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ABSTRACT

The purpose of the paper is to propose a new design
method of FIR filters with discrete coefficients consid-
ering optimality. In the proposed method, the design
problem of FIR filters is formulated as a Mixed Integer
Semi-Infinite Linear Programming problem (MISILP),
which can be solved by a branch and bound technique.
Then, it is possible to obtain the optimal discrete co-
efficients, and the optimality of the obtained solution
can be guaranteed. It was confirmed that optimal co-
efficients of linear phase FIR filter with discrete coef-
ficients could be designed in reasonable computational
time with sufficient precision based on the results of
computational experiments.

1. INTRODUCTION

In hardware implementation of FIR filters, the filter
coefficients corresponding to multiplier coefficients are
presented as the finite word length numbers. When the
coefficients are simply rounded to the nearest discrete
number, performance of filters are degraded from the
one with the optimal real coefficients. Therefore, de-
sign methods of FIR filters with discrete coefficients
have been widely researched[1]~[4]. Among various
methods, some methods used the branch and bound
(B & B) technique based on LP or Remez algorith-
m. For example, Cho and Lee [3] proposed the B &
B technique based on LP focusing only on active con-
straints to decrease the computational time. In [§], the
design algorithm based on LP, which has only finite
constraints, was proposed. However, optimality of the
solution obtained by the algorithm cannot be assured
because of the finite constraints.

In this paper, we propose a new design method of
linear phase FIR filters with discrete coefficients, which
guarantees the optimality of the solution obtained. In
the proposed method, the design problem is formulated
as a Mixed Integer Semi-Infinite Linear Programming
problem (MISILP) which has infinite constraints and
solved by B & B technique. In the B & B technique,
a branching tree is generated and, on each node, it is
necessary to solve Semi-Infinite Linear Programming

problem (SILP)[5]. Here, SILP is a linear programming
problem that has infinitely many constraints. SILP is
solved by using 3 Phase method [6].

It is shown that the results of some computational
experiments can be certified the performance of the
proposed method.

2. PROBLEM FORMULATION

The transfer function of an FIR filter with length N 41
is denoted as

H(z)= thz*k. (1)
k=0

When hg, £ = 0,1,..., N is the even symmetric im-
pulse response and, N is an even number, the linear
phase characteristic with N/2 delay is achieved. Then,
the magnitude response H(w) can be expressed as

Hw) = Zan COS Nw. (2)

Suppose, a desired response D(w) is given as follows
K, 0<w<wp,

D(W):{ 0, ws<w<m. ®)

Where K is a scaling factor, w, is the passband cut-
off frequency, and w; is the stopband cutoff frequency,
respectively. Then, the optimization problem to ap-
proximate H(w) to D(w) in a min-max sense can be
written as

min  max |D(w)— H(w)|. (4)

ag,-..,an wEeN
where (2 is the approximation band,
Q =10, wp] U [ws, 7] (5)

If we introduce a new variable §’ that corresponds
to the Lo,-approximation error, it is easy to convert the
above min-max problem to the following minimization
problem:

min &
sub.to  H(w)+
—H(w)+ 0

D(w), w e, (6)
w € Q.
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Now, we assume that coefficients a,, (i = 0...N) are
limited to discrete coefficients of p bit. Then, (6) can
be re-formulated as a MILSIP as follows:

min o
sub.to Hw)4+6 >2PD(w),weQ,
—HW)+6 >-2D(w),we N (7)
TQy---3y LN > _2;0,
—Zgy ..., —rn > —(2P = 1),
wi€Z, i=0,...,N,
where,
) = 2PHE) ©
N
= 22”(1” COS NW (9)
n=0
N
= an €OS NW, (10)
n=0
Ty = 2pai,i:0,...,N, (11)
b = 2°§. (12)

While the w in (7) is treated as a continuous variable,
that of MILP is discretized. Therefore, the optimali-
ty of the obtained solution using MILP is not always
assured. It is impossible to solve (7) directly. Hence,
we adopt the B & B technique in the next section.
This technique is constructed with the branching pro-
cess and the bounding process. At first, we ignore the
integer constraints, and we get an SILP. To solve the
SILP, we need the dual problem of the SILP [5]:

max Z 2P D(w)yr (w) — Z 2P D(w)yz2 (w)

we() we(2)
N N
—Zpri+3 — 2(2” — 1)YitNya
i—0 i=0
sub.to Z ai1(w)y (w) + Z az(w)y2 (w)
we@) we@) (13)
N N
+Ze¢+1yi+3 - Z€i+1yi+N+4
i=0 i=0
=en42,
11 (). 12(w) > 0, Yo € .
Yss-- -3 Y2N+4 2> 0.

