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ABSTRACT

We present a new digital modulation technique that introduces
covertness in digital communications in a simple fashion. The ba-
sic principle is to transmit realizations of a stochastic process in
such a manner that the transmitted waveform appears noiselike.
The transmitted waveform is expressed in a subspace formalism,
allowing for an elegant geometrical interpretation of the waveform,
and a simple and accurate subspace detector for the receiver. The
effect of inter-symbol-interference (ISI) is also studied, and a sim-
ple zero-forcing subspace detector is suggested. The technique is
demonstrated by numerical simulations, and it shows that our sim-
ple subspace detectors yield high-quality and reliable receivers.

1. INTRODUCTION

An obvious way of introducing covertness in digital communica-
tions, is to ensure that the transmitted waveform appears like wide-
band noise. Spread-spectrum techniques e.g. [1], apply a known
quasi-stochastic spreading sequence to increase the bandwidth of
the transmitted signal, and thus obtain some degree of privacy.
Limitations are imposed by the need to be strictly synchronous
with the transmitter.

Salberg and Hanssen in [2], [3] proposed the following low-
probability-of-intercept method for encoding digital information.
Transmit a realization of a stochastic processX0(t), 0 ≤ t < Ts
to represent bit zero, and a realization of another stochastic pro-
cessX1(t), 0 ≤ t < Ts to represent bit one. HereTs is the
symbol duration. Thus, rather than altering aspects of a determin-
istic signal, realizations of two different stochastic processes are
transmitted. This has the effect that two subsequent equal source
bits have different transmitted waveforms. In addition, two differ-
ent source bits have similar waveforms, due to the fact that they
are close in a statistical sense. The transmitted waveform repre-
senting a bit string will thus appear noiselike, and it contains no
repetitions or periodicities. Moreover, the waveform contains no
discontinuities, so the pulse length is also hidden. Since the trans-
mitted baseband waveform is noiselike, a transmission would not
attract the attention of unfriendly receivers. It is obvious that this
signaling method adds an extra (physical) layer of security in dig-
ital communication, thus reducing the risk of eavesdropping.

2. NOTATION

Using the same notation as in [4], we let the vectorsγ,φ ∈ L2

represent the continuous-time, finite-energy signalsγ(t) andφ(t),

respectively. The usual inner product of these vectors is defined as

〈γ,φ〉 =

∫ ∞
−∞

γ(t)φ(t) dt. (1)

Given an indexed set of signalsF = {φk}Kk=1 ⊂ L2, φk ∈ L2,
let Φ = [φ1, . . . ,φK ]T ∈ {L2}K . We find the multi-linear inner
product taking{L2}K × L2 intoRK to be

{〈γ,Φ〉}i = 〈γ,φi〉 =

∫ ∞
−∞

γ(t)φi(t) dt, (2)

where{·}i denotes theith element. For future reference, define
Sτ to be a delay operator inL2, i.e.Sτγ = γ(t− τ).

3. STOCHASTIC PROCESS SHIFT KEYING

The transmitted waveform for an infinite durationStochastic Pro-
cess Shift Keying(SPSK) signal suggested in [2],[3] can be written
as

X(t) =

∞∑
n=−∞

K∑
k=1

xn(k)φk(t− nTs), (3)

whereφk(t) is thekth basis function, andxn(k) is thekth el-
ement of the random vectorxn = [xn(1), . . . , xn(K)]T . The
distribution ofxn is determined by thenth symbol, andxn is thus
a symbol vector. The received continuous time pulser ∈ L2 rep-
resenting thenth symbol is [4]

r =

K∑
k=1

xn(k)φk + n, (4)

whereφk ∈ L2 corresponds toφk(t), andn is an additive white
Gaussian noise process. For the detection problem we form a vec-
tor yn = G(r), G : L

2 → R
K , by correlatingr against the

elements of a basisB = [b1, . . . ,bK ]T , bi ∈ L2,

yn = G(r) = 〈r,B〉. (5)

Thus, yn is a coordinate vector ofr with respect to the basis
b1, . . . ,bK , when thenth symbol is transmitted. The decoding
can be made simple ifB are chosen to be orthonormal to signaling
waveformsΦ, i.e.

