RAPID PROTOTYPING OF MULTI-DSP SYSTEMS
BASED ON ACCURATE PERFORMANCE ESTIMATION

Bernhard Rinner, Bernd Ruprechter and Martin Schmid

Institute for Technical Informatics
Graz University of Technology, AUSTRIA
http://www.iti.tu-graz.ac.at

ABSTRACT

The development of parallel applications is tedious and more
complex than a single-processor solution. We have devel-
oped PEPSY, a prototyping environment for multi-DSP sys-
tems, with the primary goal to automate the design and
implementation of parallel DSP applications. Given an ex-
tended data flow graph of the DSP application and a de-
scription of the target multi-processor system, PEPSY au-
tomatically maps and schedules the DSP application onto
the multi-processor system and generates complete code for
each processor.

PEPSY excels in an accurate performance estimation.
The design goals of the parallel application can, therefore,
be verified prior to its implementation. With PEPSY, paral-
lelization of a DSP application onto various processors can
be realized within minutes.

keywords: multi-DSP; rapid prototyping; performance es-
timation; automatic code generation; PEPSY

1. INTRODUCTION

Parallel processing is a key technique to satisfy the steadily
increasing performance requirements of applications in the
field of digital signal processing (DSP). The design and im-
plementation of such parallel applications, however, are te-
dious and more complex than a single-processor solution.
In times of high market pressure and ever decreasing time-
to-market, automization of the design and implementation
process for parallel DSP applications is crucial.

The design process of parallel DSP applications typi-
cally consists of partitioning, mapping and scheduling. The
overall application has to be partitioned into smaller units
(tasks); these tasks have to be mapped onto individual pro-
cessing elements; and the execution order of all tasks has
to be determined for each processing element. Given the
large number of possible partitionings, there are myriads of
potential mappings and schedulings. However, finding the
optimal solution is difficult. In the implementation pro-
cess, code is written (or synthesized), compiled and linked
for each processor. This code includes the application tasks
as well as communication and synchronization routines.

We have developed PEPSY, a prototyping environment
for multi-DSP systems, with the primary goal to auto-
mate the design and implementation of parallel DSP ap-
plications [1, 2]. PEPSY automatically maps a DSP ap-
plication onto a multi-processor system, generates a static

schedule for each processor and synthesizes the complete
multi-processor source code that can be directly compiled
and linked. In order to generate an optimal mapping and
scheduling, PEPSY estimates accurately the performance of
the parallel application. The estimated computation and
communication times as well as the memory usage are used
to verify the design goals of the parallel application prior
to its implementation.

In this paper, we focus on PEPSY’s code synthesis and
the experimental evaluation of PEPSY’s performance evalu-
ation. We start with a brief overview of PEPSY. We then
describe PEPSY’s code synthesis in more detail and demon-
strate the performance of our prototyping environment by
the (automated) parallelization of a complex audio appli-
cation. A brief discussion and a summary of related work
conclude this paper.

2. PROTOTYPING MULTI-DSP SYSTEMS

Figure 1 depicts the overall architecture of PEPSY. PEPSY
automates the parallelization of data-flow oriented applica-
tions onto heterogeneous multi-processor systems.! Data-
flow oriented applications are common in the field of signal
processing.

Two models serve as the primary input for the proto-
typing environment. The application model describes the
overall DSP application in form of an extended data flow
graph [3], i.e., the nodes and arcs of this graph are aug-
mented by additional information such as task execution
times, required memory and amount of transferred data.
The hardware model describes the multi-processor system
onto which the DSP application is mapped. Each processor
is characterized by parameters such as its execution speed
and size of local memory. Physical point-to-point connec-
tions are described by the features of the communication
interfaces. Mapping constraints between application and
hardware model may be specified and serve as an optional
input to the optimizer.

The optimizer approximates an optimal mapping and
scheduling for all tasks given the application model, hard-
ware model and mapping constraints. PEPSY’s optimizer is
based on simulated annealing which allows a formal spec-
ification of different optimization objectives. In order to
calculate this approximation, the optimizer determines the

!In the current implementation, we only consider distributed
memory systems with point-to-point connections.

Application Model Hardware Model
@ o]
“’: N\ /| I\
s = (1]
g 1

Optimizer]

!

Optimized Mapping and Scheduling
SN s o I
Nl —

L2 R I i

!

