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ABSTRACT

Multiple source signals impinging on an antenna ar-
ray can be separated by time-frequency synthesis tech-
niques. Averaging of the time-frequency distributions
of the data across the array permits the spatial signa-
tures of sources to play a fundamental role in improv-
ing the synthesis performance. This improvement is
achieved independent of the temporal characteristics of
the source signals and without causing any smearing
of the signal terms. Unlike the recently devised blind
source separation methods using spatial time-frequency
distributions, the proposed method does not require whi-
tening or retrieval of the source directional matriz.

1. INTRODUCTION

Time-frequency distributions (TFDs) have been shown
to be a powerful tool in nonstationary signal analysis
and synthesis [1, 2, 3, 4]. The TFD in all its bilin-
ear and higher order forms represents a powerful tool
for high resolution angle-of-arrival (AOA) estimation
and recovery of the source waveforms impinging on a
multi-sensor receiver, specifically those of nonstation-
ary temporal characteristics.

The existing array signal processing techniques for non-
stationary source separation using bilinear transforms
require the construction of spatial time-frequency dis-
tribution (STFD) matrices from the sensor data. It
was shown in [5, 6] that the formula relating this ma-
trix to that of the sources is identical to the relation-
ship between the data spatial covariance matrix and
the source correlation matrix. Therefore, blind source
separation (BSS) can be performed using the source
time-frequency (t-f) signatures, instead of their corre-
lation functions.

In this paper, we introduce a new approach for t-f signal
synthesis in multi-sensor receivers. This approach uti-
lizes the sources’ spatial structures to enhance their sig-
natures in the t-f domain. This is achieved by averaging
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the time-frequency distributions of the data across the
array. Bilinear signal synthesis methods can then be
applied to the enhanced source t-f features to recover
the signal waveform and its temporal characteristics.
Unlike source separation techniques based on STFD,
the proposed approach does not require whitening or
retrieval of the source directional matrix, thereby, sim-
plifies the signal recovery process. This is achieved in-
dependent of the temporal characteristics of the source
signals and without causing any smearing of the signal
auto-terms.

The paper is organized as follows. The signal model is
presented in Section 2. The proposed array averaging
technique for time-frequency signal synthesis is formu-
lated in Section 3. Numerical simulations illustrating
the performance of the proposed method are given in
Section 4.

2. SIGNAL MODEL

Assume L source signals incident on an M-sensor ar-
ray. The propagation delay between antenna elements
is assumed to be small relative to the inverse of the
transmission bandwidth, so that the received signals
are identical to within a complex constant. The data
received across the array is given by the narrowband
model

x(t) = y(t) + n(t) = As(t) + n(t),

where x(t) = [x(t), ---, xar(t)]" is the M x 1 data
snapshot vector and s(t) = [s1(t), ---, s (t)]" is the
L x1 source signal vector at time instant ¢, respectively.
The superscript T denotes the vector /matrix transpose.
The M x 1 vector n(t) is the stationary white noise
vector. Moreover, A denotes the M x L mixing matrix,

A=Jay, - -, ag]. (2)
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The columns of matrix A are the source spatial signa-
tures (SSs), and are given by

'7a'iM]T7 i:]-;"'aLa (3)
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where a;; is the jth component of the ith SS a;. To
simplify the discussion, we exchange any possible scalar
factor embedded in a; to the source signal and assume
that ||a;||» = M. It is obvious that this exchange does
not affect the data observed from the antenna array.
For the purpose of subsequent derivation, we expand
equation (1) using definitions (2) and (3) to obtain the
received noise-free data vector. The data received at
sensor k (k=1,2, , M) is given by

I
= Z aixsi(t). (4)

3. PROBLEM FORMULATION

3.1. Array Averaged WVD

The discrete form of WVD of the signal y(¢) is given
by [4]

Wyy(t, f) = Z y(t+)y*(t - l)eiﬂﬁﬂ; (5)
[=—00
where * denotes complex conjugation. Substituting (4)

into (5), we can express the WVD of the signal at the
kth sensor y(t) as

L L
Wy (&, f) ZZ Zka’]kWS 5; (. f),  (6)

where Wy, v, (¢, f) will herein be referred to as the auto-
sensor WVD of y(t). W, (t, f) corresponds to the
auto-source or cross-source WVD, depending on whether

i=7j,0ri#j.

Averaging the auto-sensor WVDs over the array yields

W(ta f) M Z }’k}’k t f
k=1
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In equation (7), afai is the inner product of the SSs

a; and a;. Define the spatial correlation coefficient

) W, t.1). (1)

1
/Blj = _aHaz: (8)

then equation (7) could be rewritten as

L L
f) = ZZﬁijWSiSj(taf)' (9)

i=1 j=1

Equation (9) shows that W(¢, f) is a linear combina-
tion of the auto-source and cross-source WVDs that
typically appear in the WVD of a multicomponent sig-
nal. However, in (9), these autoterms and crossterms
are weighted by constant values represented by the spa-
tial correlation coefficients that have resulted from the
inner product between the sources’ SSs.

It is straightforward to show that for the ith and the
jth sources,

Byl <Li#j and y=1i=j  (10)

indicating that the multiplication constants in (9) asso-
ciated with the auto-source WVDs are always greater
than or at least equal to those for the cross-source
WVDs. This property is the key offering of the array
averaging process and is shown to improve the signal
synthesis performance.

An interesting case is when all SSs are orthogonal, i.e.,
Bi; = 0 for any i # j. In this case,

L
t f = ZWSkSk t f (11)
k=1

In (11), W(¢, f) is solely the summation of the source
signal autoterms. This underscores the fact that all
source signal crossterms are entirely eliminated and
only the autoterms are maintained, which is most de-
sirable from the signal synthesis perspective. It is im-
portant to note that by the virtue of the inner product,
the source directional information carried by its respec-
tive SS is lost in W (¢, f).

