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ABSTRACT

Frequency warping using allpass structures or Laguerre filters has
found increasingly applications in audio signal processing due to
good match with the auditory frequency resolution. Kautz fil-
ters are an extension where the frequency warping and related
resolution can have more freedom. In this paper we discuss the
properties of Kautz filters and how they meet typical requirements
found in modeling and equalization of audio systems. Case stud-
iesinclude transfer function modeling of the guitar body and loud-
speaker response equalization.

1. INTRODUCTION

Any bandlimited linear and time-invariant (LTI) system can be ap-
proximately modeled or inverse modeled by adigital filter. A typ-
ical case of inverse modeling in audio signal processing is equal-
ization of response to approximate a desired target response. Any
stable filter structures can be used, and although FIR and direct-
form IR structuresin principle cover all LTI cases, computational
precision, efficiency, controllability of response, easy design, etc.,
may make other filter structures more desirable.

The kernel element of simple digital filters is the unit delay,
D(z) = z~'. Whileit is ways possible to reduce any LTI filter
back to a direct-form structure, some other kernels or basis func-
tions may be useful from theoretical or practical points of view.
A generdization of the unit delay (or a cascade of unit delays) is
for example an alpass filter that has flat magnitude response but
frequency-dependent delay. This introduces a frequency mapping
(warping) and makesit possible to look at such filter structuresin
amodified (warped) frequency domain.

The best known such frequency mapping is based on the bi-
linear conformal mapping D1 = (27! — A)/(1 — Az~ Y). Anor-
thonormal formulation with such basisfunctionsleadsto Laguerre
filters[9] which consist of a cascade of identical allpass elements
preceded with a normalization filter. In many frequency-warped
filter designsthe normalization can be simply skipped [5].

In Laguerretype of filtersthereis only onedegree of freedom,
parameter A\, which specifies the non-uniform frequency resolu-
tion of awarped frequency domain. Thisis enough and useful in
many cases, particularly since with careful optimization there ex-
ists a good match with the Bark scale that is used to describe the
psychoacoustical frequency scale of human hearing [11]. There
are many cases, however, e.g. in audio signal processing, where a
more complex frequency resolution mapping is desirable.

Kautz filters[8] is an interesting extension to Laguerre filters
which allow for such features. In this paper we discuss the prop-
erties of Kautz filters from the point of view of audio signa pro-

cessing. After abrief theoretical background of implementation
and design principles, we present two examples as case studies
of using Kautz filters in modeling and inverse modeling of audio
systems. In the first case we apply the method to loudspeaker re-
sponse equalization. The second case deals with the modeling of
guitar body impulse response. We concludewith asummary of the
work and a comparison with traditional design methods.

2. THEORY OF KAUTZ FILTERS

Deducible in many ways, the lowest order rational functions,
square-integrable and orthonormal on the unit circle, analytic for
|z| > 1, are of the form [13]

% 1 -1 _ _=*
Gi( )_Ml—zzzi z Z;
i\2) =~ .
z=1 =27
J=0

-1
1—2z2

i=0,1,..., (1

defined by any set of points {z;};2 in the unit disk. Functions
(2) form an orthonormal set which is complete, or a base, with
a moderate restriction on the poles {z;} [13]. The correspond-
ing time functions {g;(n)};2, are impulse responses or inverse
z-transforms of (1). Thisimplies that a basis representation of any
causal and stablediscrete-time signal or LTI system is obtained as
its Fourier series expansion with respect to the time or frequency
domain basis functions. These generalizations of z-transform and
convolution sum representations provide linear-in-parameter mod-
elsfor signals and systems.

Inthe signal processing context, functions (1) are called Kautz
functions, and they inherit their name and a specific way of deduc-
tion from a method proposed by Kautz to orthonormalize a set of
continuous-time exponential components [8]. The discrete-time
version can be attributed to Broome [2]. A Kautz filter is afinite
weighted sum of functions (1), which clearly reducesto a trans-
versal structure of Fig. 1. Thefilter structureis completely determ-
ined by apoleset {z;} ., and aweight vector w = [wo - - - wn]”.
We define thefilter or model order to be NV + 1.

