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ABSTRACT

Very often, in the context of system identification, the error signal
which is by definition the difference between the system and model
filter outputs is assumed to be zero-mean, white, and Gaussian.
In this case, the least squares estimator is equivalent to the maxi-
mum likelihood estimator and hence, it is asymptotically efficient.
While this supposition is very convenient and extremely useful in
practice, adaptive algorithms optimized on this, may be very sen-
sitive to minor deviations from the assumptions. We propose here
to model this error with a robust distribution and deduce from it a
robust fast recursive least squares adaptive algorithm (least squares
is a misnomer here but convenient to use). We then show how to
successfully apply this new algorithm to the problem of network
echo cancellation combined with a double-talk detector.

1. INTRODUCTION

Very often, in the context of system identification, the error sig-
nal (e) which is by definition the difference between the system
and model filter outputs is assumed to be zero-mean, white, and
Gaussian. In this case, the least squares estimator is equivalent to
the maximum likelihood estimator and hence, it is asymptotically
efficient. While this supposition is very convenient and extremely
useful in practice, adaptive algorithms optimized on this, may be
very sensitive to minor deviations from the assumptions.

One good example of system identification with the above
assumptions is network echo cancellation (EC) combined with a
double-talk detector (DTD). Sometimes, the DTD fails to detect
the beginning or ending of a double-talk mode and as a result, a
burst of speech at the output of the echo path disturbs the estima-
tion process. The occurrence rate of these bursts depends on the
efficiency of the DTD and the intensity of double-talk modes. A
desirable property of an adaptive algorithm is fast tracking. A high
false alarm rate of the DTD reduces the amount of information that
enters the algorithm, and that reduces the tracking rate. The false
alarms should therefore be minimized so that valuable data are
not discarded. Fewer false alarms however, result in more detec-
tion misses and degradation of the transfer function estimate. To
maintain tracking ability and high quality of the estimate, robust-
ness against detection errors must be incorporated in the estima-
tion algorithm itself. By robustness we mean insensitivity to small
deviations of the the real distribution from the assumed model dis-
tribution [1].

Thus, the performance of an algorithm optimized for Gaussian
noise could be very poor because of the unexpected number of
large noise values that are not modeled by the Gaussian law. In our

EC example, the probability density function (PDF) of the noise
should be a long-tailed PDF, in order to take the bursts (due the
DTD failure) into account in our model [1], [2]. Therefore, we are
interested in distributional robustness since the shape of the true
underlying distribution deviates slightly from the assumed model
(usually the Gaussian law).

As explained in [1], a robust procedure should achieve the fol-
lowing:

• It should have a reasonably good efficiency at the assumed
model.

• It should be robust in the sense that small deviations from
the model assumptions should impair the performance only
slightly.

• Somewhat, larger deviations from the model should not
cause a catastrophe.

In this study, we propose to use the following PDF:

p(z) = 1

2
exp {− ln [cosh(πz/2)]}

= 1

2 cosh(πz/2)
, (1)

where the mean and the variance are respectively equal to 0 and 1.
It will be compared to the Gaussian density:

pG(z) = 1√
2π

exp
{
−z2/2

}
. (2)

The PDF p(z) has a heavier tail than pG(z). If we take the deriva-
tive of ln[p(z)] and ln[pG(z)], it can easily be checked that the first
one is bounded while the second is not; and, as it turns out, makes
all the difference between a robust approach and a non-robust one.
Moreover, p(z) has a high kurtosis and it is well-known that PDFs
with large kurtosis are good models for speech signals, which is
desired in our example of EC.

In the following, we show how to derive a robust fast recur-
sive least squares adaptive algorithm1 from (1) and how to apply
it successfully to the problem of network echo cancellation.

1Least squares is a misnomer for this adaptive algorithm because we do
not minimize the least squares criterion but rather maximize a likelihood
function. However, it is convenient to use here.



2. A ROBUST FAST RECURSIVE LEAST SQUARES
ADAPTIVE ALGORITHM

In the context of system identification, the error signal at time n
between the system and model filter outputs is given by

e(n) = y(n)− ŷ(n), (3)

where

ŷ(n) = ĥ
T

x(n) (4)

is an estimate of the output signal y(n),

ĥ = [
ĥ0 ĥ1 · · · ĥ L−1

]T

is the model filter, and

x(n) = [
x(n) x(n − 1) · · · x(n − L + 1)

]T

is a vector containing the last L samples of the input signal x .
Superscript T denotes transpose of a vector or a matrix.

