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ABSTRACT

We considertheproblemof samplingsignalswhicharenot
bandlimited,butstill haveafinitenumberof degreesof free-
domperunit of time,suchas,for example,piecewisepoly-
nomials. We demonstratethat by usingan adequatesam-
pling kernelandasamplingrategreateror equalto thenum-
berof degreesof freedomperunit of time,onecanuniquely
reconstructsuchsignals. This provesa samplingtheorem
for a wideclassof signalsbeyondbandlimitedsignals.Ap-
plicationsof this samplingtheoremcanbe found in signal
processing,communicationsystemsandbiologicalsystems.

1. INTRODUCTION

Thesamplingtheoremis pervasive in signalprocessing[3]
andallows to representtheclassof bandlimitedsignalsby
appropriatesamplesof the signal (e.g. taken at twice the
maximum frequency). When signalslive on a subspace
spannedby abasisfunctionandits shifts

���	��

���������������
,

they canbereconstructedfrom samplesderivedfrom inner
productsaswell. But in general,signalswhich do not live
on a specificsubspacecanonly be reconstructedup to the
projectionontothatsubspace(e.g. thebandlimitedapprox-
imation).
In this paper, we considerclassesof signalswhich arenot
bandlimitednor live on subspaces,yet canbe represented
throughsampling.Thekey propertyof thesesignalsis that
they have a finite numberof degreesof freedomperunit of
time,whatwecall a finite rateof innovation[4].
Examplesof suchsignalsare bilevel signalswith a finite
numberof transitionsper unit of time. Sincethe signal is
discontinuous,it is clearlynot bandlimited,yet, becauseof
the finite rateof transition,it is possibleto derive a sam-
pling schemefrom which thesignalcanbeperfectlyrecon-
structed.
Insteadof samplingthesignal � ��
��

directly, we samplethe
outputof � ��
��

convolvedwith a kernel ���� 
��"!#�	�$�%
��
, so

thatthesamplestakenat integermultiplesof
�

are

�
& �(')!+* � � 
���,-��� 
.�/���0�2143
(1)

This modelcorrespondsto theusualphysicalsetup where
thesignalis "seen"througha channel,or passedthrougha
lowpassfilter beforesampling.
Thekey questionwe pursuein this paperis thus: for what
signalswith finite rateof innovationandwhatsamplingker-
nelscanweperfectlyrecover � ��
��

from regularsampling?
After a definition of signalswith finite rateof innovation,
we demonstratea samplingtheoremfor streamsof Diracs
andperiodicpiecewise polynomialsignals. We alsoshow
local reconstructionalgorithmsbasedon splinesfor some
simplesignals.

2. DEFINITIONS

Let us startby defining the classesof real signalswe are
consideringin thesequel.

Definition 1 Asignalwithfiniterateof innovationis a func-
tion of timewhich allowsa parametricrepresentationhav-
ing a finite numberof degreesof freedomover finite win-
dowsof time.

Definition 2 Therate of innovation 5 is the average num-
berofdegreesof freedomperunit of time, or, with 6�7 � 
98:,;
;<=�
givingthenumberof degreesof freedomof � ��
��

over thein-
terval & 
98:,�
;<�'

,

5 !?>A@CBDFEHG
I� 6�7 �$� �

J , �
J �K3

(2)

If we considerfinite length or periodic signalsof length�
, then the numberof degreesof freedomis finite, and

therateof innovationis
I�L � 6 7 & M ,��%'

. Bandlimitedsignals
with support& �%N L �O,�N L �%'

havearateof innovationof
I�L �

,
sincethey areuniquelyspecifiedby samplestakenevery

�
seconds.If we considerdiscrete-timesequencesthengen-
eralsequenceshave a (normalized) rateof innovationof

I
(onedegreeof freedompersample).

Example1 Poissonprocess.
A PoissonprocessgeneratesDiracswith independentand
identicallydistributed(i.i.d.) interarrival times,thedistri-
bution beingexponentialwith probability densityfunction



PRQ:S(T�U . The expectedinterarrival time is given by
I�L P .

Thus,therateof innovationis P .

While onecandefinemany parametricsignalswhich have
a finite rateof innovation,in thesequelwewill concentrate
on streamsof Diracsandpiecewisepolynomialswhich are
classesfor whichweareableto givesamplingtheoremsand
reconstructionformulae.

3. DISCRETE-TIME SIGNALS WITH FINITE RATE
OF INNOVATION

We will startwith the simplestcase,namelydiscrete-time
periodic signals. Among them, streamof Diracs are the
mostelementaryandthuswe startwith them. More gen-
erally, piecewise polynomialscanbe reducedto streamof
Diracsthroughappropriatederivation,which is donenext.

