-
ground and target data, for illustration purposes we shall use
a relatively homogeneous grass scene consisting of (97x80)
pixels. The number of bands used is L = 144. With regard
to targets, we have chosen a target with 45 pixels consisting
of a single material. We determine the target template st
required for the implementation of each detection algorithm
in two different ways: (a) using the mean value of the target
pixels and (b) using the first P left-singular vectors of the
target pixel matrix to define a target subspace (this approach
takes into account the variability of the target).

The estimate of the background subspace Ŝb was ob-
tained using the first Q = 5 significant eigenvectors of the
estimated correlation matrix of the background pixels (the
“known” target pixels were excluded). These eigenvectors
capture more than 99 percent of the data cube energy in each
case.

To investigate the performance of the three detectors, we
assess their capacity (a) to accurately model the background
statistics , (b) to enhance the “visibility” of the desired target
(background-target separation), and (c) to take into account
and effectively explore target variability. Figure 2 compares
the experimental detection statistics to the theoretically pre-
dicted one for the AMSD detector operating against a grass
background. We show the AMSD algorithm only, because
it is CFAR for normal data. Figure 3 shows the detection

3The typical matched filter for known signals in color interference-plus-
noise, which is specified in terms of the covariance matrix, is known in
the hyperspectral literature as the constrained energy maximization (CEM)
algorithm [2]
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Fig. 2. Background (grass) detection statistics modeling for
the AMSD detector.

statistic of the target and the maximum value of the back-
ground detection statistics for the various detectors in a grass
background. The mean of the target pixels is almost identi-
cal to the first singular vector. Therefore, the first three bars
show performance when either the mean or the first singular
vector are used as known target signature. These and many
other similar results indicate the superior performance of the
AMSD. However, the background detection statistics do not
always agree with the theoretical predictions, underlining the
need for more appropriate (non-Gaussian) statistical models.

5. CONCLUSIONS

In this paper we presented a class of adaptive subspace de-
tection algorithms for subpixel hyperspectral targets with
known spectral signature. We provided theoretical and ex-
perimental results clarifying the performance of these detec-
tors and illustrated how to exploit target variability, when
present, to improve the detection performance of the more
sophisticated AMSD algorithm.
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