
PERFORMANCE ANALYSIS OF LOW BIT RATE H.26L
VIDEO ENCODER

Antti Hallapuro1, Ville Lappalainen1, and Timo D. Hämäläinen2

1Nokia Research Center, P.O. Box 100, FIN-33721, Tampere, Finland
2Tampere University of Technology, Digital and Computer Systems Laboratory

E-mail: ville.lappalainen@nokia.com

ABSTRACT

A new video encoder proposal, H.26L, is compared against
H.263 and H.263+. In the comparison, both computational
complexity and compression performance are analyzed.
Moreover, the trade-off possibilities between the complexity and
compression performance within H.26L are presented.
Experimental comparisons with H.263 and H.263+ show that
H.26L reduces the output bit rate about 30% with the same
quality. The computation time increases about three times
compared to H.263 and leads into the encoding speed of 3-6 fps
for QCIF sequences on a 400 MHz Pentium III processor. Real-
time operation can be achieved by applying additional,
algorithmic and platform-specific optimizations.

1. INTRODUCTION

ITU-T H.26L is a new, emerging video coding standard
proposal. It is aimed at very low bit rate, real-time, low end-to-
end delay, and mobile applications such as conversational
services and Internet video. H.26L is intended to replace the
previous H.263 and H.263 Version 2 (H.263+) standards [3] by
targeting far beyond in compression performance and advanced
features like error resilience. The final major feature adoptions
to H.26L are to take place in the beginning of 2001, and the
standardization in May 2002 [4]. Currently, the TML-5 (H.26L
Test Model Long Term Number 5) document [5] forms the base
for the future standard. Additionally, it contains issues relevant
for the reference implementation of the encoder.

This paper presents a performance analysis of the emerging
standard on a general-purpose processor. A public reference
encoder (v. 4.3) is used as a starting point [11], and
optimizations in C language are applied. The goal is to compare
our H.26L implementation against H.263 and H.263+ and to
show how the compression performance improves at the
expense of increased complexity. We apply similar
optimizations to both H.26L and H.263/H.263+ encoders, to
obtain accurate comparisons. The complexity of H.263 and
H.263+ encoding has been studied in [9] and [1], for example.

In the following, we summarize H.26L and describe
computationally intensive operations in more detail. In sections
3 and 4, we describe the implemented H.26L encoder and
present experimental results, respectively. Concluding remarks
are given in the final section.

2. H.26L ALGORITHM

H.26L is based on a motion compensated hybrid DCT algorithm
such as the H.263 and MPEG-4 [2] standards. H.26L uses the

traditional translational motion model, although other models
such as the affine model have been proposed and studied [7],
[10]. However, H.26L provides several enhancements. Firstly,
only one regular VLC table is used for symbol coding.
Secondly, fractional (¼) pixel precision is used in motion
compensated prediction. Thirdly, seven different block sizes
(16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4) are used for
motion compensated prediction. Fourthly, prediction error
coding is based on 4x4 blocks and an integer transform is used.
Finally, multiple reference frames may be used for prediction.
Additionally, a deblocking filter is used inside the coding loop.
Compared to H.263+, the filter is more complex and it operates
on 4x4 block edges instead of 8x8 edges.

Although the implementation of the encoder will not be
specified in the final standard, the current TML suggests using
the Hadamard transform during motion estimation. The use of a
transform before computing the measure of prediction error is
based on the fact that the prediction error is always transformed
during the encoding. Hadamard transform is chosen due to its
simplicity. Although allowed by H.26L, we will not consider
motion estimation based on multiple reference frames, because it
will significantly increase the complexity. Otherwise, we will
comply with the reference implementation in this study.

According to the profiling of the reference implementation,
motion estimation for all the block sizes as well as image
interpolation resulting in fractional pixel precision consume
majority of the encoding time. Motion estimation is highlighted
in the following, as it is the most time-consuming operation.

2.1. Motion estimation for different block sizes
Compared to H.263, where only two block sizes (16x16 and

8x8) are used, seven different block sizes provide a potentially
smaller prediction error at the expense of increased complexity.
If this feature is fully utilized, all block sizes are tested and the
one giving the best result is chosen. There are two measures of
prediction error used in H.26L: SAD (Sum of Absolute
Differences) and SATD (T stands for Transformed). They are
defined in (1) and (2), respectively.