3.1. Streamof Diracs

Consideradiscrete-timeperiodicsignal

V !W� �
& M 'X, �Y& I 'Z,=3[3=3), �Y& \ � I ']� D
(3)

containinĝ weightedDiracsat locations
���`_a��b S <_�c�8

, or

�Y& �('d! b S <e_�c�8Of _
g & �h�/�`_['Z,
(4)

where
g & �('

is theKronecker
g & �('(! I

if
�i! M , M else.

Call j thediscrete-timeFourierseries(DTFS)coefficients
of V where

k & l 'm! b S <e_�c�8Of _on �:pKqr , l ! M ,[3=3[3�, \ � I
(5)

and
n r ! QaSFsAt;u:v r . j is thus a linear combinationof

complex exponentials,eachof whichcanbecancelledwith
an appropriatezeroat location

n �:pr . Given j , it suffices
to find the annihilatingfilter1 w !x� I ,-y & I 'Z,=3=3[3�,;y & ^ '��
satisfying[2]

w{z:| j ! M 3
(6)

Thisfilter w has} �
transform

y~� } �
which factorsas

y�� } ��! b S <�_�c)8 � I � } S < n �:pr �
(7)

having zerosat
n � pr ,-��! M ,=3=3[3�, ^ � I

. Henceto find the
setof locations

���`_a� b S <_�c�8
it sufficesto find the filter coef-

ficients
��y & ��'�� b _�cY<

andthenfind thezerosof
y~� } �

. Equa-
tion (6) leadsto a Toeplitz systemof equationsinvolving

1This is alsoknown astheerror locatorpolynomialin errorcorrection
coding.

J ^ successive componentsof j andthis systemis always
solvable. Typically, oneusesthe

J ^ centraltermsof j ,
which correspondto an ideal lowpassversionof V . In that
case, �Y& �('

can be convolved with an ideal sinc filter that
keepsfrequenciesbetween

� ^ and ^ . The resultof the
convolutioncanbesubsampledby aninteger � , aslongas� is adivisorof \ and � is smallenoughsuchasto avoid
aliasing.
Finally, to find the ^ values

� f _a��b S <_�c�8
weneedto solve the

Vandermondesystemin (5) with l ! M ,=3=3[3�, ^ � I
, which

is alsoalwayssolvable.Puttingall together, wehave

Proposition1 Considera discrete-timeperiodicsignal �Y& �('
of period \ containing ^ weightedDiracs. Let � be an
integer divisor of \ satisfying\ L � � J ^�� I

and take
the discrete-timeperiodizedsinc samplingkernel

� & �('"!<r b�q�c S b n S q	�r , that is, theinverseDTFSof � Q f 
�� S b	� b�� .
Thenthe \ L � samples

�a� & � '
!�* �Y& �('X,-� & �h� ��� ')1 � ! M ,=3[3=3�, \ L � � I
(8)

are a sufficientrepresentationof thesignal.

Expanding(8), we get ��� & � '�! <r b�q	c S b k & � l '�n q��r v9�
from which are obtained\ L � values

k & l '
sufficient to

find thelocationsof theDiracs.See[5] for adetailedproof.
When \ L � ! J ^�� I

thenthenumberof samplesin (8)
is just

I
morethanthenumberof degreesof freedom2, that

is, weareverycloseto "critical sampling".

3.2. PiecewisePolynomial Signals

Define a discrete-timepiecewise polynomialsignal by ^
intervals & �`_�,;�`_��Y<-'

and pieceswhich are polynomialsof
maximumdegree � on & �`_�,��`_��
<H� I '

. Note that this is
more generalthan integrating a streamof ^ Diracs (4),
sincefor examplediscontinuitiesat interval boundariesare
permitted. To extend the above result to piecewise poly-
nomialsof maximumdegree � , we needto take

� �W� I �
first orderdiscrete-timedifferences,andthenapplyPropo-
sition 1. Call ��& �('�!�g & �('2��g & ��� I '

the discrete-time
periodicfirst orderdifference,with  �& l 'R! I �¡n qr its
DTFS coefficients. Call

� & �('
the discrete-timeperiodized

sinc kernelof appropriatebandwidth.Thenthe
� �¢� I �

th
derivative sinc samplingkernel £�& �('

is given by £�& �('¤!
�F& �(' z ��& �(' z�¥[¥=¥�z �F& �('¦ §�¨ ©ª �Y< z � & �('X3

Theconvolutionof thesignal

�Y& �('
with £0& �('

is equivalent (by associativity of the con-
volution operator)to convolving the

� �«� I �
th (discrete-

time)derivativeof �Y& �('
with thesinckernel

� & �('
. Now, this

2In the discrete-timescenario,position is not a "real" degreeof free-
dom,sinceit is aninteger. Thus,combinatorialmethodscanactuallywork
with fewer "samples"in certaincases[1].
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Figure1: (a)Piecewiselinear( � ! I
) signalof period \ !I M J�¬

with ^ !�­
pieces;(b) Differentiatedsincsampling

kernel,£�& �('(! �F& �(' z �F& �(' z � & �('
; (c) Samplevalues� � & � 'F!+*

�Y& �('X, £�& �	� �X� ')1
with � !¯® J

; (d)Streamof ^ � �°� I �±!I�J
weightedDiracs, �`² t;³ & �('(! ��& �(' z �F& �(' z �Y& �('

.

