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ABSTRACT

In digital mobile communications efficient compression algo-
rithms are needed to encode speech or audio signals. As the
determined source parameters are highly sensitive to transmission
errors, robust source and channel decoding schemes are required.

This contribution deals with an iterative source-channel decod-
ing approach where a simple channel decoder and a softbit-source
decoder are concatenated. We will mainly focus on softbit-source
decoding which can be considered as error concealment technique.
This technique utilizes residual redundancy remaining after source
coding.

In this paper we derive a new formula that shows how the resid-
ual redundancy transforms into theextrinsicinformation utilizable
for iterative decoding. The derived formula opens several starting
points for optimizations, e.g. it helps to find a robust index as-
signment. Furthermore, it allows the conclusion that softbit-source
decoding is the limiting factor if applied to iterative decoding pro-
cesses. Therefore, no significant gain will be obtainable by more
than two iterations. This will be demonstrated by simulation.

1. INTRODUCTION

Robust source and channel coding systems are required when-
ever transmission errors may occur. Speech or audio parameters
determined by source coding algorithms are vulnerable to channel
noise and hence bit errors in the received parameters can result in
extremely annoying artifacts.

To cope with transmission errors, we recently have proposed
softbit-source decodingby parameter estimation [1, 2] as an
approach to error concealment. This approach exploits residual
redundancy in the coded source parameters. In general, source
codecs reduce redundancy, but due to delay and complexity
constraints the source parameters will still exhibit considerable
redundancy, either in terms of a non-uniform distribution or in
terms of correlation.

The performance of softbit-source decoding can be further im-
proved if channel coding algorithms add explicit redundancy at
the transmitter side. At the receiver the additional information can
be exploited in different ways, e.g. either byjoint source-channel
decoding [3–6] or byiterativesource-channel decoding [7–9].

Iterative algorithms are known from the so-calledTURBOtech-
nique originally introduced to channel decoding [10]. Two inde-
pendent channel decoders are able to benefit from each other when
extrinsic information extracted from one decoder is used as ad-
ditional a-priori knowlegde in the other decoder in the next iter-
ation step. In [11] it was shown that this principle can be gen-
eralized to any decoder which accepts”soft-inputs” and delivers
”soft-outputs”.

Therefore, it is obvious that it might be possible to applysoftbit-
source decodingto an iterative source-channel decoding scheme.

First approaches have shown by simulation [7–9] that the perfor-
mance improvements seem to be limited to two iterations. In this
paper, we analyzed theextrinsicinformation and show that softbit-
source decoding is the limiting factor.

The paper is structured as follows. First, we briefly describe a
transmission system using parameter estimation for softbit-source
decoding. In Section 3, we quantify theextrinsic information of
softbit-source decoding and identify some possible starting points
for optimizations regarding softbit-source decoding in iterative de-
coding processes. Afterwards we introduce an approach where
the parameter estimator and a simple channel decoder are concate-
nated. The conclusion that both decoders can benefit from each
other mainly for two iterations will be demonstrated by simula-
tions in Section 4.

2. SOFTBIT-SOURCE DECODING
For further considerations the transmission model depicted in

Figure 1 is assumed.
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Figure 1: Transmission model

At time instant � a source encoder determines a continuous
value u� which is individually quantized byR reproduction
levels �u(i) with i = 1; 2; : : : ; R. The reproduction levels�u(i)

are invariant with respect to� and the whole set is given by
U = f�u(1); �u(2); : : : ; �u(R)g. To each�u(i) a unique bit pattern
x = fx(1); x(2); : : : ; x(w)g = xfw1g is assigned where the
lengthw of x is usually1given byw = log2(R). Corresponding
to a set of quantizer reproduction levelsU, a complete set of
possible bit patterns is given byX. The bit pattern determined
from u� = �u(i) at time instant� is denoted byx = x� . In order
to simplify the notation throughout this paper, time sequences of
parameters are denoted byx�1 = x� ;x��1 : : :x1.

At time instant� , a bit patternx� is transmitted over a channel
with additive noisen and a disturbed bit vectorz� is received. The
task of the parameter estimation algorithm is to determine an esti-
mateû� of u� . Usually, theminimum mean square error(MMSE)
is used as an optimality criterion individually for each parameter
Ef(u� � û� )

2
g. Ef�g denotes the expected value.