Where, Z means that the summation is taken over
we()

only finite numbers of dual variables y(w) > 0, k =
1,2, and all the remaining yi(w), k = 1, 2 are zero. Al-
0, a1 = (1,cosw, . ..,cos Nw, )T ay = (1, — cosw,
...,—cos Nw, )T € RN*2 and e;11,i = 0,..., N are
the (i + 1)-th unit vectors in RN*2 and ey, is also
the (N + 2)-th unit vector in IRNV+2,

3. 3 PHASE METHOD FOR SOLVING SILP

In this section, we describe briefly how to solve SILP
by means of 3 Phase method since it is very tedious to
describe the method exactly.

By use of the Carathéodory’s theorem [5], we can
show that there is an optimal solution for (13) that
has at most N + 2 positive dual variables. We as-
sume that y1(w1), ..., ¥1 (Wky ), Y2 (Wky+1)5 -« - - Y2(WN12)
are positive in the optimal solution. In order to simpli-
fy, weset y; = y1(w;), i = 1,..., k1 and ¢ = ya(w;), & =
k14 1,..., N + 2. Then, we have the following equa-
tions.

k1 N+2
Yawyi+ Y as(wi)y; = enta. (14)
i—1 i=k1+1

When we notice the complementary slackness theorem
of SILP [5], we have the following complementarity for

the primal optimality solution zg, ..., zN,d:
v, [ﬁ(wi) 86— 2”D(w,v)] = 0i=1,... k.,
v, [—f[(wi)—l—&—l—QPD(w,-)] = Oi=ki+1,...,N+2.

Noticing y; > 0, then we have the following equations:

H(w) +0 = 2°D(w;), i=1,..., ki, (15)
—H(w) +6 = —=2°D(w;),i=k +1,...,N +(6)

For each w;,i = 1,..., k1, (15) holds, and in a neigh-
bourhood of w;, the inequality H(w;) + 6 > 2PD(w;)
holds. Hence, each w;, ¢ = 1,..., k1 is a local minimum
of the function H(w;) + 8. Therefore, if w; is in the
interior of 2, we have the following equations:

? [f[(wi) 4 5} —0,i=1,....kr. (17

aw w=w;

If w; is on the boundary of €2, we have to describe the
Karush-Kuhn-Tucker condition on w;[7]. For w;, i =

ki1+1,..., N 4+ 2, by a similar discussion, we have :
0 ~ .
2 [—H(w,-)—i—&] —0,i=ki+1,...,N+2. (18)
ow W=w;

Now, we have 3(N + 2) variables zg, ..., xn,d, 1,

o Yng Wi - - -, w2 and 3(N + 2) equations (14),
(16), (17), (18). Hence, we can solve the primal SILP
(7) and its dual (13) simultaneously if we can solve e-
quations (14), (16), (17), (18). In this paper, the New-
ton method is used to solve the nonlinear equations. It
is widely known that when we use Newton method, we
need a good initial solution that approximates an opti-
mal solution well. For obtaining a good initial solution,



we discretize the primal and dual probrems:

min )
sub.to H(w;)+0 > 2PD(w;),
1= 1, ---5q1,
—H(w;))+6 > —2PD(w;), (19)
i:(h-l-l,---,QQa
Zoy---y TN 2 _2p’
—Z0,...,—IN —(2F = 1),
and
max Z2PD wi)y1(w;) Z2pD w; )Yz (w;)
1= 1 1=q1+1

N
—Z2pyz+3 = > (2P = Dyisnsa
=0

sub.to Zal (wi)y1 (w;) + Zaz (wi)ya (wi) (20)
=1 =
+Zei+lyi+3 - Zei+lyi+N+4
i=0 i=0
- eN+27

yl(wi) ZO,iZL...,(]l,
yZ(Wi)Zoyi:q1+17“'aq27
Y3s+-+rYaNta = 0.

Problem (19), (20) are linear programming problems
and can be solved by the simplex method. It is much
easier to solve the problem (20) than (19). When we
get a dual optimal solution g of problem (20), it is an
easy exercise to obtain a primal optimal solution &, § by
using the duality theory of linear programming. Now
we can use (Z,0,%,w1,...,wy,) as the initial solution
for the Newton method. This phase is called Phase 1.

For solving MISILP by using B & B technique, we
have to solve many SILP subproblems with additional
constraints. In that case, it might be happened that
some x; is zero in a primal optimal solution. Then, the
numbers of optimal dual variables that have positive
value becomes less than N + 2. However, the optimal
solution for the discretized dual problem has N + 2
basic dual variables. Hence, it is necessary to reduce
the number of dual variables. For that, at first, we
delete all the dual basic variables that are zero. Next,
for all pair (i,7) that w; and w; are very close and
Ui, ¥; > 0 holds, we set

Yi =i+ Y55 0= 0,0 = (wi +wj)/2. (21)

This phase is called Phase 2.