A Kautz filter producesreal tap output signalsonly in the case
of real poles. However, from a sequence of real or complex con-
jugate polesit is always possible to form real orthonormal struc-
tures. From the infinite variety of possible solutions it is suffi-
cient to use the intuitively simple structure of Fig. 2, proposed by
Broome: the second-order section outputs of Fig. 2 are orthogonal
from which an orthogonal tap output pair if formed. Normaliza-
tion terms are completely determined by the corresponding pole
pair {z;, 27} and are given by p; = /(1 — p;)(1 + pi — 7i)/2
and qi = /(1 —pi)(1+ pi +7i)/2, where y; = —2RE{z}
and p; = |2z;|? can be recognized as corresponding second-order
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Figure 1: The Kautz filter. For z; = 0 in (1) it degeneratesto an
FIRfilter andfor z; = a, —1 < a < 1, itisaLaguerrefilter where
the tap filters are replaced by a common pre-filter.

polynomial coefficients. The constructionworksalso for real poles
but we use an obvious mixture of first- and second-order sections,

if needed.
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Figure 2: Oneredlization for producing real Kautz functions from
asequenceof complex conjugate pole pairs.
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2.1. Modeling and inversemodeling with Kautz filters

As hinted previously, for a given system h(n) or H(z), Fourier
coefficientsprovide least-square (L S) optimal parametrizationsfor
the corresponding Kautz model, or synthesisfilter, with respect to
the pole set and the filter order. Evaluation of the Fourier coeffi-
cients, ¢; = (h,g:) = (H,G;), can be implemented by feeding
the signal h(—n) to the Kautz filter and reading the tap outputs
zi(n) = Gi[h(—n)] an = 0: ¢; = x;(0). It should be noted that
herethe L S criterion is applied on the infinite time horizon and not
for examplein the time window defined by h(n).

A straightforward interpretation for input-output-data identi-
fication of Kautz model parametersis based on normal equations
assembled from correlation terms: if the tap outputs z;(n) =
G;[z(n)] to theinput 2:(n) are collected in the matrix S, [s]:; =
{zi—1(j — 1)}, the weight vector is the solution of the mat-
rix equation Rw = p, with R = SS¥ and p = Sy, where
y = [y(0) y(1) ---]¥ isthe (infinite) desired output vector and H
denotes complex conjugate transpose. In practice the tap output
signals are truncated or windowed somehow. It should be noted
that this is just the prototype LS approach, and many other types
of minimization criteria may be used.

There are basically three types of interpretations for inverse
modeling and equalization: (@) model the system and invert the
model, (b) invert the system description and model theinverse, and
(c) identify the overall system. (a) is astraightforward generaliza-
tion of the moving-average model case, if weinclude a delay-free
loop elimination method [4]. In (c) we have the impulse and non-
impulse input formulations, with possibletreatment for the overall

delay. Here we choose (b) because then we have direct powerful
meansto optimize the pole positions { z; }.

2.2. Optimization of Kautz filter design

Evenin the one-pole Laguerre caseit isimpossible to optimize the
pole position analytically. Nevertheless there are many methods
that can be used in search for suitable poles {z;}, including all-
pole or pole-zero modeling, sophisticated guesses, and random or
iterative search. For the structure of identical allpass blocks, are-
lation between optimal model parameters and error energy surface
stationary points with respect to the poles may be utilized [3] as
well as a classification of systems to associate systems and basis
functions[12].

For agiven target response, the most appesaling methods could
be titled as allpass operator optimizationAs previously noted,
we get the LS optimal filter weights by feeding h(—n), n =
0,...,M,tothe Kautzfilter and reading thetap outputsat n = 0.
Asaconseguenceof theorthogonality, the resulting approximation
error energy >_5°  |ws|? is equal to the output of the allpass op-
erator (defined by the Kautz filter) in the finite interval [— M, 0]!
The two methods applied in this paper can be seen as lineariz-
ations of the nonlinear optimization problem with respect to the
poles, based on this energy observation[10, 1]. Apparently neither
of these methods have been used in optimization of discrete-time
Kautz filter structures.

3. CASE 1: LOUDSPEAKER EQUALIZATION

Anideal loudspeaker has a flat magnitude response and a constant
group delay. Here we demonstrate the use of Kautz filtersin pure
maghitude equalization, based on an inverted target response, al-
though direct utilization of methods (&) or (c) in Section 2.1 would
produceinherent magnitude and phaseequalization. Themeasured
loudspeaker magnitude response and a derived equalizer target re-
sponseareincluded in Fig. 3. The samplerateis 48 kHz.

