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ABSTRACT

We considetthe problemof samplingsignalswhich arenot
bandlimited but still have afinite numberof degreeof free-
domperunit of time, suchas,for example,piecavisepoly-
nomials. We demonstratéhat by using an adequatesam-
pling kernelanda samplingrategreateror equalto thenum-
berof degreesf freedomperunit of time, onecanuniquely
reconstrucsuchsignals. This provesa samplingtheorem
for awide classof signalsbeyondbandlimitedsignals.Ap-
plicationsof this samplingtheoremcanbe foundin signal
processingcommunicatiorsystemsandbiologicalsystems.

1. INTRODUCTION

The samplingtheoremis penasie in signalprocessing3]
andallows to representhe classof bandlimitedsignalsby
appropriatesamplesof the signal (e.g. taken at twice the
maximum frequeng). When signalslive on a subspace
spannedy abasisfunctionandits shifts {x(t — nT)}nez,
they canbereconstructedrom samplesierivedfrom inner
productsaswell. Butin general signalswhich do notlive
on a specificsubspaceanonly be reconstructedip to the
projectionontothatsubspacée.g.the bandlimitedapprox-
imation).

In this paper we considerclasse®f signalswhich arenot
bandlimitednor live on subspacesyet canbe represented
throughsampling.Thekey propertyof thesesignalsis that
they have afinite numberof degreesof freedomper unit of
time, whatwe call afinite rate of innovation[4].
Examplesof suchsignalsare bilevel signalswith a finite
numberof transitionsper unit of time. Sincethe signalis
discontinuousit is clearly not bandlimited,yet, becausef
the finite rate of transition, it is possibleto derive a sam-
pling schemdrom which the signalcanbe perfectlyrecon-
structed.

Insteadof samplingthe signalz(t) directly, we samplethe
outputof z(t) corvolvedwith a kernelp(t) = p(—t), so
thatthe samplegakenatintegermultiplesof T" are

z[n] =< z(t), o(t —nT) > . (1)

This modelcorrespondso the usualphysicalsetup where
thesignalis "seen"througha channelor passedhrougha
lowpasdilter beforesampling.

The key questionwe pursuein this paperis thus: for what
signalswith finite rateof innovationandwhatsamplingker-

nelscanwe perfectlyrecover z(t) from regularsampling?

After a definition of signalswith finite rate of innovation,
we demonstrate samplingtheoremfor streamsof Diracs
and periodic piecavise polynomialsignals. We alsoshav

local reconstructioralgorithmsbasedon splinesfor some
simplesignals.

2. DEFINITIONS

Let us startby definingthe classef real signalswe are
consideringn thesequel.

Definition 1 Asignalwithfiniterateofinnovationis afunc-
tion of timewhich allows a parametricrepresentatiorhav-
ing a finite numberof degreesof freedomover finite win-
dowsoftime

Definition 2 Therate of innovation p is the avelage num-
berof degreesoffreedonperunit oftime or, with C;, (o, t1)
givingthenumberof degreesof freedonof x(t) overthein-
terval [to, t1],
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If we considerfinite length or periodic signalsof length
T, thenthe numberof degreesof freedomis finite, and
therateof innovationis 1/T C, [0, T']. Bandlimitedsignals
with suppor{—= /T, = /T| have arateof innovationof 1/T,

sincethey areuniquelyspecifiedby sampledakenevery T

seconds.If we considerdiscrete-timesequencethengen-
eralsequencebave a (normalized) rateof innovationof 1

(onedggreeof freedompersample).

Example1 Poissonprocess.

A PoissonprocessgenertesDiracswith independenand
identically distributed (i.i.d.) interarrival times,the distri-
bution being exponentialwith probability densityfunction



we #t. The expectedinterarrival time is givenby 1/p.
Thus therateof innovationis p.

While one candefinemary parametricsignalswhich have
afinite rateof innovation,in thesequelwe will concentrate
on streamf Diracsandpiecavise polynomialswhich are
classegor whichwe areableto give samplingtheoremsand
reconstructioriormulae.

3. DISCRETE-TIME SIGNALS WITH FINITE RATE
OF INNOVATION

We will startwith the simplestcase,namelydiscrete-time
periodic signals. Among them, streamof Diracs are the

mostelementaryand thus we startwith them. More gen-
erally, piecavise polynomialscanbe reducedto streamof

Diracsthroughappropriatederivation,whichis donenext.

3.1. Streamof Diracs
Consideradiscrete-timgoeriodicsignal
X = (113[0],.(13‘[1], 7'7;[N_1])T (3)

containingK weightedDiracsatlocations{n };—', or

K—-1
aln] = ) e dn —ml, 4)
k=0

whered[n] is theKroneclerd[n] = 1if n = 0,0 else.
Call X thediscrete-timdrourierserieg DTFS) coeficients
of x where
K—
Xim] = > aWg™, m=0,...,N-1 (5
k=0

=

andWy = e~27/N_ X is thusa linear combinationof
complex exponentialseachof which canbe cancelledwith
anappropriatezeroat locationWy*. GivenX, it sufiices
to find the annihilatingfilter H = (1, H[1],... , H[K)])
satisfying[2]

Hx.X = 0. (6)
Thisfilter H hasz—transformH (z) whichfactorsas

K-1

[T a-z"wge) (7)

k=0

H(z) =

having zerosatWy*,k = 0,... , K — 1. Henceto find the
setof locations{n };_," it sufiicesto find the filter coef-
ficients{ H[k]}X_, andthenfind the zerosof H(z). Equa-
tion (6) leadsto a Toeplitz systemof equationsnvolving

1Thisis alsoknown asthe errorlocatorpolynomialin errorcorrection
coding.