∑
∈

−=
kByx

yx
wxh

Pyx
wxh

ISAD
),(

),(),((1)

)44(44,
),(

),(44 xDHxT
kbyx

yxxTSATD =∑
∈

=
(2)

In (1), w and h denote the width and height of the current
frame Iwxh() and the predicted frame Pwxh(), and Bk represents a
set of pixels inside a given block. The number of pixels in Bk

ranges from 16 to 256, depending on the block size.
In (2), bk represents a set of pixels inside a given 4x4 block,

D4x4 denotes the difference block, i.e., D4x4 = {x, y ∈ bk | Iwxh(x,y)
– Pwxh(x,y)}, and H() denotes the 2-D Hadamard transform. The

1-D Hadamard transform for pixels a, b, c, and, d into transform
coefficients A, B, C, and D is defined in (3). The 2-D transform
is obtained by performing the transform both horizontally and
vertically. SATD for larger block sizes are obtained by dividing
the block into 4x4 subblocks and summing up the SATD values
of these subblocks.

















































−−
−−

−−
=

d

c

b

a

D

C

B

A

1111

1111

1111

1111
(3)

Depending on the block size, a 16x16 macroblock contains
1, 2, 4, 8 or 16 blocks. For each block in a macroblock, three
block-matching operations are performed: integer, ½, and ¼
pixel precision block-matching. The integer pixel search is
performed inside the search window according to the used
block-matching algorithm, while both fractional pixel searches
are performed for only nine pixel positions (around the starting
position). The integer search starts from the position pointed by
the predicted motion vector, which is found according to a set of
rules, while the ½ precision search starts at the position where
the integer search points. Similarly, the ¼ precision search starts
where the ½ precision search points. The search range, i.e., the
width of the quadratic search window, is reduced to half from
the original one for all block sizes except 16x16, for which the
original range is used. For integer search, SAD is used, while for
both fractional pixel searches, SATD is used. After all searches
are performed, the one resulting in the smallest prediction error
is chosen.

3. IMPLEMENTATION

Our current implementation is based on the public reference
implementation. The major differences are general optimizations
such as loop unrolling for SAD calculations and function
inlining for SAD and SATD calculations. Also, a look-up table
is used for the absolute value computations during SAD
calculations.

For comparisons, we used an H.263/H.263+ encoder
implementation described in [8]. Both H.26L and H.263
encoders are implemented in C, and they contain neither
algorithmic nor platform-specific optimizations. Both use the
full-search block-matching algorithm. Although there still exists
lots of optimization possibilities, further optimizations were not
needed for the purposes of this study.

Experiments were carried out on a 400 MHz Intel Pentium
III (Katmai) processor with 128 MB of memory and a 100 MHz
system bus. The on-chip L1 data and instruction caches were 16
KB each. The size of the unified, off-chip L2 cache was 512
KB. The encoders were run under Microsoft Windows NT 4.0
(build 1381) with Service Pack 5 (RC 1.1) installed. The
encoders were compiled using Microsoft Visual C++ 6.0, with
the optimizations targeted at maximizing speed. During the
measurements the priority of the encoder process was set to the
maximum value and no other applications were allowed to run.

Intel Vtune Performance Analyzer 4.0 was used to get the
profile information and to find out the most time-consuming
operations.

4. RESULTS AND ANALYSES

The profiling of the H.26L reference implementation with the
Foreman input sequence at 24 kbps gives the following initial
results of the distribution the total execution time: 1) Motion
estimation including all the operations described in Section 2,
84%, and 2) Image Interpolation, 4%. The remaining 12% is
spent on the integer transform and quantization and other minor
operations. This gives a clear picture of the critical parts for
further optimization.

Our implementation performs roughly twice as fast as the
reference encoder, while still achieving similar video quality.
However, the main goal in this study is not to make comparisons
between our implementation and the reference implementation,
for which reason we consider the issue no longer.

In the following, we analyze the performance of our H.26L
encoder at both the application and kernel level, and compare its
complexity to H.263 and H.263+. Comparison criteria are first
discussed.