Consider the following function:

J
(

ĥ
)

= ρ

[
e(n)

s(n)

]
, (5)

where

ρ(z) = ln[cosh(z)]
= − ln[2p(2z/π)] (6)

is a convex function and s(n) is a positive scale factor more thor-

oughly described below. The gradient of J
(

ĥ
)

is:

∇ J
(

ĥ
)

= −x(n)
s(n)

ψ

[
e(n)

s(n)

]
, (7)

where

ψ(z) = dρ(z)

dz
= tanh(z). (8)

The second derivative of J
(

ĥ
)

is:

∇2 J
(

ĥ
)

= x(n)xT (n)

s2(n)
ψ ′

[
e(n)

s(n)

]
, (9)

where

ψ ′(z) = 1

cosh2(z)
> 0, ∀z. (10)

Robust Newton-type algorithms have the following form (see
[3] for the Newton algorithm):

ĥ(n) = ĥ(n − 1)− R−1
ψ ′ ∇ J

[
ĥ(n − 1)

]
, (11)

where Rψ ′ is an approximation of E
{
∇2 J

[
ĥ(n − 1)

]}
and E{·}

denotes mathematical expectation. In this study we choose Rψ ′ =
ψ ′

[
e(n)

s(n)

]

s2(n)
R with R = E{x(n)xT (n)}. This choice will allow

us to derive a fast version of the algorithm. In practice, R is not
known so we have to estimate it recursively:

R(n) =
n∑

i=1

λn−i x(i)xT (i)

= λR(n − 1)+ x(n)xT (n), (12)

where λ (0 < λ ≤ 1) is an exponential forgetting factor.
We deduce a robust recursive least squares (RLS) adaptive al-

gorithm:

e(n) = y(n)− ĥ
T
(n − 1)x(n), (13)

ĥ(n) = ĥ(n − 1)+ s(n)

ψ ′
[

e(n)

s(n)

]k(n)ψ
[

e(n)

s(n)

]
, (14)

where k(n) = R−1(n)x(n) is the Kalman gain [4]. It can be
checked that 0 < ψ ′(z) ≤ 1, ∀z, and ψ ′(z) can become very
small. In order to avoid divergence of the robust RLS, we do not
allow ψ ′(z) to be lower than 0.5. So in practice, we compute ψ′(z)
according to (10) but we limit it to 0.5 if it is lower than 0.5. From
(14) it can be understood that large errors will be limited by the
function ψ(·). Note that if we choose ρ(z) = z2, then ψ(z) = 2z
and ψ ′(z) = 2, and the algorithm is exactly the non-robust RLS
[4].

A robust fast RLS (FRLS) can be derived by using the a priori
Kalman gain k′(n) = R−1(n − 1)x(n). This a priori Kalman gain
can be computed recursively with 5L multiplications and the error
as well as the adaptation parts in 2L multiplications. “Stabilized”
versions of FRLS (with L more multiplications) exist in the liter-
ature but they are not much more stable than their non-stabilized
counterparts with non-stationary signals like speech. Our approach
to fix this problem is simply to re-initialize the predictor-based
variables when instability is detected with the use of the maximum
likelihood variable which is an inherent variable of the FRLS. This
method works very well in all of the simulations that have been
done. In Table 1, we give a robust FRLS algorithm with a com-
plexity of O(7L).

One other important part of the algorithm is the estimate of the
scale factor s. Traditionally, the scale is used to make a robust al-
gorithm invariant to the noise level. It should reflect the minimum
mean-square error, be robust to shorter burst disturbances (double-
talk in our application), and track longer changes of the residual
error (echo path changes). We have chosen the scale factor esti-
mate as

s(n + 1) = λss(n)+ (1 − λs)
s(n)

ψ ′
[

e(n)

s(n)

]
∣∣∣∣ψ

[
e(n)

s(n)

]∣∣∣∣ ,(15)

s(0) = σx ,

which is very simple to implement. The choice of this method of
estimating s is justified in [5]. With this choice, the current esti-
mate of s is governed by the level of the error signal in the imme-
diate past over a time interval roughly equal to 1/(1 − λs). When
the algorithm has not yet converged, s is large. Hence the limiter
is in its linear portion and therefore the robust algorithm behaves
roughly like the conventional RLS algorithm. When double-talk
occurs, the error is determined by the limiter and by the scale of
the error signal during the recent past of the error signal before the



Table 1 A robust FRLS algorithm.

Prediction:

ea(n) = x(n)− aT (n − 1)x(n − 1)

ϕ1(n) = ϕ(n − 1)+ e2
a (n)/Ea(n − 1)[

t(n)
m(n)

]
=

[
0

k′(n − 1)

]

+
[

1
−a(n − 1)

]
ea(n)/Ea(n − 1)

Ea(n) = λ[Ea(n − 1)+ e2
a (n)/ϕ(n − 1)]

a(n) = a(n − 1)+ k′(n − 1)ea(n)/ϕ(n − 1)

eb(n) = Eb(n − 1)m(n)

k′(n) = t(n)+ b(n − 1)m(n)

ϕ(n) = ϕ1(n)− eb(n)m(n)

Eb(n) = λ[Eb(n − 1)+ e2
b(n)/ϕ(n)]

b(n) = b(n − 1)+ k′(n)eb(n)/ϕ(n)

Filtering:

e(n) = y(n)− ĥT (n − 1)x(n)

ψ

[
e(n)

s(n)

]
= tanh

[
e(n)

s(n)

]

ψ ′
[

e(n)

s(n)

]
= 1/ cosh2

[
e(n)

s(n)

]

ψ ′
f

[
e(n)

s(n)

