
ABSTRACT

This paper presents three implementations of Triple Data
Encryption Standard (3DES) algorithm on a configurable
platform. Implementations are aimed at Medium Access Control
(MAC) protocol of a multimedia-capable Wireless Local Area
Network (WLAN). For this reason, very strict timing constraints
as well as demands for area-efficiency are present. The MAC
processing is handled by a Digital Signal Processor (DSP) and a
Xilinx Virtex Field Programmable Gate Array (FPGA) chip. The
latter one is also used for the presented encryption
implementations. As a result of the study, 3DES
implementations with small area and reasonable throughput and,
on the contrary, with large area and very high throughput are
realized. Even though 3DES turns out to be quite large and
resource-demanding, the implementations still leave enough chip
area for the other MAC functions. Consequently, the set
requirements are met and the cipher can be integrated into the
system.

1. INTRODUCTION

Wireless Local Area Network (WLAN) technology is very
promising for various types of wireless indoor and limited
outdoor communications. Applications range from electronic
mail to wireless multimedia. WLANs provide network solutions
when wired networks become impossible or inconvenient, for
example, when movement of users is required, or when a
network is set up on a temporary basis.

Although wireless connections make networks very flexible
and convenient, they are also far easier to eavesdrop than
traditional cable networks. At the simplest level, data is available
to anyone within the range of a transmitting device. As a result,
these networks are very sensitive to security violations and need
powerful encryption. On the other hand, because of the real-time
service requirements and limited processing capabilities of
embedded terminals (e.g. on-chip memory), the encryption
implementations must be efficient.

This paper presents an encryption implementation purposed
for the Medium Access Control (MAC) protocol of Tampere
University of Technology WLAN (TUTWLAN) system [10].
TUTWLAN is a proprietary, multimedia-capable WLAN
implemented at the Digital and Computer Systems Laboratory of
TUT.

One of the novelties in TUTWLAN is the tightly integrated
encryption in the MAC protocol. Thus, a transparently secured
transmission channel is provided for the upper layer protocols.

In addition, TUTWLAN uses configurable hardware and Digital
Signal Processor (DSP) for the MAC implementation, which
enables implementation of a large range of different protocol
features on the same platform. For example, it is possible to
flexibly change the encryption method, and thereby the provided
security level, independent of the application [11].

The current TUTWLAN demonstrator platform [9] contains a
DSP and a Xilinx Virtex Field Programmable Gate Array
(FPGA) chip [12], into which the presented implementations are
targeted. In addition to the encryption, the FPGA also includes
the functions for interfacing the host computer (PC), the DSP,
and a radio sub-system module. Because several different
functions are included into the FPGA, the cipher implementation
should be area-efficient.

In this paper, three Triple Data Encryption Standard (3DES)
[3] implementation alternatives are presented in order to study
its suitability for MAC-level encryption on a reconfigurable
platform. DES has already been implemented on various
platforms and thoroughly analyzed [1][4][7][8]. Especially
several single-DES dedicated hardware implementations have
been presented, but none for 3DES on a configurable platform
according to the authors’ knowledge. The penalty of mapping to
an FPGA compared to a full-custom design is that on an FPGA
there exists only limited amount of resources and possible
routing paths. A full-custom chip does not have this kind of
limitations. Therefore, configurable logic designs cannot usually
be as efficient as full-custom designs.

The paper is organized as follows. The first section
summarizes the 3DES algorithm. Next, the realized
implementations and the obtained results are presented. The
basic implementation design is covered first, followed by more
optimized designs with removed redundancy. Next, a trade-off
analysis between area and throughput is given. Discussion of the
results is aroused in the concluding section.