Audio egualization consiststypically of compensatingfor three
different types of phenomena: slow trends in the response, sharp
and local deviations, and correction of roll-offs at the band edges.
This makes“blind equalization” methodsineffective. We propose
that Kautz filters provide a useful alternative between “blind” and
hand-tuned “parametric” equalization (with an obvious abuse of
terminology).

Asiswell known, FIR modeling has on inherent emphasison
high frequencieson the auditorily motivated logarithmic frequency
scale. Warped FIR (or Laguerre) filters rel ease some of the resolu-
tion to thelower frequencies, providing acompetitive performance
with 5to 10 times lower filter orders [6]. However, thefilter order
required to flatten the peaksat 1 kHz is still high, of the order 200,
and in practice Laguerre models up to order 50 are able to model
only slow trendsin the response.

In search for lower order Kautz models we applied various
methods presentedin Section 2.2. AR modeling and AR modeling
based ARMA modeling do not provide good pole sets. Steiglitz-
McBride method (SM) of ARMA modeling produces unstable
poles (for orders above 8), but for some orders omitting the un-
stable poles leaves a usable pole set (Fig. 3). The method pro-
posed by McDonough and Huggins [10] produces unstable poles
in the first iteration from almost any initial pole set. The method
of Brandenstein and Unbehauen[1] provides stable and reasonable
pole sets for orders at least up to 40. The low frequency behavior
of the target response produces poles extremely closeto z = 1,
which is aso the reason for troublesin the two previous methods,



and some of these poleswere omitted in 28th and 33th order Kautz
modelsof Fig. 3.
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Figure 3: Displayed with offset from bottom to top: the meas-
ured impul se response, simulated equalization with Kautz models
of orders 9, 15, 28, 29(SM), 33 and 34(SM), the equalizer target
response, and corresponding Kautz equalizer responses.

To improve themodeling at 1 kHz, wetried tofit different pole
setsto the resonances. The starting point wasthe 28th order Kautz
filter of Fig. 3, where we omitted the one pole pair trying to model
the 1 kHz region. Three pole pairs were manually tuned to the
three prominent resonances, resulting in the 32th order Kautz filter
of Fig. 4. To improve the modeling below the 1 kHz region we
added a suitable pole pair, producing the 34th order Kautz model
in Fig. 4. To lower further the filter order, we applied the same
procedure to the 15th order model of Fig. 3 providing arelatively
good equalization result at amuch lower filter order 23 (Fig. 4).

Finally, after extensive tuning of 10 pole pairs we ended up
with the 20th order model of Fig. 4. Thisis an ultimate approach
in the sense that each (chosen) resonance is modeled with only
one pole pair. Here also a compensating pole pair is placed at
the low end. This s clearly one form of parametric equalization
with second order blocks. However, with Kautz filters we have
completely separated the choosing of the resonance structure and
the (linear-in-parameter) model parametrization.

4. CASE 2: MODELING OF GUITAR BODY RESPONSE

As an example of high-order distributed-pole Kautz modeling we
approximate a measured acoustic guitar body response sampled at
24 kHz (Fig. 5). The obvious disadvantage of a straightforward
FIR filter implementation is that modeling of the slowly decay-
ing lowest resonances requires very high filter orders. All-pole
or pole-zero modeling are the traditional choicesin improving the
flexibility of the spectral representation. Perceptually motivated
warped counterparts of al-pole and pole-zero modeling pay off,
even in technical terms [7], but here we want to focus the model-
ing resolution more freely.

A 1000 tap FIR implementation was selected as a reference
model, which gives asafe complexity advantagemargintoa100to
200 order Kautz filter. Direct all-pole or pole-zero modeling were
found to produce unsatisfactory pole sets {z; }, even in searching

a
o
T

N
o

w
o

WMM

MAGNITUDE / dB
o B B
T

=
o

)
[S)

&
S

Measured /

40

102 10°  FREQUENCY/Hz 10*

Figure 4: Equalized responses and Kautz equalizers constructed
partly or purely from observing original and target responses. The
Kautz filter orders are 20, 23, 34 and 32, from top to bottom, in
respective block for the equalizers and the simulated equalization.
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Figure5: Measured impul se response of an acoustic guitar body.