]
=



ψ ′

[
e(n)

s(n)

]
if ψ ′

[
e(n)

s(n)

]
≥ 0.5

0.5 otherwise

ĥ(n) = ĥ(n − 1)+ s(n)

ψ ′
f

[
e(n)

s(n)

]
ϕ(n)

k′(n)ψ
[

e(n)

s(n)

]

s(n + 1) = λss(n)+ (1 − λs)
s(n)

ψ ′
f

[
e(n)

s(n)

]
∣∣∣∣ψ

[
e(n)

s(n)

]∣∣∣∣

double-talk occurs. Thus, divergence rate is reduced for a duration
of about 1/(1 − λs). This gives ample time for the DTD to act. If
there is a system change, the algorithm will not track immediately.
However, as the scale estimator tracks the larger error signal, the
nonlinearity is scaled up and the convergence rate accelerates. The
trade-off between robustness and tracking rate of the adaptive al-
gorithm is thus governed by the tracking rate of the scale estimator,
which is controlled by a single parameter λs.

3. APPLICATION TO NETWORK ECHO
CANCELLATION AND SIMULATIONS

In telephone connections that involve connection of 4-wire and 2-
wire links, an echo is generated at the hybrid. This echo has a dis-
turbing influence on the conversation and must therefore be can-
celled. Figure 1 shows the principle of a network echo canceler
(EC). The far-end speech signal x(n) goes through the echo path
represented by a filter h, then it is added to the near-end talker

v(n)+w(n)

e(n) y(n)

x(n)

ĥ(n) h

DTD

Adaptive
algorithm

Figure 1. Block diagram of the echo canceler and double-talk
detector.

signal v(n) and ambient noise w(n). The composit signal is de-
noted y(n). Most often the echo path is modeled by an adaptive
FIR filter, ĥ(n), which subtracts a replica of the echo and thereby
achieves cancellation. This may look like a simple straightforward
system identification task for the adaptive filter; however, in most
conversations there are so-called double-talk situations that make
the identification much more problematic than what it might ap-
pear at a first glance. Double-talk occurs when the two talkers on
both sides speak simultaneously, i.e. x(n) �= 0 and v(n) �= 0. In
this situation, the near-end speech acts as a large level uncorrelated
noise to the adaptive algorithm. The disturbing near-end speech
may cause the adaptive filter to diverge. Hence, annoying audible
echo will pass through to the far-end. A common way to alleviate
this problem is to slow down or completely halt the filter adapta-
tion when presence of near-end speech is detected. This is the very
important role of the so called double-talk detector (DTD).

In this section, we wish to compare, by way of simulation, the
robust and non-robust FRLS algorithms in the context of network
EC with a DTD. In these simulations, we use the Geigel DTD [6]
in which the settings are chosen as commonly used in commercial
hardware and assumes a 6 dB attenuation. The hybrid attenuation
is 20 dB and the length of the echo path h is L = 512. The same
length is used for the adaptive filter ĥ(n). The sampling rate is
8 kHz and the signal-to-noise ratio is equal to 39 dB. We have
chosen λs = 0.992 for the scale estimate s(n); and s(n) is never
allowed to be lower than 0.01. For the adaptive algorithms, we
used λ = 1 − 1/(3L).

An example of the performance of the robust and non-robust
FRLS algorithms during double-talk when speech is used is shown
in Fig. 2. The far-end speaker is female and the near-end speaker is
male, and the average far- to near-end ratio is 6 dB. The divergence
rate of the algorithms does not strongly depend on the power of the
near-end signal. We can see that even when the DTD is used, the
non-robust FRLS diverges because the DTD does not react fast
enough, while for the robust FRLS there is only a slight increase
of the misalignment.

Figure 3 shows the behavior after an abrupt system change
where the impulse response is shifted 200 samples at 1.5 seconds.
The re-convergence rate of the robust algorithm is a little bit slower
than the non-robust version but this is the price to pay for robust-
ness against double-talk. Note that since the FRLS algorithm con-
verges rapidly, this somewhat slower convergence is still fully ac-
ceptable.
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Figure 2. Double-talk situation. (a) Far-end signal. (b) Near-end
signal. (c) Misalignment of the robust FRLS (—) and non-robust
FRLS (– –).
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Figure 3. Reconvergence after abrupt hybrid change. Misalign-
ment of the robust FRLS (—) and non-robust FRLS (– –).

4. CONCLUSIONS

In robust statistics, the function ψ(·)which can be directly derived
from the model distribution of the error signal plays a key role.
If we want to make a robust estimate that has good efficiency, we
should choose a ψ that is bounded. In this paper, we proposed to
use ψ(z) = tanh(z) but other choices are possible such as the Hu-
ber function [1]. We have shown how to derive robust Newton-type
algorithms and from that we have derived a robust RLS algorithm
and its fast version. We have also shown that the robust FRLS
algorithm has a very nice behavior when it is used for network
echo cancellation with a DTD (as simple as the Geigel algorithm)
that fails to detect a double-talk situation quickly, which is almost
always the case in practice.
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