� �´� I �
th derivative, �)² ª �Y< ³ & �('

is a collectionof at most^ � �¤� I �
weightedDiracspikesfrom which �Y& �('

canbere-
covered(upto polynomialsof degreesmallerthan

� �i� I �
).

Sinceweknow how to reconstruct� ² ª �Y< ³ & �('
from theinner

productswith thesinckernel,wehave

Theorem1 Considera zero meandiscrete-timeperiodic
piecewisepolynomialsignalof period \ with ^ piecesof
degree � . Let � bean integer anda divisorof \ such that\ L �µ� J ^ � �¶� I � � I

. Takea samplingkernel £0& �('
with

DTFS ·°& l '°!��  �& l '�� ª �Y< � Q f 
�� S b ² ª �Y< ³ � b ² ª �Y< ³ � . Then
wecanrecover thesignalfromthe \ L ��¸h¹ samples

�a� & � '
!~* �
& �('Z, £0& �h� ��� ')1 � ! M ,[3=3=3�, \ L � � I 3
(9)

For aproofsee[5]. Figure1 illustratesthereconstructionof
a discrete-timeperiodicpiecewiselinear

� � ! I �
signalof

period \ ! I M J�¬
with ^ !�­

pieces.We take \ L � !�® J
samples.The reconstructedsignal is equalto the original
(Fig. 1(a))within machineprecision,

I M S <;<
.

4. CONTINUOUS-TIME SIGNALS WITH FINITE
RATE OF INNOVATION

Wederivenow theequivalentresultsbut in continuoustime,
againbuilding up from streamof Diracsto piecewisepoly-
nomialsignals.

4.1. Streamof Diracs

Considera periodicsignal � ��
��
of period º containing ^

Diracsat locations
�[
�_a��b S <_Kc�8

with

�_ ¸�& M , º �

, or

� � 
��»! e����¼
b S <e_�c)8Of _
g½��
o�/� º ��
�_���3

(10)

Considerthecontinuous-timeFourierseries(CTFS)coeffi-
cientsof � � 
��
k & l '�! I

º
¾¿

8 � � 
�� Q SFsAt;u q U v ¾ � 
±! I
º

b S <e_Kc�8Of _ Q SFsAt;u q U p v ¾ 3
(11)

Assumeweconvolve � ��
��
with aperiodicsincfilter of band-

width & � ^ , ^ '
. This leadsto a lowpassapproximation� ��
��

givenby

� � 
���! beq	c S b
k & l ' Q sAt;u q U v ¾ 3

(12)

Considernow sampling� � 
��
atmultiplesof

�
, whereº L � ¸¹ ,

�a� & � '(! � � � ���µ! beq�c S b
k & l ' Q sCt-u q�� D v ¾ 3

(13)

Clearly, as long as º L � � J ^À� I
, (13) can be usedto

recover
k & l '

. To find the

�_

’s in (11), we needto find
theannihilatingfilter w !´� I ,-y & I 'Z,;y & J 'Z,=3[3=3(,;y & ^ '��

such
that

wÁz | j ! M 3
(14)

Considerthe } �
transformof w , or

y�� } ��! b��Cc�8 y & � ' } S �
which factorizesinto

y�� } ��! b S <�_�c�8 � I � } S <KÂ _��
(15)

andwefind Â _ ! Q S(sCt-u�U p v ¾ ,
(16)

that is, the ^ locations
�[
 _ ��b S <_�c�8

. The systemto solve in
(14) is thesameToeplitzsystemthat we consideredin the
previous section. Similarly, a Vandermondesystemthen
givesthevalues

� f _a��b S <_�c)8
. Thereforewecanstate:

Proposition2 Considera continuous-timeperiodicstream
of K weightedDiracswith period º anda periodicsincsam-
pling kernelof bandwidth& � ^ , ^ '

. Thestreamof Diracsis
uniquelydefinedby taking º L � ¸Ã¹ samples� � & � ' defined
in (13),with º L � � J ^Ä� I

.

Theproof is foundin [5].