With regard to the introduced notations, the well known MMSE
estimation rule can be written as

û� =

RX

i=1

�u
(i)

� P (�u
(i)
jz
�
1) : (1)

1If R is not a power of2, w might be given by the minimum inte-
gral numberw = dlog2(R)e. In this case,Source Optimized Channel
Codes[12] can benefit from the redundancy in bit mapping,�u(i) ! x� .



P (�u(i)jz�1) is thea-posterioriprobability for reproduction level
�u(i) when the entire history of the received bit vectorz

�
1 is given.

Due to the fixed index assignment�u(i) ! x� , P (�u(i)jz�1 ) is
equal to thei th ofR possible conditional probabilitiesP (x� jz�1 ).
Hence, the problem of estimating the optimal parameter valueû�
can be reduced to the problem of determining the conditional prob-
abilitiesP (x� jz�1 ).

Suitable solutions for the determination ofP (x� jz�1) are dis-
cussed in several publications, e.g. [2], exploiting different terms
of redundancy. If the redundancy due to time correlation between
consecutive parameter valuesu� andu��1 as well as due to the
non-uniform distribution ofu� shall be utilized,P (x� jz�1 ) can
easily be determined using Bayes’ Theorem and the chain rule of
probability [2]

P (x� jz
�
1 ) = C � p(z� jx� ) � 8 x��X

�
X

x��1�X

P (x� jx��1) � P (x��1jz
��1
1 ) : (2)

C denotes a constant term which guarantees that the sum over
the conditional probability

P
x� �X

P (x� jz
�
1 ) equals one. If a

memoryless channel is assumed, the channel-dependent term
for parameterx� , p(z� jx� ), is given in terms of single bits
x(�),

Qw
�=1 p(z�(�)jx�(�)). In the second line of Eq. (2),

the a-priori information resulting from the non-uniform distri-
bution and the time correlation between consecutive parameter
valuesu� and u��1 is given by the sum over allP (x� jx��1)
weighted by thea-posteriori probabilities of the previous time
instantP (x��1jz��11 ). The sum reduces to the probabilities of
occurenceP (x�) if the time correlation is neglected.

3. ITERATIVE SOURCE-CHANNEL DECODING
3.1. TheExtrinsicInformation of Softbit-Source Decoding
As already mentioned, softbit-source decoding by parameter esti-
mation mainly depends on the determination ofa-posterioriprob-
abilities. It is obvious that this is asoft-in/soft-outprocess. Chan-
nel information for single bitsp(z� (�)jx�(�)) is combined with
parametera-priori knowledgeP (x� jx��1) or P (x� ) to estimate
parametera-posterioriprobabilitiesP (x� jz�1). In order to quan-
tify the gain due to softbit-source decoding for single bits, the
probabilitiesP (x�(m)jz

�
1) with m = 1; 2 : : : w can easily be ob-

tained by the marginal distribution of the conditional probability
of P (x� jz�1 ) for x�(m)

P (x�(m)jz
�
1) =

X

x� �X;x�(m)

P (x� jz
�
1) : (3)

Iterative source-channel decodingmight be possible if the soft-
output of the softbit-source decoder can be separated into three
terms: the channel-related soft-input, the bitwisea-priori input,
and anextrinsicvalue. In order to simplify the following basic
considerations, we do not consider here the time correlations2 i.e.
we can neglect the entire history of received values,z

�
1 ! z� ,

and in addition the sum in Eq. (2) reduces to the probabilities of

2The presented basic considerations can easily be extended to the case
considering the non-uniform distribution as well as time dependencies.

occurenceP (x�). Applying the simplified description of Eq. (2)
in Eq. (3),P (x�(m)jz� ) is given by

P (x�(m)jz� ) =
X

x� �X;x�(m)

C � p(z� jx� ) � P (x�) : (4)

Furthermore, to determine each of the three terms, channel-
related input, bitwisea-priori input andextrinsicvalue as shown
below, we re-write Eq. (4) in log-likelihood algebra for single bits.