[Code Synthesis]

Executable Code

Parameters

U
Optimization |:>[

Figure 1: Overall architecture of PEPSY, our prototyping
environment for multi-DSP systems.

memory usage as well as the execution and communication
times of all tasks mapped on a single processor. To de-
couple sender and receiver, data transfer between tasks is
realized by dedicated communication buffers. A task writes
its data into a communication buffer of sufficient size; the
task(s) receiving this data read(s) from that buffer. Inter-
processor communication is realized by introducing a ded-
icated sender task on one processor and a receiver task on
the other processor.

The optimized mapping and scheduling generated by
the optimizer consists of a task list for each processor. This
task list includes the application tasks as well as the sender
and receiver tasks introduced for inter-processor communi-
cation. For each task, start and end times are estimated by
the optimizer using our communication model for buffered
data transfer [2]. This communication model is the basis of
PEPSY’s performance estimation.

The final step in our prototyping environment is auto-
matic code generation and synthesis. The goal of this step
is to generate the complete multi-processor source code that
can be directly compiled and linked.

3. AUTOMATIC CODE GENERATION AND
SYNTHESIS

Figure 2 shows the structure of PEPSY’s code synthesis. In
order to generate the complete multi-processor code, we
need the source code for the application tasks, the commu-
nication and synchronization routines, the memory alloca-
tion and an ezecutive. The executive processes all mapped
tasks in the order given by the schedule for each proces-

Application Tasks

@ Code Generator
ONONO : iyt :
() Executive Code |I|<—>|Z|
©,
User Defined Code Automatically Generated Code = Hardware Specific Code
[Compiler and Linker

!

| Executable Code |

Communication Tasks

NN

Hardware Specific Code
Figure 2: Code Synthesis in PEPSY.

sor. It includes the allocation of all required communication
buffers and calls to functions implementing the application
and communication tasks. Code for the application tasks is
specified by the user; code for the communication tasks is
hardware-specific and has to be provided for an individual
multi-processor system. PEPSY automatically generates the
complete source code for the executive.? Finally, executable
code is generated for each processor by using target-specific
(and commercial) tools for compiling and linking.

3.1. Application Tasks

The user provides the code for all application tasks in form
of a source code library. The application code has to follow
our buffered communication model, i.e., the input and out-
put to the task is provided by (pointers to) communication
buffers. In the source code library, each application task
T; is realized as an individual function with a well-defined
interface (function prototype). Each function has a unique
name which is also specified in the application model. Thus,
the interface of the function taski that implements task T;
looks like:
void taski(inbi,...,inbny,outb,...,outb,)

Formal parameters of this function are the references (point-
ers) to all input buffers inb, where k¥ = 1...m, and all
output buffers outb; where [= 1...n. A function imple-
menting a task must not return a value.

3.2. Communication Routines

Inter-processor communication is realized by introducing
dedicated communication tasks that transfer data from a
buffer to a different processor or vice versa. There are only
two instances of communication routines implemented on
each processor: a sender function send and a receiver func-
tion receive. These functions are hardware-specific and

?Tn the current implementation, PEPSY generates ANSI-C
source code.

their code has to be provided for each target system. For-
mal parameters of both functions are the reference to the
output or input buffer, respectively, and the identifier of the
destination processor.

To implement a specific communication task, the sender
or receiver function must be called with corresponding pa-
rameters. Thus, the code for a communication task sending
data from buffer outby to processor i or receiving data from
processor i to buffer inby looks like:

send(outby, 1)
receive(inby,1)

3.3. Memory Allocation

In our buffered communication model, a communication
buffer b is required for each arc in our extended data
flow graph. The size s; of the communication buffer is
determined by the amount of transferred data which is also
specified in the extended data flow graph. For the code
synthesis, buffers with sufficient size have to be provided.
These buffers can be provided either by static or dynamic
allocation. Statically allocated buffers result in a faster ex-
ecution of the executive. Dynamically allocated buffers are
more memory efficient, since buffers can be released after
the last receiving task has read the buffered data. Dynam-
ically allocated buffers are useful in target systems with
tight memory limitations such as embedded systems. Code
for dynamic memory allocation (allocate and release) is
target-specific and has to be provided for each target sys-
tem.

3.4. Executive

The main steps in the automatic generation of the exec-
utive source code are as follows: First, unique names for
the communication buffers are generated. Second, code for
the memory allocation is inserted at the beginning of the
executive file. Third, the call of the executive function is
inserted. Finally, the function calls for the application and
communication tasks are generated in the order given by
the schedule. The formal parameters are replaced by the
actual buffer names and the processor identifiers.

