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ABSTRACT respectively. The usual inner product of these vectors is defined as
We present a new digital modulation technique that introduces (v, ) = / ~(t)o(t) dt. 1)
covertness in digital communications in a simple fashion. The ba- —oo

sic principle is to transmit realizations of a stochastic process in
such a manner that the transmitted waveform appears noiselike
The transmitted waveform is expressed in a subspace formalism
allowing for an elegant geometrical interpretation of the waveform,
and a simple and accurate subspace detector for the receiver. The

effect of inter-symbol-interference (IS) is also studied, and a sim- {(v.®)}i = (7. 0,) = /_oo Y(t)i(t) dt, 2
ple zero-forcing subspace detector is suggested. The technique is

demonstrated by numerical simulations, and it shows that our sim-Where{-}: denotes theth element. For future reference, define
ple subspace detectors yield high-quality and reliable receivers. S’ to be a delay operator ib®, i.e. 8™y = y(t — 7).

Given an indexed set of signas = {¢, }i~, C L?, ¢, € L2,
let® = [¢y,...,¢,])" € {L?}*. We find the multi-linear inner
product taking{LL>}** x L? into R* to be

oo

3. STOCHASTIC PROCESS SHIFT KEYING
1. INTRODUCTION

The transmitted waveform for an infinite duratiStochastic Pro-
An obvious way of introducing covertness in digital communica- cess Shift KeyingSPSK) signal suggested in [2],[3] can be written
tions, is to ensure that the transmitted waveform appears like wide-as
band noise. Spread-spectrum techniques e.g. [1], apply a known o K
quasi-stochastic spreading sequence to increase the bandwidth of X(t) = Z Z T (k)i (t — nTy), (3)
the transmitted signal, and thus obtain some degree of privacy.

n=—o0 k=1
Limitations are imposed by the need to be strictly synchronous ) ) ) )
with the transmitter. where ¢ (¢) is the kth basis function, and:,, (k) is the kth el-
— T
Salberg and Hanssen in [2], [3] proposed the following low- €Ment of the random vectot, = [za(1),...,2a(K)]". The

distribution ofx,, is determined by theth symbol, andk,, is thus
a symbol vector. The received continuous time pulse? rep-
resenting thexth symbol is [4]

probability-of-intercept method for encoding digital information.
Transmit a realization of a stochastic procéggt), 0 < ¢t < Ts

to represent bit zero, and a realization of another stochastic pro-
cessXi(t), 0 < t < T, to represent bit one. Herg; is the K
_sy_mbc_)l duration_. Thus, rather than altering aspects of a determin- r= Z n (k)@ +n, 4)

istic signal, realizations of two different stochastic processes are =1

transmitted. This has the effect that two subsequent equal source 9 ) . )

bits have different transmitted waveforms. In addition, two differ- Where¢; € L= corresponds tg: (t), andn is an additive white

ent source bits have similar waveforms, due to the fact that they Gaussian noise process. For the detection problem we form a vec-
are close in a statistical sense. The transmitted waveform repre{0f ¥» = G(r), G : L° — R7, b}’ correla%mgr against the
senting a bit string will thus appear noiselike, and it contains no €/ements of abasB = [by, ..., bx]", b; € L%,

repetitions or periodicities. Moreover, the waveform contains no ¥n = G(r) = (r, B). (5)
discontinuities, so the pulse length is also hidden. Since the trans-

mitted baseband waveform is noiselike, a transmission would not Thus, y,, is a coordinate vector of with respect to the basis
attract the attention of unfriendly receivers. It is obvious that this b1, ..., bx, when thenth symbol is transmitted. The decoding
signaling method adds an extra (physical) layer of security in dig- can be made simple B are chosen to be orthonormal to signaling
ital communication, thus reducing the risk of eavesdropping. waveforms®, i.e.

(®,B) = Ik, (6)

2. NOTATION whereIx denotes thek x K identity matrix. In that case the
received vector is
Using the same notation as in [4], we let the vecterg) € L2
represent the continuous-time, finite-energy signé$ and#(t), Yn =Xn + 1. (7



SUBSPACE SIGNALS

Fig. 1. Trajectories of the subspace signals (dotted) andx;
(dash-dotted).