4.1. Comparison criteria
We chose the following approach to compare H.26L and H.263.
Firstly, we took H.26L with 7 block sizes as the baseline case, as
it represents the best video quality among all the cases.
Secondly, the baseline case achieved the desired target bit rate
most accurately, while the other cases achieved a bit rate, which
usually exceeded the target. Thirdly, we tried to obtain similar
luminance (Y) PSNR values for H.26L and H.263(+) encoded
sequences. Here, we assume that similar Y PSNR values result
in approximately the same spatial video quality. Finally, we
fixed the temporal video quality, measured in the frame rate of a
sequence. To summarize, we fixed the spatial and temporal
video quality, while letting the bit rate and complexity vary.

There are also other ways to perform this kind of
comparison such as 1) fixing the bit rate while letting the quality
vary, and 2) calculating a combined PSNR instead of separate
Y, U, and V values and fixing the combined PSNR while letting
the bit rate vary. Our approach has two major advantages
compared to the two other approaches. Firstly, our approach
clearly shows how H.26L improves the compression ratio over
H.263. Secondly, we wanted to analyze the chrominance PSNR
values separately to get more detailed information. Moreover,
one interesting approach is to fix the complexity of the encoding
task. However, we could not follow this approach, because the
complexity of H.26L clearly exceeded that of H.263 encoding.

4.2. Application-level analysis
Using the H.26L and H.263 encoders, we encoded the following
QCIF (luminance resolution: 176x144) sequences: Akiyo,
Carphone, Foreman, and Mother & Daughter. These sequences
were selected from a set of test sequences used during the
standardization of H.263 and MPEG-4.

The encoding parameters were as follows: 1) target bit rate
was either 8, 14, or 24 kbps, 2) input, i.e., reference frame rate
was 30 fps, 3) output, i.e., target frame rate was constant: 10 fps,
4) search window of size 31x31 was used, and 5) number of
frames in the encoded sequence was 100, which corresponds to
300 frames in the original sequence, with these reference and
output frame rates. Due to the different nature of the sequences,
i.e., the amount of motion and spatial details, a unique set of
target bit rates was selected for each sequence.

The Advanced Prediction and Unrestricted Motion Vector
modes were used for H.263. In addition to these two modes,
three additional modes were used for H.263+: Deblocking
Filtering, Advanced Intra Coding, and Modified Quantization
modes. This selection of modes represents the best video quality
available in H.263 and H.263+.

For H.26L, we used the following combinations of block
sizes during the motion estimation: 1) 16x16, 2) 16x16 and
16x8, 3) 16x16, 16x8, and 8x16, 4) 16x16, 16x8, 8x16, and
8x8, 5) 16x16, 16x8, 8x16, 8x8, and 8x4, 6) 16x16, 16x8, 8x16,
8x8, 8x4, and 4x8, as well as 7) 16x16, 16x8, 8x16, 8x8, 8x4,
4x8, and 4x4. Only one reference frame was used in H.26L.

Both encoders encoded exactly the same frames. A fixed
quantization parameter (QPI) for the first frame as well as for all
subsequent frames (QPP) was used. For each experimentation,
we used the pair (QPP, QPI) which resulted in the bit rate closest
to the target. The reason for not using a more sophisticated rate
control mechanism was to obtain the most accurate performance
comparisons. A sophisticated rate control mechanism is able to
use variable output frame rate and variable QP for each
macroblock, for example.

The variability of the experimental results was taken into
account by performing each experiment three times in a row and
averaging the results. If the standard deviation exceeded a
threshold value, new experiments were performed.

The encoding speed was measured by using the ANSI C
clock function. The harmonic mean of the encoding speed was
used instead of the arithmetic mean used in the kernel-level
analysis, because the arithmetic mean can be justified for the
reciprocal of the encoding speed [6].

Table 1 shows the individual encoding speeds (harmonic
mean) of all nine experiments for each encoder. For H.26L, only
two combinations of block sizes are shown, to represent the
most complex and the least complex case. Moreover, this Table
shows the average encoding speeds over all experiments.