Figure 3 depicts two fragments of a code automatically
generated for the executive. In the left column, the com-
munication buffers are statically allocated. A unique buffer
is allocated for each arc in the data flow graph. The en-
try point (function name) for each task is taken from the
task list generated by the optimizer. In the right column,
the code for the same fragment is generated using dynamic
buffer allocation. The communication buffer is allocated
before the first task writes data to it and is released after
the last task has read all data from it.

4. EXPERIMENTAL EVALUATION

We demonstrate the performance of our prototyping envi-
ronment by the parallelization of a complex audio appli-
cation, i.e., a simulator of the human peripheral auditory
system is automatically distributed onto a multi-DSP sys-
tem. Based on a functional model of the human ear, this
simulator generates the excitation pattern for the auditory

D_TYPE b1[BSIZE1]; D_TYPE bi1;
D_TYPE b2[BSIZE2]; D_TYPE b2;
D_TYPE b3[BSIZE3]; D_TYPE b3;

void executive() void executive()

{ {
receive(bl,pl); allocate(bl,BSIZE1l);
taskl(b1,b2); receive(bl,pl);
send (b2,p2) ; allocate(b2,BSIZE2);
task3(b2,b3); task1(bl,b2);
send (b3,p3) ; release(bl);

} send (b2,p2) ;
allocate(b3,BSIZE3) ;
task3(b2,b3);
release(b2);
send (b3,p3) ;
release (b3) ;

Figure 3: Automatically generated code for the executive
with statically allocated (left column) and dynamically al-
located (right column) communication buffers.

Proc. | AT | CT | Data | t. [ms]
22 68 | 5385 76.4
18 23 | 5304 75.5
24 | 31 | 3364 75.5
29 34 | 5805 75.5

Ol Q|| >

Table 1: Optimization result. The optimizer maps the ap-
plication tasks (AT) and introduces communication tasks
(CT) onto each processor. For each processor, the number
of transferred data and the completion time (t.) are shown
in the last two columns.

nerve given an audio signal as input [4]. The model of the
human ear is compromised of various (non-linear) filters and
transformation functions.

A single-processor implementation of the simulator writ-
ten in C and assembler serves as the starting point for our
evaluation. In order to parallelize the simulator using our
prototyping environment, we have to provide a hardware
model and an application model. The PPDS from Texas
Instruments is used as the target system. This multi-DSP
platform consists of four TMS320C40 processors running at
32 MHz; each of these processors has at least one direct link
to every other processor. To model the simulator as an ex-
tended data flow graph, we partition the simulator into 93
tasks. The execution times of all 93 tasks have been mea-
sured using the simulator running on a single TMS320C40
processor. The simulation of a block of 1024 data samples
requires 251.7 ms on a single processor and serves as refer-
ence for our evaluation.

Table 1 summarizes the result of the optimization step
for the mapping and scheduling of the simulator onto 4 pro-
cessors labeled A to D. The columns labeled AT and CT
show the distribution of the application and communica-
tion tasks among all processors. The optimizer introduces
a total of 156 communication tasks to implement the data
transfer among all 4 processors. The fourth column in Ta-
ble 1 shows the number of data words transferred from and

Optimizer Implementation

Proc. tcomp tcomm tcomp tcomm
A 60.0 8.4 59.9 7.5

B 63.0 7.3 63.4 7.2

C 62.3 4.8 62.5 4.4

D 66.8 8.0 69.9 7.3

Table 2: Comparison of the overall computation and com-
munication time tcomp and tcomm estimated by the opti-
mizer and measured on the multi-DSP system for each pro-
cessor. All times are given in ms.

to each processor and thus represents the total memory re-
quired for inter-processor communication. The last column
shows the completion time on each processor, i.e., the time
when the last task in the processor schedule terminates.
Processor A has the longest completion time because the
last task of the overall data flow graph is mapped onto this
processor. Thus, the optimizer estimates the overall execu-
tion time for the four processor solution as 76.4 ms.

The complete C-code for all executives has been auto-
matically generated by our prototyping environment. The
application tasks have been synthesized from the single-
processor code with only minor modifications. Parame-
terized functions implementing individual tasks have been
wrapped by an additional function to realize the task inter-
face corresponding to our convention. Code for the static al-
location of all necessary communication buffers has been in-
troduced. The communication routines (send and receive)
have been provided for the target system.