2. 3DES ALGORITHM INTRODUCTION

3DES was designed to encrypt 64-bit blocks of data under the
control of three unrelated 64-bit keys. Each key is used as an
input to a DES block. The actual utilized key size is three times
56 bits because every eighth bit is used for parity checking and
will be ignored afterwards. The cipher is symmetric. Therefore,
decryption is accomplished by using the same keys and the same
algorithm as in encryption. The only difference is that the key
schedule is reversed. Fig. 1 presents the high level structure of
3DES. [2]

CONFIGURABLE HARDWARE IMPLEMENTATION OF TRIPLE-DES
ENCRYPTION ALGORITHM FOR WIRELESS LOCAL AREA NETWORK

Panu Hämäläinen, Marko Hännikäinen, Timo Hämäläinen, and Jukka Saarinen

Digital and Computer Systems Laboratory, Tampere University of Technology
Hermiankatu 3 A, FIN-33720 Tampere, FINLAND

Tel: +358 3 365 2111, Fax: +358 3 365 4575
E-mail: panuh@cs.tut.fi, markoh@cs.tut.fi, timoh@cs.tut.fi, jukkas@cs.tut.fi

 16 Iteration Rounds 16 Iteration Rounds

DES decryptionDES decryption

DES encryptionDES encryption

 Initial Permutation Initial Permutation

Final PermutationFinal Permutation

Plaintext

Ciphertext

Key1

Key2

Key3

DES encryption

Fig. 1. High level structure of 3DES.

Commonly, 3DES is regarded as a rather weighty cipher,
especially for software implementations. In software even a
simple bitwise permutation is relatively tricky and therefore
leads to several lines of code (at least in C/C++). On the
contrary, in hardware permutations can be implemented as hard-
wired connections, which are easy to accomplish and do not
produce any additional delay. In addition, the 3DES algorithm’s
most essential parts are the substitution boxes (S-boxes), which
are most effectively implemented in hardware. An S-box
contains 64 4-bit digits, which are used for substituting the S-
box input bits. More detailed information on the algorithm can
be found, e.g., in [3] and [2].

Table 1 presents some software performance ratings for 3DES
to enable the comparison of software and the FPGA
implementations. The used C source code was obtained from
Phil Karn of Qualcomm Incorporated1. The code was compiled
for MS-DOS using djgpp compiler and for HP-UX using GNU
C-compiler.

Table 1. Software performance of 3DES on different platforms.

Processor type Speed
Operating

System

Encryption
throughput

Mbytes/s

Intel Pentium 166 MHz MS-DOS 0.55

Intel Pentium II 400 MHz MS-DOS 2.26

Intel Pentium III 600 MHz MS-DOS 3.39

HP C3000 400 MHz HP-UX 2.50

3. 3DES IMPLEMENTATIONS

This section introduces the realized implementation alternatives,
optimizations, and achieved results. The presented
implementations were made in Very High-speed integrated
circuit Hardware Description Language (VHDL) [5] and the
used development software was Xilinx Foundation F2.1i [6].
The designs were targeted to a Xilinx Virtex family FPGA chip
[12]. Virtex is a new Xilinx FPGA that has been designed
especially for large and time-critical implementations.

1 The source code is available at
http://people.qualcomm.com/karn/code/des/index.html (visited January
26, 2001).

FP Left Input Reg.FP Left Input Reg.

Left Input RegisterLeft Input Register

MUXMUX

Iteration RoundIteration Round

Initial PermutationInitial Permutation

Right Input RegisterRight Input Register

DEMUXDEMUX

DEMUXDEMUX

Final PermutationFinal Permutation

FP Right Input Reg.FP Right Input Reg.

Input

Output

Key PermutationKey Permutation

MUXMUX

Subkey RegisterSubkey Register

…k1 k2 k16

48 bits

Mode

Key1

64 bits

MUXMUX

Key2 Key3

Key RegisterKey Register

Input RegisterInput Register

MUXMUX MUXMUX

DEMUXDEMUX

64 bits

64 bits32 bits 32 bits

Fig. 2. Full 3DES implementation.