It is easy to infer from above equations that the extent
to which the crossterms are mitigated is TFD-blind, as
it does not depend on any specific t-f kernel that might
be used for averaging the data bilinear products in (9).
Crossterm mitigation depends exclusively on the ex-
pression of 8;; which is determined by the channel and
the source spatial structures. On the other hand, the
integration of both types of spatial and t-f smoothing
can, indeed, result in crossterm suppression that can-
not be achieved by each type applied alone.

3.2. WVD-Based Synthesis

The WVD-based synthesis techniques could be found in
[7, 8]. In this paper, we apply the method of extended
discrete-time Wigner distribution (EDTWD), intro-
duced in [8], to the output of array averaged WVD
given in (9). The advantage of using the EDTWD lies
in the fact that it does not require a priori knowledge
of the source waveform, and thereby avoids the problem
of matching the two “uncoupled” vectors (even-indexed



and odd-indexed vectors).

The proposed signal synthesis technique for multi-an-
tenna receivers is fundamentally different from other
techniques that integrate array signal processing with
the bilinear distributions, e.g., the spatial time-frequ-
ency distributions. The proposed technique does not
require whitening or retrieval of the source directional
matrix, thereby, simplifies the signal recovery process.
Further, averaging TFDs across the array produces a t-f
weighting function applied in an equivalent single sen-
sor WVD problem. This function decreases the noise
levels, reduces the interactions of the source signals,
and mitigates the cross-terms. It does so independent
of the temporal characteristics of the source signals and
without causing any smearing of the signal auto-terms.

4. SIMULATIONS

In this section, we provide computer simulations to
demonstrate the improvement gained by the proposed
technique in the reduction or elimination of crossterms.
Signals are incident on an eight-sensor ULA (M = 8)
with inter-element spacing of half-wavelength. The ad-
ditive noise is zero mean, Gaussian distributed, spa-
tially and temporally white process. The length of the
signal sequence is set to N = 128.

In the first example, three chirp signals, s;(t), s2(t) and
s3(t), arrive at the array with AOAs of —20°, 0° and
20°, with the respective start and end frequencies given
by (0.97,0.57), (0.66m,0.267), and (0.57,0.17). In the
t-f plane, the source signals have parallel signatures.
The crossterm of s (¢) and s3(t) also forms a chirp-like
crossterm structure whose frequency starts from 0.77
and ends with 0.37, and therefore lies closely to the t-f
signature of sy(t). Figure 1 depicts the WVD of the
signals at the reference sensor (sensor #1) for the case
of noise-free environment. It is clear that the t-f signa-
ture of all signal autoterms and crossterms are parallel
in the t-f domain. The crossterms produced from the
three source signals are even more dominant than the
source autoterms. In the single sensor receiver, it be-
comes difficult to distinguish the source autoterms from
the crossterms without any a priori knowledge of the
sources. Using the above values of AOAs, we obtain
|%ﬁij| < —13dB, i # j, indicating that the sources
spatial signatures are weakly correlated, and the array
averaging process could result in a substantial reduc-
tion in the crossterms. Figure 2 shows the correspond-
ing array-averaged WVD. Due to the reduction in the
cross-terms by more than 13dB, the t-f signatures of
the sources are distinctively exhibited in the new plots.
In particular, the crossterm from s; (t) and s3(t) ceased

to become an interfering effect in identifying the adja-
cent signal source s2(t). In effect, averaging the WVDs
across the array significantly reduces the crossterms,
whereas the three signals’ autoterms remain intact.

Next, we add 5dB noise to the data at each array sen-
sor so that the input SNR is —5dB. Figures 3 and 4
depict both the reference-sensor WVD and the array-
averaged WVDs. It is evident that the noise obscures
both the signal autoterms and crossterms of the WVD
at a single sensor. It is difficult, therefore, to retrieve
the desired signal if we only synthesize from a single
sensor. Upon averaging, both noise and crossterms are
sufficiently reduced to clearly manifest the individual
source t-f signature. Subsequently, the signals could be
recovered if we place the appropriate masks in the t-f
region and then perform least square synthesis. Figure
5 shows the WVD of the synthesized signal s,(t) after
array averaging. Figure 6 displays the real part of the
original signal s2(t) and its synthesized versions, 82(t),
using the STFD and the proposed method. It is clear
that the result from the array averaging technique is
closer to the original signal than the STFD-synthesized
signal.

5. CONCLUSION

A synthesis technique using array-averaged quadratic
distributions was proposed for multi-sensor receivers.
It was shown that this synthesis approach is funda-
mentally different form the one recently devised using
spatial time-frequency distributions. In the latter, the
source spatial signatures need to be first estimated be-
fore the sources could be separated. The key attraction
of the proposed approach is that it naturally extends
bilinear signal synthesis to array processing. In doing
S0, it capitalizes on the spatial dimension to reduce the
cross-terms without smearing the auto-terms, which
could not be done using the t-f smoothing operation
via reduced interference distributions.
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Fig. 1  WVD in noise-free environment at the
reference sensor.
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Fig. 2 Array-averaged WVD in noise-free
environment.

Fig. 3 ~ WVD of the corrupted signals at the
reference sensor.
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Fig. 4  Array-averaged WVD of the corrupted
signals.
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Fig. 5 WVD of synthesized $2(t).
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Fig. 6  (top) Real part of original s, (t);
(middle) Real part from the STFD-recovered $3(t);

(bottom) Real part from the array averaged 82 (t).