〈Φ,B〉 = IK , (6)

whereIK denotes theK × K identity matrix. In that case the
received vector is

yn = xn + n. (7)
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Fig. 1. Trajectories of the subspace signalsx0 (dotted) andx1

(dash-dotted).

3.1. Parallel transmission scheme

In a parallel transmission scheme theK basis functions (signal-
ing waveforms)φ1(t), . . . , φK(t) are different (often orthonor-
mal) waveforms, and are transmitted simultaneously in time over
the channel. The wavelet-based orthonormal modulation code set
used in [3] is thus a parallel transmission scheme.

3.2. Serial transmission scheme

In the case of serial transmission theK basis functions can be cho-
sen as time delays of a common chip pulseφk(t) = ψ(t − (k −
1)Tc), where the chip periodTc = Ts/K. The symbol vector
xn = [x(nK), x(nK + 1), . . . , x(nK + K − 1)]T is converted
into a serial chip sequencex(l) before transmission, and the trans-
mitted SPSK signal can then be written as

X(t) =

∞∑
l=−∞

x(l)ψ(t− lTc), (8)

and the received time pulser ∈ L2 representing thenth symbol is

r =

K∑
k=1

x(nK + k − 1)φk + n. (9)

3.3. Redundancy matrices

We have chosen to define the symbol vector as [3]

xi = Fisi, i = 0, 1, (10)

wheresi is aM × 1 random vector drawn from a multivariate
probability densitypθi(s), θi is a relevant parameter vector,Fi is
aK ×M redundancy matrixwhich introduces redundancy in the
symbol vector. The symbol vectorxn representing thenth symbol
is known to lie in theM dimensional linear subspace〈Fi〉 spanned
by the columns ofFi = [f

(i)
1 , . . . , f

(i)
M ]. This is illustrated in Fig.

1 where the dotted line is the trajectory of the subspace signalx0,
and the dash-dotted line is the trajectory of the subspace signalx1,
M = 2, andK = 3. From the figure we see the randomness of
the signalsx0 andx1, and thatxi is in the subspace spanned by
the columns ofFi = [f

(i)
1 , f

(i)
2 ].

3.4. Normalization

To ensure that a every symbol has equal energy, normalization of
the noise vectorsn is necessary. The normalized noise vector is

snormn =
√
Eb

sn
||sn||

, (11)

and the trajectories of the subspace signals will now be on a hyper
sphere centered in origin, and with radius equal to

√
Eb.

4. CHANNEL EFFECTS

The SPSK signalX(t) is transmitted over a channel having an
impulse responsec ∈ L2. The received pulse corresponding with
thenth transmitted pulse is now

r =

K∑
k=1

xn(k)uk + n, (12)

whereuk ∈ L2 corresponds to the time signaluk(t) = c(t) ∗
φk(t), and∗ denotes the convolution operator.

4.1. Parallel transmission

Assume that the overall channelh(t) has a time support length
equal toλTs, λ > 1, and defineL = dλe, whered·e denotes
the ceiling-integer. Furthermore, in the case of zero ISI,xn can
be recovered after an initial delay ofα pulses. Then, the received
vector can be written as

yn =

L−α∑
m=−α+1

〈S−mTsr,B〉

=

L−α∑
m=−α+1

K∑
k=1

xn−m(k)〈S−mTsuk,B〉. (13)

Define

Hm = [〈S−mTsu1,B〉, . . . , 〈S−mTsuK ,B〉] ∈ RK×K , (14)

and the received vector can now be written as

yn =

L−α∑
m=−α+1

Hmxn−m = Hn ∗ xn. (15)

Eq. (15) states that the ISI part of the received vector can be large,
depending onL. For instance, if we use Daubechies 4 wavelets
as basis functions [3], we have thatL > 12. Thus, the received
symbol vectoryn is influenced by more than12 symbol vectors.