The parallel implementation results in an overall ex-
ecution time of 75.9 ms which is almost identical to the
estimated execution time. The overall speedup of the par-
allel implementation is, therefore, given as 3.3. Table 2
compares the computation and communication times esti-
mated by the optimizer with the times measured on the
four processor implementation automatically generated by
the synthesis step of our prototyping environment. The es-
timated times are very close to the measured times on the
implementation. The maximum deviation for the compu-
tation time is 4 % and 10 % for the communication time,
respectively.

5. DISCUSSION

Optimized design and implementation of parallel DSP ap-
plications require an accurate estimation of the computa-
tion and communication times of all processors. As demon-
strated in the complex audio application, PEPSY’s estima-
tion is very close to the measured times. This is due to
the following reasons. First, the optimizer uses measured
task execution times. The tasks in this application have
almost no data dependency and, therefore, almost no vari-
ation of the execution times. Second, the optimizer uses
an accurate communication model to estimate the (inter-
processor) communication times. This model accounts also
for the blocking of a communication task as well as syn-
chronization between sender and receiver [2].

Our prototyping environment dramatically reduces the
development time of multi-processor applications. Typi-
cally, the most time-consuming procedure in the develop-

ment is the generation of the application model. When the
code for the application tasks is already available, the devel-
opment time is basically determined by the execution time
of the optimizer. Thus with PEPSY, a parallelization onto
a different number of processors and/or a different target
system can be realized within minutes.

There are related prototyping systems based on data
flow graphs known in the literature. Fresse et al. [5] have de-
veloped a prototyping environment for a multi-TMS320C40
system targeted for image processing applications. The
GRAPE-II [7] environment uses synchronous and cyclo-static
data flow graphs as application model. Data transfer is also
realized using communication buffers [6].

Nevertheless, PEPSY’s design flow using a formal opti-
mizer with a communication model results in an accurate
performance estimation for the multi-processor implemen-
tation. The design goals of the parallel application can be
verified prior to its implementation, and, therefore, perfor-
mance measurements on an intermediate multi-processor
implementation can be avoided.

There are many sources for improvement and further
work in PEPSY. First, the code generation and synthesis will
be improved to better re-use the communication buffers and
to automatically introduce code for inter-processor commu-
nication using DMA transfer. Second, PEPSY will be ex-
tensively evaluated on various DSP applications. Finally, a
mid-term goal of this research is to extend PEPSY to a code-
sign framework for heterogeneous (multi-DSP and FPGA)
systems.

6. REFERENCES

[1] C.Mathis, M. Schmid, and R. Schneider, “A Flexible Tool for
Mapping and Scheduling Real-Time Applications onto Par-
allel Systems,” in Proc. Third Int. Conf. on Parallel Pro-
cessing € Applied Mathematics, Kazimierz Dolny, Poland,
Sept. 1999, pp. 437-444.

[2] C. Mathis, B. Rinner, M. Schmid, R. Schneider, and
R. Weiss, “A New Approach to Model Communication for
Mapping and Scheduling DSP-Applications,” in Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing , Is-
tanbul, Turkey, June 2000, pp. 3354-3357.

[3] S.S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthe-
sis of embedded software from synchronous dataflow specifi-
cations,” J. of VLSI Signal Processing Systems, vol. 21, no.
2, 1999.

[4] C. Mathis, R. Weiss, and R. Buechel, “Design and Exper-
imental Evaluation of a Multi-DSP based Simulation of the
Human Peripheral Auditory System,” in Proc. Int. Conf. on
Signal Processing Applications € Technologies (ICSPAT).
Sept. 1998, pp. 1098-1102.

[5] V. Fresse, M. Assouil, and O. Deforges, “Rapid Prototyping
of Image Processing Applications onto a Multiprocessor Ar-
chitecture,” in Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, Mai 2000.

[6] L. De Coster, R. Lauwereins, and J.A. Peperstraete, “Data
Routing in Dataflow Graphs,” in Proc. of the 8th Int. Work-
shop on Rapid System Prototyping , 1997, pp. 100-106.

[7] R. Lauwereins, M. Engels, M. Ade, and J.A. Peperstraete,
“Grape-II: a System-Level Prototyping Environment for DSP
Applications,” Computer, vol. 28, no. 2, pp. 35—43, Feb. 1995.

Papers of the authors are available from the institute’s home
page at http://www.iti.tu-graz.ac.at.