Table 1. Individual and average encoding speeds (frames/s).
Sequence@
bit rate (kbps)

H263+ H263 H26L
1 block

H26L
7 blocks

Akiyo @ 8 7.1 7.3 6.1 2.6
Akiyo @ 14 9.4 9.7 6.4 2.7
Akiyo @ 24 10.1 10.0 6.3 2.6
Carphone @ 14 5.3 5.4 5.9 2.6
Carphone @ 24 5.8 5.9 5.8 2.4
Foreman @ 24 5.2 5.3 5.3 2.2
M. & D. @ 8 6.0 6.4 6.3 2.9
M. & D. @ 14 6.8 7.0 6.1 2.7
M. & D. @ 24 7.3 7.5 6.1 2.5
Avg. speed (frames/s) 6.7 6.8 6.0 2.6

H.26L encoding with 1 and 7 block sizes is 1.2X and 2.8X
more complex or slower than H.263 encoding, respectively.
When comparing to H.263+, H.26L encoding with 1 and 7
block sizes is 1.2X and 2.7X more complex.

Table 2 shows the obtained bit rates for H.263+, H.263 and
H.26L. In addition, the Table shows the proportional reduction
in bit rate for each case, compared to H.263+.

On the average, H.26L encoding with 1 block size reduces
the bit rate by 20% and with 7 block sizes 28% (ranging from
17% to 47%). The reduction in bit rate varies heavily, and it
depends on both the used QP and the nature of the sequence.
For the same Y PSNR values, H.263 achieves slightly smaller

bit rate than H.263+, because H.263+ achieves considerably
higher chrominance PSNR values, as shown below in Table 4.

The differences in video quality, in terms of PSNR, between
the baseline and the other cases as well as the PSNR values for
the baseline case are reported in Table 3 and Table 4.

Tables 3 and 4 prove that we were able to obtain similar Y
PSNR values for all cases, as the standard deviation ranges from
0.1 to 0.2 dB. At the same time, it was not possible to obtain
similar chrominance values. Thus, U and V PSNR values for
H.263 and H.263+ vary more, as can be seen.

Table 2. Obtained bit rates (kbps) and bit rate reduction (%).
H263+ H263 H26L

1 block
H26L
7 blocks

H26L
7blocks

Sequence@
bit rate (kbps)

Bit
rate

Bit
rate

Bit
rate

Bit
rate

Reduc-
tion (%)

Akiyo @ 8 11.6 11.0 9.4 8.1 30.6
Akiyo @ 14 27.0 27.1 17.1 14.2 47.4
Akiyo @ 24 44.3 42.1 29.7 24.4 45.0
Carphone@ 14 17.8 16.1 14.6 13.9 21.7
Carphone@ 24 29.2 27.5 26.5 24.3 16.8
Foreman @ 24 29.9 28.2 26.8 24.7 17.5
M. & D. @ 8 9.8 9.5 8.6 8.1 17.0
M. & D. @ 14 18.6 18.0 15.8 14.1 23.9
M. & D. @ 24 37.1 35.6 27.7 24.3 34.7
Avg. reduction 0.0% 4.6% 19.8% 28.3% 28.3%
Table 3. Y, U, and V PSNR values (dB) for H.26L baseline case

and PSNR differences (dB) for another H.26L case.
H.26L 7 blocks H. 26L 1 blockSequence@

bit rate (kbps) Y U V Y U V
Akiyo @ 8 34.0 37.9 39.4 -0.2 0.0 0.0
Akiyo @ 14 38.2 42.2 42.9 -0.3 0.0 -0.1
Akiyo @ 24 40.9 44.3 44.9 -0.2 -0.1 -0.1
Carphone@ 14 28.0 36.2 36.6 -0.2 0.0 -0.1
Carphone@ 24 30.7 37.3 37.8 -0.2 0.0 0.0
Foreman @ 24 28.6 37.6 37.8 -0.2 -0.2 -0.1
M. & D. @ 8 32.0 39.8 40.5 -0.1 0.0 0.1
M. & D. @ 14 34.7 41.0 41.6 -0.2 -0.1 -0.1
M. & D. @ 24 37.2 42.7 43.2 -0.2 -0.1 -0.1
Avg. diff. (dB) 0.0 0.0 0.0 -0.2 -0.1 0.0
St. dev. (dB) 0.0 0.0 0.0 0.1 0.1 0.1