3.1. Basic Implementation

Since 3DES consists of 48 consecutive similar iterations, it was
possible to carry out the basic implementation with only one
iteration round block, a subkey generator, and a state machine.
The iteration block performs enciphering/deciphering, the key
generator creates the needed subkeys, and the state machine
takes care of feeding the right inputs and subkeys to the iteration
block. The same approach was also used in [7] and [8] for DES.

Fig. 2 illustrates the high level structure of the entire
implementation. The state machine controls the configuration of
the multiplexors and demultiplexors presented in the figure. The
external mode signal determines whether the cipher is
performing encryption or decryption. If the decryption mode is
chosen, the subkey order is reversed.

The logic operates as follows:

1. On the first clock cycle the input is stored in the initial
permutation input register.

2. Next the plaintext/ciphertext input proceeds through the
initial permutation to the left and right input registers of the
iteration round block. In the beginning of the next clock
cycle both registers contain a 32-bit half of the permuted
input.

3. During the following 16 cycles the contents of the input
registers and the subkey register are repeatedly fed through
the iteration round block, and the result is written back to the
input registers. After the 16 rounds the result is permuted in
the final permutation block to finish the DES iteration.

4. Steps 1-3 are repeated three times to realize the full 3DES
encryption/decryption. For the first 16 iteration rounds the
used encryption key is Key1, then Key2 for the next 16
rounds, and Key3 for the final 16 iterations.

5. After the last iteration the undermost demultiplexor directs
the output of the final permutation to the chip output, and
the encryption/decryption is completed.

The execution of the entire flow takes 55 clock cycles. In
order to find the best alternative for S-box implementation, two
different methods were tested. The first one uses only
combinatorial logic to perform the substitutions, and the other
takes advantage of the FPGA’s internal Read Only Memory
(ROM). In the latter alternative each memory slot contains an
output value corresponding to the input. Table 2 shows the
detailed implementation results of the both, logic and ROM,
designs on Virtex-V800FG676-6. In the table user I/O means the
chip input/output pins reserved by the designer, slice is a Virtex
configurable logic cell, and gate count refers to the equivalent
amount of gates if the design was implemented with logical gates
only. A slice contains logical gates and look up tables (LUTs),
which can be configured to function as ROM. As can be seen,
the results of the implementation with ROM S-boxes are far
better than those of the logic implementation: the number of
reserved slices is 22% smaller and the maximum clock frequency
given by the Foundation is 47% higher.

Table 2. Implementation results of the full 3DES.

Design LOGIC ROM

User I/O 298 / 444 298 / 444

Virtex Slices 1,059 / 9,408 825 / 9,408

 4-input LUTs 1,949 1,359

 16x1 ROMs 0 128

Gate Count 14,622 15,370

Max. Clock Frequency 27.566 MHz 40.532 MHz

Throughput with
Maximum Clock

4.01 Mbytes/s 5.90 Mbytes/s

3.2. Optimizations and Trade-offs

In order to improve the efficiency and the execution time of the
cipher, three additional implementations are designed. The first
one removes redundancy from the previous implementation, and
the latter ones attempt to shorten the encryption time. In the last
implementation 3DES is fully pipelined in order to achieve
maximum throughput and to test Virtex’s capacity.

Because the initial and final permutations are each other’s
inverses [3], performing final permutation to a message
permuted with the initial permutation leads to the original
message as described in [4]. Therefore, it is possible to leave out
the final permutations of the first and the second DES and the
initial permutations of the second and third DES. This way four
clock cycles per message block are saved (resulting execution
time is 51 clocks). In addition, excluding the intermediate initial
and final permutations makes the outline of the cipher simpler as
data path from final permutation to initial permutation can be
removed.

Table 3. Implementation results of the optimized 3DES.