3.1. Parallel transmission scheme

In a parallel transmission scheme thebasis functions (signal-
ing waveforms)¢:(t),. .., ¢x(t) are different (often orthonor-

mal) waveforms, and are transmitted simultaneously in time over

3.4. Normalization

To ensure that a every symbol has equal energy, normalization of
the noise vectos,, is necessary. The normalized noise vector is

- VE,

S
s
sall’

and the trajectories of the subspace signals will now be on a hyper
sphere centered in origin, and with radius equa//ib},.

norm
Sy,

(11)

4. CHANNEL EFFECTS
The SPSK signalX (¢) is transmitted over a channel having an

impulse response € L2. The received pulse corresponding with
thenth transmitted pulse is now

K
r= Z Zn(k)ug + n, (12)
k=1

whereu,, € 1? corresponds to the time signak (t) = c(t) *
¢ (t), andx denotes the convolution operator.

4.1. Parallel transmission

the channel. The wavelet-based orthonormal modulation code setAssume that the overall channk(t) has a time support length

used in [3] is thus a parallel transmission scheme.

3.2. Serial transmission scheme

In the case of serial transmission tRebasis functions can be cho-
sen as time delays of a common chip pulsét) = (¢t — (k —
1)T¢), where the chip period, = T,/K. The symbol vector
X, = [z(nK),z(nK +1),...,z(nK + K — 1)]” is converted
into a serial chip sequenag!) before transmission, and the trans-
mitted SPSK signal can then be written as

e’}

l=—o00

®)
and the received time pulsec LL? representing thath symbol is

K
r:Zx(nK—Fk—l)q&k—&—n.

©)
k=1
3.3. Redundancy matrices
We have chosen to define the symbol vector as [3]
Xi = F¢Si7 1= O7 1, (10)

wheres; is a M x 1 random vector drawn from a multivariate
probability densitype, (s), 6 is a relevant parameter vect®t; is

a K x M redundancy matrixvhich introduces redundancy in the
symbol vector. The symbol vectar, representing theth symbol

is known to lie in thel/ dimensional linear subspa¢E;) spanned
by the columns of; = [£{,... £{Y]. This s illustrated in Fig.

1 where the dotted line is the trajectory of the subspace signal
and the dash-dotted line is the trajectory of the subspace signal
M = 2, andK = 3. From the figure we see the randomness of
the signalsxo andx;, and thatx; is in the subspace spanned by
the columns of; = [£{") £{"].

equal toATs, A > 1, and defineL = [A], where[-] denotes
the ceiling-integer. Furthermore, in the case of zero ¥5],can
be recovered after an initial delay afpulses. Then, the received
vector can be written as

L—a

Z (87T, B)

m=—a+1

i > nm(B) (ST ug, B).

m=—a+1k=1

Yn =

(13)

Define

H,, = [(S " uy,B),..., (S " uk,B)] e R"*¥ (14)

and the received vector can now be written as

L—«
g H,.xn—m = Hp * xp.

m=—a-+1

Yn = (15)

Eq. (15) states that the ISI part of the received vector can be large,
depending onL. For instance, if we use Daubechies 4 wavelets
as basis functions [3], we have that> 12. Thus, the received
symbol vectoly,, is influenced by more that2 symbol vectors.

4.2. Serial transmission

Assume that the overall channk(¢) has a time support length
equal toAT;, A > 1, L = [X], and assume that < K and
M < K — L + 1. Furthermore, in the case of zero 15}, (k)
can be recovered after an initial delay®fthip pulses. Then the
received vector is

1 K

yo= Y Y wu (k) ui,B)

m=—1k=1
- H—1Xn+1 + HOXn + Hlxn—1~



SinceL < K, we have thatH,H1, andH_; can be written as

ho h_a+t1 0 0
H, — hr—a 0
0 hfoz+1
e 0  hia ho |
B 0 hL—a hl
0
Hl = 0 thfoc (16)
LO 0 0
[0 0 0]
H_, = h-ats 0 ,
h7a+1
L hy hs hat1 0]

whereh;, = (ul, bl+k>, I+ ke {1, ey k}, SiT"'uk = Ug_K,
andSTSuk = UKtk

Thus, the elementg, (1), ...,yn(L — &) andy, (K — a +
2),...,yn(K) of the received symbol vectgr, will contain ISI
from the(n—1)th and(n +1)th symbols. An oftenly used method
to cope with this effect, is to discard precisely those elements [5].
DefineB = [br_at1,...,bx—at1]T, andy, = [yn(L — a +
1),...,yn(K — a + 1)]7, then,

>

yn = <uk7§> = <I‘,§> = ﬁoxn, (17)
k=1
whereH; = GHy, and
. O(L—a)x(K—L+1)
G = [Lxk—r4+1)x(K—L+1) (18)

O(a—1)x(K—L+1)

5. SUBSPACE DETECTORS

Based on the received vectpy, we must decide whether a bit zero

5.1. No ISl

In this case the received vector is given by Eq. (7), and the decision
criterion is that we choose clagy if
YaPrYn > YaPryn, (20)

and otherwise choose claQs. The detector measures the amount
of the received energy that resides in subspd€g, and then
chooses the class corresponding to the subspace containing the
largest amount of energy [3].