Table 4. PSNR differences (dB) for H.263 and H.263+.
H.263 H.263+Sequence@

bit rate (kbps) Y U V Y U V
Akiyo @ 8 0.0 -1.1 -0.3 -0.2 0.0 0.5
Akiyo @ 14 0.2 0.8 0.6 -0.1 0.8 0.8
Akiyo @ 24 -0.3 -0.1 -0.3 -0.2 0.6 0.4
Carphone@ 14 -0.1 -2.3 -1.8 0.0 -0.1 -0.1
Carphone@ 24 -0.1 -1.0 -1.1 -0.1 0.0 -0.3
Foreman @ 24 0.3 -1.9 -2.4 0.1 -0.4 -0.8
M. & D. @ 8 0.0 -2.1 -2.0 0.0 -1.0 -0.8
M. & D. @ 14 0.0 -0.8 -1.0 -0.1 -0.1 -0.3
M. & D. @ 24 -0.1 -0.9 -0.9 -0.1 -0.4 -0.4
Avg. diff. (dB) 0.0 -1.1 -1.0 -0.1 -0.1 -0.1
St. dev. (dB) 0.2 1.0 0.9 0.1 0.5 0.6

Table 5 shows the speedup for H.26L encoding with 1 to 6
block sizes, compared to the baseline case of 7 blocks. The
average speedup for each case is given as well.

Table 6 shows the proportional increases in bit rate, when
using less than 7 block sizes in H.26L encoding, compared to

the baseline case. Also, the table shows the average values for
each combination of block sizes.

Tables 5 and 6 clearly show the trade-off possibilities
between the encoding speed and compression performance.
However, it should be noted that the speedups would be
significantly lower, if faster block-matching algorithms were
used, or if the motion estimation was further optimized.

Table 5. Speedups in encoding speed when using less than 7
block sizes in H.26L encoding.

Sequence@
bit rate (kbps)

6
blocks

5
blocks

4
blocks

3
blocks

2
blocks

1
block

Akiyo @ 8 1.06 1.19 1.32 1.52 1.82 2.31
Akiyo @ 14 1.08 1.20 1.34 1.53 1.87 2.34
Akiyo @ 24 1.10 1.22 1.39 1.62 1.96 2.46
Carphone@ 14 1.06 1.17 1.30 1.49 1.81 2.25
Carphone@ 24 1.08 1.21 1.36 1.59 1.94 2.45
Foreman @ 24 1.08 1.23 1.38 1.62 1.97 2.46
M. & D. @ 8 1.06 1.16 1.26 1.44 1.73 2.13
M. & D. @ 14 1.09 1.21 1.35 1.55 1.85 2.28
M. & D. @ 24 1.10 1.22 1.39 1.62 1.96 2.44
Avg. speedup 1.08 1.20 1.34 1.55 1.88 2.35

Table 6. Proportional increase (%) in bit rate when using less
than 7 block sizes in H.26L encoding.

Sequence@
bit rate (kbps)

6
blocks

5
blocks

4
blocks

3
blocks

2
blocks

1
block

Akiyo @ 8 0.1 0.6 1.1 2.2 9.8 16.8
Akiyo @ 14 0.5 1.3 3.2 5.4 12.6 20.6
Akiyo @ 24 -0.2 1.0 3.1 6.7 14.7 21.7
Carphone@ 14 -0.1 0.9 1.1 0.6 2.7 4.9
Carphone@ 24 0.0 1.1 0.9 1.0 4.0 8.8
Foreman @ 24 0.1 -0.2 0.1 1.1 3.0 8.8
M. & D. @ 8 0.0 -0.5 -0.7 -0.1 1.1 5.5
M. & D. @ 14 0.0 1.7 1.1 1.5 4.8 12.1
M. & D. @ 24 0.7 1.5 1.3 2.1 7.4 14.2
Avg. incr. (%) 0.1 0.8 1.3 2.3 6.7 12.6

4.3. Kernel-level analysis of motion estimation
The results in this section are for H.26L encoding with 7 block
sizes. The encoded sequence is Foreman (in QCIF) at 24 kbps.
Firstly, the integer pixel block-matching consumes 75%, while
the ½ and ¼ pixel precision block-matching consume 11% and
14% of the total execution time spent on motion estimation.
These figures are averaged over all 7 block sizes. Secondly, the
total time spent on motion estimation is distributed among the
different block sizes as follows; 16x16: 32%, 16x8: 12%, 8x16:
13%, 8x8: 12%, 8x4: 10%, 4x8: 11%, and 4x4: 9%. These
figures contain both integer and fractional pixel precision block-
matching.