Design LOGIC ROM

User I/O 298 / 444 298 / 444

Virtex Slices 1,107 / 9,408 740 / 9,408

 4-input LUTs 1,949 1,110

 16x1 ROMs 0 128

Gate Count 14,622 13,876

Max. Clock Frequency 43.906 MHz 35.791 MHz

Throughput with
Maximum Clock

6.89 Mbytes/s 5.61 Mbytes/s

Table 3 presents the detailed results of the simplified
implementations on the Virtex FPGA. The table shows a
significant improvement in the efficiency of the ROM
implementation. The number of used slices has dropped almost
by a hundred from the full implementation. Surprisingly, despite
of the achieved smaller area, the maximum clock frequency is
decreased. Even though the logic implementation is much larger
than the ROM implementation, the maximum clock frequency is
still better. The design tool managed to optimize this logic
implementation markedly better than the basic implementation
(the maximum clock is almost doubled). In addition, as it can be
seen in the maximum clock frequencies, the design tool also
succeeded better in routing for the logic implementation than for
the ROM implementation.

In the next optimization state it was tested whether the
execution time of the cipher could be shortened. The design adds
one iteration round to the optimized data path of Fig. 2. The
result is that the loop from the demultiplexors to the iteration
round input registers needs to be executed only 24 times instead
of 48. The idea of loop unrolling for DES was originally
presented in [1]. However, in [7] it was never taken advantage
of. The altered part is depicted in Fig. 3.

Table 4 presents the results of this two-round implementation.
The method cut the execution time down to 27 clock cycles and
proved to be very cost-effective as well, especially as a ROM
version. The results show that even though the maximum clock
frequency on the chip was somewhat decreased, the data
throughput was increased. It is possible to execute even more
iterations on a clock cycle. However, since the maximum clock
frequency in two rounds was already decreased, adding more
rounds was not assumed to increase the overall performance.

Left RegisterLeft Register

Iteration Round 1Iteration Round 1

Right RegisterRight Register

DEMUXDEMUX DEMUXDEMUX

MUXMUX

Subkey 1Subkey 1

…k1 k2 k16

Iteration Round 2Iteration Round 2
Subkey 2Subkey 2

Fig. 3. 3DES with two iterations per clock cycle.

Table 4. Implementation results of the two-round 3DES.

Design LOGIC ROM

User I/O 298 / 444 298 / 444
Virtex Slices 1,257 / 9,408 833 / 9,408
 4-input LUTs 2,280 1,175
 16x1 ROMs 0 256
Gate Count 16,984 18,930
Max. Clock Frequency 25.092 MHz 29.044 MHz
Throughput with
Maximum Clock

7.43 Mbytes/s 8.61 Mbytes/s

In order to maximize throughput, pipelining was utilized in
the last version of the cipher. According to the results of the
previous implementations, the most effective way is to execute
two iteration rounds per clock cycle. Therefore, the design
consists of 24 consecutive double-iteration rounds with registers
in between. As a result, a new plaintext block can be fed to the
logic on every clock cycle. Since every iteration round is
followed by a register, the output latency is 24 clock cycles.
However, with this design the throughput increases remarkably.
After the first 24 clock cycles, a new 64-bit ciphertext block is
received on every cycle. The implementation covers both
encryption and decryption.

Table 5 shows the results for the design. The design was only
implemented as a ROM version since it had already been
verified to be the more effective one. As can be seen, pipelining
led to quite a large implementation. However, it proved to be
very effective when examining the throughput, which was almost
370 Mbytes/s. Furthermore, even though the implementation
requires 12 kilobytes of ROM, it only consumes 71% of the
chip’s resources. This shows that Virtex is suitable for very large
implementations.

Table 5. Implementation results of the pipelined 3DES.

Design ROM

User I/O 298 / 444
Virtex Slices 6,689 / 9,408
 4-input LUTs 3,568
 16x1 ROMs 6,184
Gate Count 271,472
Max. Clock Frequency 45.550 MHz
Throughput with Maximum
Clock

364 Mbytes/s

4. DISCUSSION

Altogether, 3DES turned out to be quite large and resource
demanding. However, the used Virtex chip proved to be well
suited for this algorithm. In fact, the target frequency of 40 MHz
was exceeded, and the achieved data throughput was high.