Now, we have the initial solution for the Newton
method. In 3 Phase, we solve equations (14), (16),
(17), (18) and obtain an optimal solution for (7). 3
Phase is also called as local reduction method.

In the following, 3 Phase method is described. Here
SILP is formulated as (22) that has some additional

constraints which corresponds to subproblems in the B
& B technique described in the next section.

min 1)
sub.to H(w)+d >2"D(w),w €N
—HW)+d§ >-2°D(w),w € Q,
ZQy---y TN 2_2;0, (22)
—Zoy...,—xn > —(2P = 1),
.Z'jiZdi, i:17.. ,é,
-k, > —fij, 1=1,...,m,

where zj,, zi, € {0, ..., zn}. The daul problem of the

above (22) is

max Z 2P D(w

we( Q)

N
—22py1+3 - Z (22 = )YiyNta
1=0

- > 2°D(w)y2(w)

we ()

_Zdzyz+2N+4 - Zfzyz+2N+Z+4

3 S aawh@)

sub.to Z a1 (w)yr(w) + Z

we(Q) we(Q)
(23)
+Zez+lyz+3 - Zez+lyz+N+4
= 1=0

Z

+Zeji+lyi+2N+4 - Zeki+1yi+2N+£+4
i=1 i=1
‘
+Zeji+1yi+2N+4 - Zeki+1yi+2N+€+4
i=1 i=1
= €EN+2,
yl(w)-,yZ(w) > 07 Vw € Q7

Y35+ -5 YaN+o+m+a = 0.

4. A NEW DESIGN METHOD USING
BRANCH AND BOUND TECHNIQUE

Our aim is to solve MISILP (7), but it is impossible to
solve (7) directly. Hence, we solve SILP ignoring the in-
teger constraints. However, since SILP is a continuous
optimization problem, an optimal solution obtained is
not always an integer solution. A standard technique
for solving this difficulty is to exploit the B & B tech-
nique.

If there are some Z;’s that are not integers, then
select one non-integer variable x; and generate two
subproblems, which one has an additional constraint
—x; > —|z;] and the other has an additional con-
straints «; > [z;]. Notice here, that the two gener-
ated subproblems are also SILP and can be solved by
3 Phase method. We can continue this procedure and
call this process as branching process.

If we continue the branching process, then after fi-
nite iterations, we can obtain an integer solution. The



obtained integer solution is an optimal solution for the
subproblem and a feasible solution for MISILP (7), but
might not be optimal for MISLIP. However, we can use
the objective function value that corresponds to the in-
teger solution as an upper bound for MISILP (incum-
bent value) since we can fathom subproblems that have
the optimal value greater than or equal to the upper
bound. This is true, because, if we add some addi-
tional constraints, the optimal value of the subproblem
becomes always bigger. The process that we fathom
all subproblems which have greater optimal value than
the incumbent value is called the bounding process.

5. COMPUTATIONAL EXPERIMENTS
We executed some computational experiments to certi-

fy the performance of the proposed filter design method.

We set wy, = 2/57, ws = 4/7m. Two kinds of compu-
tational experiments were performed.

(a)The scaling factor is fixed to K = 1. The bit
length p was set from 3 to 10 with pitch 1, and the
filter order was fixed to N = 3,4, ..., 20 for each value
of p.

(b)We fixed p =6,7,8 and N = 9,10, 11, 12. Then,
the scaling factor K was changed from 0.5 to 2.0 with
pitch 0.1.

The result of experiment (a) for N = 12, p =
3,...,10 is shown in figure 1. In this figure, it was
shown that the optimal value decreased slowly for p
over 7bit, on the other hand, the computational time
increased rapidly. Therefore, we can attain fast with
the enough approximation with only 6bit word-length.

Figure 2 shows the result of experiment (b) for p =
5 N =12, K = 0.5...2.0. From this results it was
indicated that the appropriate value of K is from 1.1
to 1.5.

Figure 3 shows the (A)magnitude response for p =
4, N = 12, K = 1 and the (B)magnitude response using
the coefficients which are simply rounded to 4bit.

6. CONCLUSION

In this paper, we proposed a new design method for
FIR filters with discrete coefficients using B & B tech-
nique. In this method, by formulating the FIR filter
design problem to MISILP, we can guarantee the opti-
mality of the obtained filter coefficients. The computa-
tional experiments showed that the proposed method
performed the enough approximation even for only 6bit
word-length with the reasonable computational time.
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