for a low-order substructure. On the other hand, it is relatively
easy to find good pole sets by direct selection of prominent reson-
ancesand proper poleradiustuning. To demonstratetheabilities of
the proposed allpass optimization methods, we apply the method
of Brandenstein and Unbehauen on the full filter order dimension
100 for the allpass structure. Two real poles were disregarded and
the other 49 pole pairs were recognized as good representativesfor
the resonance structure. Based on this observation, poles were as-
sociated with different choices of prominent resonances. In Table
1 the resulting time and frequency domain normalized root-mean-
square-errors (NRMS) corresponding to certain choices of block
orders and number of blocks are presented, compared to the FIR
1000 case. In last two columns an ad hocmethod to compensate
the repetitive appearance of the poles is demonstrated: the pole
radii are ssimply raised to the power of the block number.

Figure 6 presentsthe low frequency behavior of (16 x 6) and
(10 x 10) Kautz models of Table 1, compared to the original and
the 1000-tap FIR frequency response. No fine tuning is done and
the poles are representatives of the original 49 pole pair set, pole
pairs 1to 8 (with increasing angles) and in the latter case omitting
pairs 5 to 7. The common pole pairs correspond quite well to the
five prominent resonances and the figure illustrates the tradeoff
between resonance and off-resonance behavior. The Kautz filter
orders are very low and an increasein orderswill rapidly improve
the overall spectral details, still having the emphasis on the low
frequency range.



order JoR E. E; E!
98 x 1 0.2140 | 0.1355

50 x 2 0.1735 | 0.1200 | 0.1726 | 0.1322
24 x 4 0.1351 | 0.0951 | 0.1479 | 0.1052
16 X 6 0.1998 | 0.1689 | 0.1583 | 0.1162
10 x 10 | 0.2676 | 0.2102 | 0.1871 | 0.1346
FIR 1000 | 0.2930 | 0.2210

Table 1: Time and frequency domain NRMS errors for different
pole sets of Kautz filters, compared to a 1000-tap FIR, last two
columnswith modified pole radii.
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Figure 6: Displayedwith offset from the top: magnitude responses
up to 1380 Hz, for the 1000-tap FIR filter, the measured response,
(16 x 6) and (10 x 10) order Kautz filters.

5. DISCUSSION AND CONCLUSIONS

The above cases of audio equalization and modeling were taken as
challenging examplesin order to show the applicability of Kautz
filters. Many specific questions, such as audio relevance of the
modeling details, perceptual aspectsof thedesigns, aswell ascom-
putational robustness and expense have been addresses briefly or
not at all. Thuscall for further investigations.

Theaim of thisstudy wasto show that it is possibleto achieve
good modeling or equalization results with lower Kautz filter or-
dersthan with warped (Laguerre) or traditional FIR and IIR filters.
In the loudspeaker equalization case Kautz filter orders of 20-30
can achieve similar results of flatnessas warped I|R models of or-
der 100200, or much higher orders with FIR equalizers. Thisre-
duction is due to well controlled focusing of frequency resolution
on both global shape and particularly on local resonant behavior.
In the case of guitar body response modeling the low-frequency
modes are important perceptually, and relatively low-order (about
100) Kautz filters can focus sharply on them, showing advantage
over warped, IR, and FIR designs, especially when focusison the
separate low-frequency modes of the body response.

Thebasicflexibility of Kautz filter designsdoesn’t comewith-
out complications. In this paper we have hand-tuned the pole set
{z:} of Eq. 1 to yield superior modeling with low orders. There
are numerous possible techniques and strategies to search for an
optima model for a given problem, and different tasks may be
solved best with different approaches. The casesinvestigated here

just hint general guidelines, and fully automated search for optimal
solution even in the present cases requires further work. However,
we have demonstrated the potential applicability of Kautz filters.
They arefound flexible generalizationsof FIR and Laguerrefilters,
providing I 1R-like spectral modeling capabilities with well-known
favorable properties resulting from the orthonormality. The com-
petitiveness compared to Laguerre modeling is based on the fact
that the generalization step imposes little or no extra computation
load at runtime, even if the design phase may become more com-
plicated.

MATLAB scripts and demos related to Kautz filter design can
befound at ww. acousti cs. hut. fi/softwar e/ kaut z.
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