Finally, at the lowest level, there are SAD or SATD
calculation kernels for each block size. Table 7 shows the
average execution time (cycles) for the SAD 16x16 kernel
together with the ratio of the average execution time of each
kernel compared to the SAD 16x16 kernel.

The execution time of each optimized routine was measured
using a special instruction (Read from Time Stamp Counter),
which returns clock cycles. Before computing the ratios, the
time for each kernel is scaled to cover the whole macroblock
area, i.e., the measured time is multiplied by either 2, 4, 8, or 16,
depending on how many blocks fit into a macroblock.

Based on Table 7, we see that using SATD is from 9.9X
(8x16) to 14.1X (16x16) slower than using SAD, and 11.4X

slower on the average. The use of different block sizes for the
SAD calculation is from 1.2X to 1.4X slower than the use of the
basic macroblock size.

Table 7. Ratio of average execution time of each kernel
compared to SAD 16x16 kernel.

Routine Ratio of
execution times

Routine Ratio of
execution times

SAD16x16 (611 cycles) 1.0 SATD16x16 14.1
SAD16x8 1.3 SATD16x8 13.8
SAD8x16 1.4 SATD8x16 13.9
SAD8x8 1.3 SATD8x8 14.1
SAD8x4 1.2 SATD8x4 14.5
SAD4x8 1.4 SATD4x8 15.2
SAD4x4 1.4 SATD4x4 16.0

5. CONCLUSIONS

Experimental results show that H.26L can achieve a bit rate
reduction of about 30% with the same quality as in H.263(+).
However, the encoding speed is about three times lower due to
more complex operations. The presented implementation on a
400 MHz Pentium III used neither media ISA (Instruction Set
Architecture) extensions nor algorithmic optimizations. Further
optimizations will achieve and exceed the real-time encoding
speed of 10 fps. Especially the SAD calculation for multiple
block sizes should be carefully implemented. In the future, we
will compare highly optimized versions of H.26L and H.263(+)
to find out and analyze the differences at a very detailed level.

6. REFERENCES

[1] G. Côté et al., “H.263+: Video Coding at Low Bit Rates,"
IEEE Trans. Circuits and Systems for Video Technology,
vol. 8, no. 7, pp. 849-866, Nov. 1998.

[2] ISO, MPEG-4 Video Verification Model version 17.0,
ISO/IEC JTC1/SC29/WG11 N3515, Beijing, July 2000.

[3] ITU-T, Recommendation H.263, "Video Coding for Low
Bit Rate Communication," Feb. 1998.

[4] ITU-T Q.15/SG16, "Meeting report of the eleventh meeting
(meeting K) of the ITU-T Q.15/16 Advanced Video Coding
Experts Group," Aug. 2000.

[5] ITU-T Q.15/SG16, "H.26L Test Model Long Term Number
5 (TML-5) draft0, " Doc. Q15-K-59, Sept. 2000.

[6] R. Jain, "The Art of Computer Systems Performance
Analysis," John Wiley & Sons, Inc., pp.188-189, 1991.

[7] M. Karczewicz et al., "MVC: Advanced low bit rate codec
for mobile multimedia," Proc. EUSIPCO-2000, Sept. 2000.

[8] V. Lappalainen, "Implementation of H.263 Video Encoder
Using Intel MMX Technology," M. Sc. Thesis, Tampere
University of Technology, Aug. 1997.

[9] V. Lappalainen, "Performance Analysis of Intel MMX
Technology for an H.263 Video Encoder," Proc. ACM
MULTIMEDIA '98, pp. 309-314, Sept. 1998.

[10] V. Lappalainen, "Performance of an Advanced Video
Codec on a General-Purpose Processor with Media ISA
Extensions," IEEE Trans. Consumer Electronics, vol. 46,
no. 3, pp. 706-716, Aug. 2000.

[11] Telenor Broadband Services, "TML H.26L Codec," via
ftp://standard.pictel.com/video-site/h26L/, 31st Aug. 2000.