4.2. PiecewisePolynomial Signals

Without gettinginto detailsat this point, we simply mimic
theapproachshown in thediscrete-timecase.TheCTFSof
thesamplingkernelneedsto havea factorization

·°& l 'm! �  �& l '�� ª �Y<YÅ & l '
(17)



where  �& l '¤!ÇÆ J N l is the CTFS of the derivative andÅ & l '
is the appropriate� Q f 
 function. Thus, ·°& l '

is the
CTFSof a bandlimited

� �¯� I �
th derivative. Thesimplest

form of theresultappearsfor piecewisepolynomialsof de-
gree � which have

� � � I �
continuousderivatives (e.g.

piecewise linear and continuous). The first factor in (17)
leadsto the

� �¯� I �
th derivative of � � 
��

, which canbere-
coveredfrom samplingasshown in theprevioussubsection,
andthus[5]

Theorem2 Considera continuous-timeperiodicpiecewise
polynomialsignal, � � 
��

, withperiod º and ^ piecesofmax-
imumdegree � , belongingto È ª S <

andhavingzero mean.
Considera samplingkernelas in (17) with a Rectof width& � ^ , ^ '

. If º L � � J ^É� I
then � � 
��

canbeuniquelyre-
coveredfromthe º L � ¸h¹ samples

� � & � '(!+* � ��
��K, £ ��
.� � ���21 � ! M ,=3[3=3�, º L �Ê� I 3
(18)

4.3. Finite length signals

It is possibleto considerusinginfinitely supportedsampling
kernels(like the sinc or the Gaussiankernel)to samplefi-
nite lengthsignalswhich arepiecewisepolynomial. Then,
a finite numberof samplesallows to reconstructthesignal.
The techniques,while similar in spirit, aremorecomplex,
andwereferto [5] for details.

5. LOCAL RECONSTRUCTION ALGORITHMS

The methodsseenso far requireglobal informationto re-
constructthesignal,or thesignalhasto beof finite length.
A questionof interestis to seeunderwhich conditionsa
local reconstructionschemeis possible. To explore this,
weconsiderthesimplestpiecewisepolynomial,namelythe
bilevel signal.WethenuseË �

splinesof varyingdegreesas
localsamplingkernels.

5.1. Bilevel Signals

Definea bilevel signalasa continuous-timesignal � ��
��Ì!
M or

I ,�
 ¸�Í �
, with � � M �2! I

. Considerfirst theboxspline� 8 � 
��+! I
if M¶Î 
"* I , M otherwise. Suppose� ���`�Ï! I

andthereis a transition

�_

in & �.,�� � I '
. Thenthe sample

value �a� & �('
!+* � ��
��K,;�
8½��
.�Ð�`��1�!�
�_Ñ�Ð�
which implies

that the transition

�_¯! �a� & �(' � �

. This leadsus to the
following proposition.

Proposition3 A bilevel signal � � 
��
is uniquelydetermined

from the samples�a� & �('O!+* � ��
���,-�
8�� 
����`�
if and only if

there is at mostonetransition

�_

in each interval & �.,�� � I '
.

Sufficiency wasshown above andnecessitycanbe shown
by counterexample,see[5].

An obviousquestionis: Whathappenswhengoingto sam-
pling kernelswith largersupport?Considerthelinearspline
or thehatfunction

� < ��
��±! I �ÊÒ 
=Ò
if

Ò 
=Ò�* I , M otherwise.

Proposition4 A bilevel signal � ��
��
is uniquelydetermined

fromthesamples�
& �('
obtainedusingthehat samplingker-

nel
�±<�� 
��

with
�´! I

in (1) if andonly if there are at most
two transitions


 s	Ó!¡
XÔ
in each interval & �.,�� � J '

.

Whengoingto higherordersplines,necessitycarriesover.
Sufficiency, ontheotherhandrequiresto solvehigherorder
polynomialequations,which becomesdifficult. Thedetails
of theproofsarefoundin [5].

5.2. PiecewisePolynomial Signals

Herewejustmentionthatwhensamplingpiecewisepolyno-
mial signalsusingthebox samplingkernelnot only arethe
transitionvaluesunknown but the polynomialcoefficients
as well and so we needto increasethe samplingrate by��� J

where � is thedegreeof thepolynomial. An itera-
tive algorithmfor piecewise constantandpiecewise linear
signalsis givenin [5].

6. CONCLUSION

In this paper, we have shown that piecewise polynomials
with a rateof innovation of 5 can essentiallybe sampled
with anappropriatesamplingkernel(e.g. sinckernel)with
a samplingperiod

� Î I�L 5 andcanbeperfectlyrecovered
from thesesamples.This extendstheideaof uniform sam-
pling to awiderclassthantheclassical,bandlimitedsignals.
For example,piecewise bandlimitedsignalsare treatedin
[6].
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