4.2. Serial transmission

Assume that the overall channelh(t) has a time support length
equal toλTc, λ > 1, L = dλe, and assume thatL < K and
M < K − L + 1. Furthermore, in the case of zero ISI,xn(k)
can be recovered after an initial delay ofα chip pulses. Then the
received vector is

yn =

1∑
m=−1

K∑
k=1

xn−m(k)〈S−mTsuk,B〉

= H−1xn+1 + H0xn + H1xn−1.



SinceL < K, we have thatH0,H1, andH−1 can be written as

H0 =



h0 . . . h−α+1 0 . . . 0
...

. . .
. . .

...

hL−α
. . . 0

0
. . . h−α+1

...
. . .

...
0 . . . 0 hL−α . . . h0



H1 =



0 . . . hL−α . . . h1

. . .
. . . 0

. . .
...

0 . . .
. . . . . . hL−α

...
...

...
. . .

...
0 . . . 0 . . . 0


(16)

H−1 =



0 0 . . . 0
...

...

h−α+1 0
...

... h−α+1

. . .
...

. . .
. . .

h−1 h−2 . . . h−α+1 . . . 0


,

wherehk = 〈ul,bl+k〉, l + k ∈ {1, . . . , k}, S−Tsuk = uk−K ,
andSTsuk = uK+k.

Thus, the elementsyn(1), . . . , yn(L − α) andyn(K − α +
2), . . . , yn(K) of the received symbol vectoryn will contain ISI
from the(n−1)th and(n+1)th symbols. An oftenly used method
to cope with this effect, is to discard precisely those elements [5].
DefineB = [bL−α+1, . . . ,bK−α+1]T , andyn = [yn(L − α +
1), . . . , yn(K − α+ 1)]T , then,

yn =

K∑
k=1

〈uk,B〉 = 〈r,B〉 = H0xn, (17)

whereH0 = GH0, and

GT =

 0(L−α)×(K−L+1)

I(K−L+1)×(K−L+1)

0(α−1)×(K−L+1)

 . (18)

5. SUBSPACE DETECTORS

Based on the received vectoryn we must decide whether a bit zero
or a bit one was sent. Since the transmitted vectors are subspace
signals,Matched Subspace Detectorsare well suited detectors [6].
The benefit of such detectors is that the decision criterion is inde-
pendent of the additive noise varianceσ2

n = N0/2. We define the
orthogonal projection operator as [6]

PFi = Fi(F
T
i Fi)

−1FTi , i = 0, 1 (19)

so thatPFir is a projection ofr onto the subspace〈Fi〉.

5.1. No ISI

In this case the received vector is given by Eq. (7), and the decision
criterion is that we choose classΩ0 if

yTnPF0yn > yTnPF1yn, (20)

and otherwise choose classΩ1. The detector measures the amount
of the received energy that resides in subspace〈Fi〉, and then
chooses the class corresponding to the subspace containing the
largest amount of energy [3].

An exact expression for the bit-error probability in the case of
orthonormal subspaces will be given in section 5.3.

5.2. Serial transmission and ISI

In section 4.2 we suggested to use the receiver matrixG to discard
the elements inyn that contain ISI. Using a receiver matrix, the
classification criterion is to choose classΩ0 if

yTnPGH0F0yn > yTnPGH0F1yn, (21)

and otherwise choose classΩ1. The channel and the receiver ma-
trix G causes the signal subspaces to change from aM -dimensional
subspace〈Fi〉 in RK to aMi-dimensional subspace〈GH0Fi〉 in
R
K−L+1, whereMi ≤M .

5.3. Exact bit-error probability

We will give an exact expression of the bit-error probability (BEP)
under the assumption of a frequency nonselective channel, orthog-
onal signal subspaces,si ∼ N (0, σ2

sI), i = 0, 1, and no nor-
malization of the noise vector. Assume that bit one is sent. Then,
FT1 yn andFT0 yn are distributed as

FT1 yn ∼ N (0, (σ2
s + σ2

n)I) (22)

FT0 yn ∼ N (0, σ2
nI). (23)

DefineZi = yTnFiF
T
i yn = yTnPFiyn, then the probability den-

sity functions ofZ0 andZ1 are obviously

fZ1(z) = BzM/2−1 exp(−bz) (24)

fZ0(z) = AzM/2−1 exp(−az), (25)

where

a =
1

2σ2
n

b =
1

σ2
s + σ2

n

(26)

A =
aM/2

(M/2− 1)!
B =

bM/2

(M/2− 1)!
(27)

The BEP can therefore be written as [1]

Pe =

∫ ∞
0

{
fZ1(z1)

∫ ∞
z1

fZ0(z) dz0

}
dz1

=
1

(1 + a/b)M/2

M/2−1∑
j=0

(M/2 + j − 1)!