If a binary random variable takes on the valuex�(m)�f0; 1g and
if it is conditioned onz� , then the log-likelihood ratio [11] is de-
fined as

L(x� (m)jz� ) = logP (x�(m) = 0jz� )

P (x�(m) = 1jz� )
(5)

with log representing the natural logarithm.
SubstitutingP (x�(m) = 0jz� ) andP (x�(m) = 1jz� ) by the

marginal distribution of the conditional probabilities given in (4)
results in

L(x�(m)jz� ) = log

P
x� �X;

x� (m)=0

P (x�) � p(z� jx� )

P
x� �X;

x� (m)=1

P (x�) � p(z� jx� )
: (6)

The marginal distribution in the numerator has to be determined
for all x� �X under the conditionx�(m) = 0, and in the denom-
inator for allx� �X with x�(m) = 1, respectively. In case of a
memoryless transmission channel the channel-dependent parame-
ter termp(z� jx� ) is given by a product of terms for single bits

L(x�(m)jz� ) = log

P
x� �X;

x� (m)=0

P (x� ) �
wQ
�=1

p(z�(�)jx� (�))

P
x� �X;

x� (m)=1

P (x� ) �
wQ
�=1

p(z�(�)jx� (�))

: (7)

As p(z�(�)jx�(�)) with � = m is equal for all elements under
the sums, both in the numerator and in the denominator, it can be
factored asL(z� (m)jx�(m)),

L(x� (m)jz� ) = L(z� (m)jx�(m)) +

log

P
x� �X;

x� (m)=0

P (x�) �
wQ

�=1;
�6=m

p(z�(�)jx�(�))

P
x� �X;

x� (m)=1

P (x�) �
wQ

�=1;
�6=m

p(z�(�)jx�(�))

:
(8)

Furthermore, thea-priori information of parameterx� is a joint
probabilityP (x�fw1g) of single bitsx�(�) with � = 1; 2; : : : ; w.
Applying the chain rule allows to extract the probability for
P (x�(m)),

P (x� = x�f
w
1g) = P (x�f

m�1
1 g; x�f

w
m+1gjx� (m)) � P (x�(m)) :

The termP (x�(m)) of P (x�) in (8) is equal for all elements
under the sum, hence it can be separated as bitwisea-priori
informationL(x� (m)). The final result is given by Eq. (9). The
soft-output of softbit-source decoding can be split into three inde-
pendent terms: the channel-related soft-inputL(z� (m)jx�(m)),

Bitwise representation of the soft-output of softbit-source decoding:

L(x� (m)jz� ) = L(z� (m)jx�(m)) + L(x� (m)) + log

P
x� �X;

x� (m)=0

P (x�f
m�1
1 g; x�f

w
m+1gjx� (m) = 0) �

wQ
�=1;
�6=m

p(z�(�)jx� (�))

P
x� �X;

x� (m)=1

P (x�f
m�1
1 g; x�f w

m+1gjx� (m) = 1) �
wQ

�=1;
�6=m

p(z�(�)jx� (�))

(9)



the bitwisea-priori informationL(x�(m)), and anextrinsicpart
LSBSDe (x�(m)) resulting from softbit-source decoding (SBSD).
The extrinsic part in (9) is given by the last term and it con-
sists of channel information as well as jointa-priori knowledge
for the bits representing parameterx� excluding bitx�(m) it-
self. It is easy to prove that the parametera-priori knowledge
P (x�f

m�1
1 g; x�f

w
m+1gjx� (m)) has to be replaced by

X

x��1�X

P (x�f
m�1
1 g; x�f

w
m+1gjx� (m);x��1) � P (x��1jz

��1
1 )

if in addition time correlation is considered. In this case
the a-posteriori log-likelihood L(x�(m)jz� ) transforms into
L(x� (m)jz

�
1). Furthermore, if necessary the bit transition pdfs

p(z�(�)jx�(�)) can also be expressed in log-likelihood values
L(z� (�)jx�(�)) similar to Eq. (5).

3.2. Possible Starting Points to MaximizeL(x�(m)jz� )L(x� (m)jz� )L(x� (m)jz� )

If the highest additional information for the bitsx� (m) should be
obtained, thea-posteriori log-likelihood valuesL(x�(m)jz� ) or
L(x� (m)jz�1) with m = 1; 2 : : : w have to be maximized. One
possibility for such a maximization is given by a re-arrangement
of the a-priori probabilitiesP (x�). As a re-arrangement has in-
fluence on the bitwisea-priori knowledgeL(x�(m)) and theex-
trinsic informationLSBSDe (x�(m)), both terms of Eq. (9) have to
be taken into account. This joint optimization can be performed as
well when the last term of Eq. (8) is considered instead. In Eq. (8)
the ratio of sums over weighteda-priori probabilities determines
how much additional information will be utilizable. For exam-
ple, in case of a noisefree transmission channel there is only one
product of bit transition pdfs

Qw
�=1;�6=m p(z�(�)jx�(�)) unequal

to 0, i.e. the highest possible amount of additional information
jLEb=N0!1(x�(m))j for x� (m) is therefore given by

jLEb=N0!1(x�(m))j = logmax8x� fP (x�)g
min8x� fP (x� )g

:

Indeed, taking transmission errors into account might be the
much more interesting case. Hence, to give a rough approximation
for a suitable index assignment, we consider the transmission over
a heavily disturbed channel. In this extreme case all products over
bit transition pdfsp(z�(�)jx�(�)) are equally likely and therefore
cancel out. The additional informationLEb=N0!�1(x�(m))

provided by the bitwisea-priori knowledge as well as theextrinsic
information can be approximately expressed as

LEb=N0!�1(x�(m)) = log
P

x� �X;x�(m)=0
P (x� )P

x� �X;x�(m)=1
P (x� )

:

Table 1 gives an example with obtainableLEb=N0!�1(x�(m))

for a givena-priori knowledgeP (x�) with w = 3 bit and differ-
ent index assignments. It shows that for a symmetrical distribu-
tion the folded binaryindex assignment outperforms thenatural
binary as well as theGray encodedbit mapping because higher
LEb=N0!�1(x�(m)) are obtained. Therefore and for reasons

a-priori probabilitiesP (x� )
0.04 0.10 0.16 0.20 0.20 0.16 0.10 0.04

IA bit pattern:x�(1)x� (2)x�(3) L�1(x�(m))

nb 000 001 010 011 100 101 110 1110.0 0.0 0.0
gc 000 001 011 010 110 111 101 1000.0 0.94 0.08
fb 011 010 001 000 100 101 110 1110.0 0.94 0.41

Table 1: Example ofLEb=N0!�1 with different index assignments
(IA): natural bin.(nb), folded bin.(fb), Gray cod.(gc)

given in [6, 13], in the simulations presented in Sec. 4 thefolded

binarybit mapping is applied. Of course, alsofolded binaryseems
to be a suboptimal bit mapping as there is noadditional value
LEb=N0!�1(x�(m)) available for bitx�(1). Hence, even better
results might be achievable if the last term in Eq. (8) is transformed
into a cost function and the index assignment optimized as in [14].

3.3. Utilizing the ExtrinsicInformation in an Iterative Process
Theextrinsicinformation of softbit-source decoding as quantified
in Sec. 3.1 is utilizable in an iterative process. One possible appli-
cation is iterative source-channel decoding as depicted in Fig. 2.
The transmission system introduced in Sec. 2 is extended by chan-
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Figure 2: Iterative source-channel decoding

nel en-/decoding blocks. Furthermore, if source and channel de-
coding shall be performed iteratively it has to be guaranteed that
both steps are independent from each other. Therefore, in addition
to Fig. 1 it is assumed that at time instant� the source encoder de-
termines a set ofN parametersu� = fu�;1; u�;2 : : : u�;Ng. Each
u�;� is quantized individually and to each quantizer reproduction
level a unique bit patternx�;� is assigned. The complete setu�
corresponds to a set of bit patternsx� .

After transmission of the channel-encoded sety
�

over a channel
with additive noisen, a possibly disturbed set of bit patternsq

�
is received. The required independence of source and channel de-
coding ensures that the overall log-likelihoodL(x�;�(m)jq�

1
) can

be separated into

L(x�;�(m)jq
�

1
) = L(x�;�(m)jz

�
1;�) + L

CD
e (x�;�(m)) ; (10)

i.e. into anextrinsicvalueLCDe (x�;�(m)) from the channel de-
coder (CD) as well as ana-posteriori log-likelihood of softbit-
source decoding similar to Eq. (9).

As softbit-source decoding always exploits the entire history of
received bit patternsz�1;� for a fixed�, independence might be en-
sured if channel coding is performed over different� with � =

1; 2 : : : N . One possible approach using a simple parity check
code is given in Sec. 4.

4. SIMULATION RESULTS

For simulation each parameteru�;� is modelled individually by a
Gauss-Markov process of the order one. For this, white Gaussian
noise is processed by a first-order recursive filter and afterwards
normalized to�2u�;� = 1. The filter coefficient allows to adjust
auto-correlation properties, e.g.� = 0:95. Different parameters
u�;�, u�;�̂ (� 6= �̂) within one setu� are statistically indepen-
dent. The parametersu�;� are individually quantized by an 8-level
Lloyd-Max quantizer usingw = 3 bits. Furthermore, a set of pa-
rametersu� consists ofN = 3 entriesu�;� with � = 1; : : : N . For
index assignment,folded binaryis applied as discussed in Sec. 3.2.