An exact expression for the bit-error probability in the case of
orthonormal subspaces will be given in section 5.3.

5.2. Serial transmission and ISl

In section 4.2 we suggested to use the receiver m@tria discard
the elements ity,, that contain ISI. Using a receiver matrix, the
classification criterion is to choose cld3s if

=T — T —

Yo Pauor ¥, >V, Pargr¥n, (21)
and otherwise choose claQs. The channel and the receiver ma-
trix G causes the signal subspaces to change frdfadimensional
subspacéF;) in R* to aM;-dimensional subspad&HoF;) in
RE-L+L ‘whereM; < M.

5.3. Exact bit-error probability

We will give an exact expression of the bit-error probability (BEP)
under the assumption of a frequency nonselective channel, orthog-
onal signal subspaces; ~ N(0,02I), i = 0,1, and no nor-
malization of the noise vector. Assume that bit one is sent. Then,
F{y, andFJy, are distributed as

F{yn ~N(0, (0} +02)I)
Foyn ~N(0,021).

(22)
(23)

DefineZ; = yX F;F!y. = y-Pr,y., then the probability den-
sity functions ofZ, andZ; are obviously

or a bit one was sent. Since the transmitted vectors are subspac&he BEP can therefore be written as [1]

sighalsMatched Subspace Detectanse well suited detectors [6].

The benefit of such detectors is that the decision criterion is inde-

pendent of the additive noise variangg = N, /2. We define the
orthogonal projection operator as [6]

Pr, = Fi(F/F,)'F], i=0,1 (19)

so thatP g, r is a projection ofr onto the subspacg;).

fz.(2) = BZM/21 exp(—bz) (24)
fz,(2) = AM/21 exp(—az), (25)
where
1 1
= 55z T o2t o2 (20)
aM/? pM/2
A= G- T M2 1) @7)
ro= [smen [ " rat 0} da
B 1 ME M2+ -1 afb P
T (14a/b)M/2 ;0 (M/2 — 1)!5! (1 + a/b>
(28)
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Fig. 2. The chip sequence(!) of the message '11100100'. Fig. 3. Bit-error probability as a function of SNR. Full linesd7 =

6 and K = 16. Dashed linesM = 24 and K = 52. Labels: (i)
Exact BEP with zero ISI and no gain normalization, (ii) Monte
Carlo simulations of the BEP, including ISI and normalization of
6. SIMULATIONS noise vector, and (iii) Monte Carlo simulations of the BEP with
zero IS| and noise vector normalization.
To demonstrate the proposed digital modulation scheme, we now
present some numerical simulations.

In our simulations the subspace matri#ggsandF; are cho- ) . . .
sen to be orthogonal [6], and constructed from the orthonormal spreads the transmitted signal over a wider frequency band. Since

eigenvectors of thé& x K covariance matrix of an AR(2) process the energy of the transmitted baseba_nd waveforms in the case of
with a1 = 0.81, az = 0.35, ando® = 1. This is a simple way M =6 and M = 24 are equal, the signal power per unit band-
of constructing the subspace matrices, but obviously not the only Width is lower for the case ai/ = 24.
possibility. Furthermorepg,(s) = pe, (s) are both multivariate
GaussianV/ (0, I). 7. CONCLUSIONS
Fig. 2 shows an example of a transmitted chip sequence repre-
senting the message '11100100’. One single bit is represented byWe have presented a new digital modulation technique that intro-
K = 12 chip values. Observe that two subsequent equal sourceduces some degree covertness in a simple fashion. The transmitted
bits have different waveforms, due to the randomness of the sym-waveform is noiselike, and would therefore not attract the attention
bol vectorx,,. Note also that the pulse length is hidden, and that of unfriendly receivers. Using a subspace formalism, a simple and
there are no periodicities in the information carrying signal. efficient zero-forcing subspace detector is constructed to cope with
To demonstrate the detector given in Eq. (21) we now consider the channel effects.
aFIR channeh(z) = 0.2z + 1+ 0.42~' — 0.2272, anda = 2
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