The best throughput was achieved by pipelining the
encryption process. A new input was fed and one iteration round
was executed on every clock cycle. Considering the pipeline, a
potential improvement is to combine more iteration rounds to
shorten the pipeline. This would improve the output latency.
However, the combinatorial path delay would increase resulting
in a decrease in maximum clock frequency. For the presented

non-pipeline implementations, pipelining two or a few more
iteration rounds would increase the throughput. However, this
kind of pipeline requires a more complicated state machine,
which inevitably leads to a decrease in maximum clock
frequency and consumes more chip resources.

Within the presented implementations, 3DES with two
iterations per clock cycle was considered the best. The maximum
clock frequency was relatively high, and the design could also be
fitted on smaller chips. Furthermore, compared to the software
performances in Table 1, the two-round hardware was more than
2.5 times faster than the best software implementation. With
some re-timing and careful adjustment of synthesis parameters, it
should be possible to increase the maximum clock frequency
closer to the target of 40 MHz of the TUTWLAN platform.

As a result, the 3DES algorithm was proved to be suitable for
hardware implementation. In addition, the presented results
showed that the TUTWLAN MAC level requirements were met,
and thus it is possible to combine the cipher to the system.
Enough chip area was still left for the host and radio interface
functions.

5. REFERENCES

[1] A. G. Broscius, J. M. Smith, “Exploiting Parallelism in
Hardware Implementation of the DES,” CRYPTO’91,
Santa Barbara, California, USA, pp. 367-376, 1991.

[2] B. Schneier, “Applied Cryptography: Protocols,
Algorithms and Source Code in C,” 2nd edition, John
Wiley & Sons, Inc., USA, 1996.

[3] “Data Encryption Standard,” Federal Information
Processing Standards (FIPS) Publication 46-7, National
institute of Standards and Technology (NIST), USA, 1999.

[4] D. C. Feldmeier, P. R. Karn, “UNIX Password Security –
Ten Years Later,” CRYPTO’89, Santa Barbara, California,
USA, pp. 44-63, 1989.

[5] D. L. Perry, “VHDL,” 2nd edition, McGraw-Hill, Inc.,
USA, 1994.

[6] “Foundation Series 2.1i Install and Release Document,”
Xilinx, Inc., USA, 1999.

[7] H. Eberle, “A High-speed DES Implementation for
Network Applications,” CRYPTO’92, Santa Barbara,
California, USA, pp. 521-539, 1992.

[8] J-P. Kaps, C. Paar, “Fast DES Implementations for FPGAs
and its Application to a Universal Key-Search Machine,”
SAC’98, 1998, Kingston, Ontario, Canada, pp. 234-247.

[9] K. Tikkanen, M. Hännikäinen, T. Hämäläinen, J. Saarinen,
“Advanced Prototype Platform for a Wireless Multimedia
Local Area Network,” EUSIPCO 2000, Tampere, Finland,
pp. 2309-2312, 2000.

[10] M. Hännikäinen, J. Knuutila, A. Letonsaari, T.
Hämäläinen, J. Jokela, J. Ala-Laurila and J. Saarinen,
“TUTMAC: A Medium Access Control Protocol for A
New Multimedia Wireless Local Area Network,”
PIMRC’98, Boston, USA, pp. 592-596, 1998.

[11] P. Hämäläinen, M. Hännikäinen, T. Hämäläinen, J.
Saarinen, “Hardware Implementation of the Improved
WEP and RC4 Encryption Algorithms for Wireless
Terminals,” EUSIPCO 2000, Tampere, Finland, pp. 2289-
2292, 2000.

[12] “The Programmable Logic Data Book,” Xilinx, Inc., USA,
1999.