(M/2− 1)!j!

(
a/b

1 + a/b

)j .
(28)



0 1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

2

l/K

x(
l)

"1" "1" "1" "0" "0" "0" "1" "0" 

Fig. 2. The chip sequencex(l) of the message ’11100100’.

6. SIMULATIONS

To demonstrate the proposed digital modulation scheme, we now
present some numerical simulations.

In our simulations the subspace matricesF0 andF1 are cho-
sen to be orthogonal [6], and constructed from the orthonormal
eigenvectors of theK×K covariance matrix of an AR(2) process
with a1 = 0.81, a2 = 0.35, andσ2 = 1. This is a simple way
of constructing the subspace matrices, but obviously not the only
possibility. Furthermore,pθ0(s) = pθ1(s) are both multivariate
GaussianN (0, I).

Fig. 2 shows an example of a transmitted chip sequence repre-
senting the message ’11100100’. One single bit is represented by
K = 12 chip values. Observe that two subsequent equal source
bits have different waveforms, due to the randomness of the sym-
bol vectorxn. Note also that the pulse length is hidden, and that
there are no periodicities in the information carrying signal.

To demonstrate the detector given in Eq. (21) we now consider
a FIR channelh(z) = 0.2z + 1 + 0.4z−1 − 0.2z−2, andα = 2
andL = 4.

As in conventional communications we define the signal-to-
noise ratio (SNR) asSNR = Eb/N0, which in our case can be
written asSNR = M ||h||2/N0. We have chosenK = 2M +L.

Fig. 3 shows the exact and Monte Carlo simulations of the
BEP of the subspace detectors with and without ISI. The full lines
representM = 6 andK = 16, whereas the dashed lines represent
M = 24 andK = 52. The curves labeled (i) are exact BEP of the
detector given in Eq. (20), as calculated by Eq. (28). The curves
labeled (ii) are Monte Carlo simulations of the BEP of the detector
given in Eq. (21), with channelh(z) and noise vector normaliza-
tion, and the curves labeled (iii) are Monte Carlo simulations of
the BEP of the detector given in Eq. (20) with normalized noise
vector. From Fig. 3 we see, as expected, that the BEP decreases
as a function of increasing SNR. Furthermore, notice that the per-
formance increases significantly whensnormn is used instead ofsn.
We also see that the channelh(z) yields a decrease in performance
due to that the new subspaces〈GH0F0〉 and〈GH0F1〉 are not
(in general) orthogonal.

For low-probability-of-intercept communications, the dimen-
sion ofF0 andF1 must be chosen such that the signal power per
unit bandwidth is below the noise spectral density. In the simula-
tions above,M = 24 implies the use of waveforms with higher
frequency components than forM = 6. Thus, larger values ofM
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Fig. 3. Bit-error probability as a function of SNR. Full lines:M =
6 andK = 16. Dashed lines:M = 24 andK = 52. Labels: (i)
Exact BEP with zero ISI and no gain normalization, (ii) Monte
Carlo simulations of the BEP, including ISI and normalization of
noise vector, and (iii) Monte Carlo simulations of the BEP with
zero ISI and noise vector normalization.

spreads the transmitted signal over a wider frequency band. Since
the energy of the transmitted baseband waveforms in the case of
M = 6 andM = 24 are equal, the signal power per unit band-
width is lower for the case ofM = 24.

7. CONCLUSIONS

We have presented a new digital modulation technique that intro-
duces some degree covertness in a simple fashion. The transmitted
waveform is noiselike, and would therefore not attract the attention
of unfriendly receivers. Using a subspace formalism, a simple and
efficient zero-forcing subspace detector is constructed to cope with
the channel effects.
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