Channel encoding is performed by a simple single parity
check code over the index of position�. For each bit index
m, m = 1; : : : w an even parity bit�� (m) is generated by
�� (m) = fu�;1(m) � u�;2(m) � : : : u�;N(m)g with � repre-
senting the binaryexclusive-oroperation. Finally, the overall code
rate is given byr = N�w

(N+1)�w
and the encoded set of bit patterns

y
�

will have a systematic formy
�
= fx� ; ��g. As transmission

channel serves an AWGN channel with knownEb=N0.



At the receiver side decoding will be done iteratively in two
independent steps. In each iteration theextrinsic information of
the one decoder will be used as additionala-priori knowledge
by the other one. For the first iteration allextrinsic values of
softbit-source decodingLSBSDe (x�;�(m)) with � = 1 : : : N and
m = 1 : : : w are initialized with zeros. The first step channel
decoding is performed according to [11] and the second step
softbit-source decoding is done as discussed in Sec. 3. The
updatedextrinsic value of softbit-source decoding is fed back
for different numbers of iterations. After the last iteration the
a-posteriori log-likelihoods L(x�;�(m)jq

�

1
) for single bits are

transformed into parametera-posterioriprobabilitiesP (x�;�jq�
1
)

by inverting Eq. (3) and (5). The marginal distribution of Eq. (3)
can be re-calculated by

Qw

�=1 P (x�;�(�)jq
�

1
) if independence

of the singleP (x�;�(�)jq�
1
) is assumed. Finally,P (x�;�jq�

1
) is

inserted in the MMSE estimation rule given by Eq. (1). Fig. 3
depicts the parametersignal-to-noise ratio (SNR)for simulations
with different numbers of iterations.
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Figure 3: Simulation result for different numbers of iterations
if SBSD is concatenated with a single parity check code

The curve labelled with” 0. iteration” neglects channel decod-
ing and softbit-source decoding. The desired parametersû�;� are
directly estimated by exploiting the corresponding received bit pat-
ternsq�;�. If in the first step channel decoding is carried out (see
” 0+: iteration” in Fig. 3), theextrinsicvalueLCDe (x�;�(m)) is uti-
lizable for each bitx�;�(m). This results in a gain of several dB for
the parameter SNR for moderateEb=N0. Next, the” 1: iteration”
will be completed, when in addition theextrinsicvalue of softbit-
source decodingLSBSDe (x�;�(m)) is taken into account. Due to
the high auto-correlation factor of� = 0:95, the parameter SNR
can further be improved by up to6:1 dB. When the next iteration
is started and the updatedLSBSDe (x�;�(m)) is used as additional
a-priori knowledge, the channel decoder can benefit from the new
information (” 1+: iteration” ). A slight increase in quality of about
0:51 dB is noticable. But afterwards, when the” 2: iteration” is
completed the softbit-source decoder seems not to be able to take
advantage of the updatedextrinsicvalue of the channel decoder.
There is no considerable gain. More than 2 iterations do not in-
crease the parameter SNR any further.

It seems to be that the softbit-source decoder is the limiting
factor. Improving the softbit-source decoder’s additionala-priori
knowledge, i.e. an update of the channel decoder’sextrinsic
value LCDe (x�;�(m)), does not enable the softbit-source de-
coder to enhance the overall quality. An explanation might be
possible if the determination rule forLSBSDe (x�;�(m)) given

in Eq. (9) is considered. It turns out that the weighted sums
of LSBSDe (x�;�(m)) are robust against minor variations in the
transition pdfsp(z�(�)jx�(�)). Furthermore, in this case the
extrinsic value of softbit-source decoding is approximately con-
stant. Therefore, usually no improvements are achievable for more
than1+ iteration. Similar results are also obtained with different
auto-correlation factors�.

5. CONCLUSION
In this paper we applied softbit-source decoding to an iterative

source-channel decoding approach. As a novelty, we quantified
theextrinsicvalue of softbit-source decoding. The derived formula
for theextrinsicinformation makes it possible to find a robust in-
dex assignment that increases quality. But furthermore, the rule
offers also the possibility to remark that softbit-source decoding is
the limiting factor if applied in an iterative process. Simulations
have shown that minor variations in the softbit-source decoder’s
input usually have a neglectable influence on the softbit-source
decoder’s output. It remains to be shown if softbit-source decod-
ing can benefit from stronger channel codes which might provide
larger variations in the pdfsp(z�(�)jx�(�)).
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