2K successie component®f X andthis systemis always
sohable. Typically, one usesthe 2K centraltermsof X,
which correspondo anideallowpassversionof x. In that
case,z[n] canbe corvolved with an ideal sinc filter that
keepsfrequenciedetween— K and K. The resultof the
convolutioncanbesubsampledby aninteger M, aslong as
M isadivisorof N andM is smallenoughsuchasto avoid
aliasing.

Finally, to find the K values{c; }=_,' we needto solvethe
Vandermondsystenin (5) withm = 0,... , K — 1, which
is alsoalwayssolvable.Puttingall togetherwe have

Proposition1 Consideradiscrete-timeperiodicsignalz[n]
of period N containing K’ weightedDiracs. Let M bean
integer divisor of N satisfyingN/M > 2K + 1 andtake
the discrete-timeperiodizedsinc samplingkernel p[n] =

K
& > Wxy™", thatis, theinverseDTFSof Rect|_k k-

m=—K

Thenthe N/M samples

ys[l] = < z[n],pln —IM]> 1=0,..., NJM—-1(8)

are a suficientrepresentatiorof the signal.

K
Expanding(8), we gety,[l] = § > X[-m]Wghy,
m=—K

from which are obtainedN/M values X [m] sufiicient to
find thelocationsof the Diracs. See€[5] for adetailedproof.
WhenN/M = 2K + 1 thenthe numberof samplesn (8)
is just 1 morethanthe numberof degreesof freedon?, that
is, we arevery closeto "critical sampling”.

3.2. PiecewisdPolynomial Signals

Define a discrete-timepiecavise polynomial signal by K
intervals [ng,nk+1] and pieceswhich are polynomialsof
maximumdegree R on [ng, nkr1 — 1]. Note thatthis is
more generalthan integrating a streamof K Diracs (4),
sincefor examplediscontinuitiesatinterval boundariesre
permitted. To extend the above resultto piecavise poly-
nomialsof maximumdegree R, we needto take (R + 1)
first orderdiscrete-timalifferencesandthenapply Propo-
sition 1. Call d[n] = d[n] — §[n — 1] the discrete-time
periodicfirst orderdifferencewith D[m] = 1 — W its
DTFS coeficients. Call ¢[n] the discrete-timeperiodized
sinc kernelof appropriatebandwidth. Thenthe (R + 1)th
derivative sinc samplingkernel[n] is given by ¢[n] =
d[n] = d[n] * - - - x d[n] xp[n]. The corvolutionof thesignal

Rt
z[n] with v[n] is equialent (by associatiity of the con-
volution operator)to convolving the (R + 1)th (discrete-
time) derivative of 2[n] with thesinckernelp[n]. Now, this

2In the discrete-timescenariopositionis not a "real" degreeof free-
dom,sinceit is aninteger Thus,combinatoriamethodsanactuallywork
with fewer "samples'in certaincaseg1].
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Figurel: (a) Piecaviselinear(R = 1) signalof periodN =
1024 with K = 6 pieces;(b) Differentiatedsinc sampling
kernel,yp[n] = d[n]*d[n]*p[n]; (c) Samplevaluesy;[l] =<
z[n], Y[n—IM] > with M = 32; (d) Streanof K(R+1) =
12 weightedDiracs,z? [n] = d[n] * d[n] * z[n].

(R + 1)th derivative, z(E+1[n] is a collection of at most
K (R+1) weightedDiracspikesfrom whichz[n] canbere-
covered(upto polynomialsof degreesmallerthan(R + 1)).
Sincewe know how to reconstruct#+1)[n] from theinner
productswith thesinckernel,we have

Theorem1 Considera zeo meandiscrete-timeperiodic
piecavise polynomialsignal of period N with K piecesof
degreeR. Let M beaninteger anda divisor of N sud that
N/M > 2K(R+ 1) + 1. Take a samplingkerneliy[n] with
DTFS¥[m] = (D[m])R+1Rect[_K(RJ’_l)’K(RJ’_l)]. Then
wecanrecoverthesignalfromthe N/M € N samples

ys[l] =< z[n],¥[n —IM]> 1=0,..., N/M—-1.(9)
Foraproofseg[5]. Figurelillustrateshereconstructiomf
adiscrete-timeperiodicpieceviselinear (R = 1) signalof
period N = 1024 with K = 6 pieces.Wetake N/M = 32

samples.The reconstructedignalis equalto the original
(Fig. 1(a))within machineprecision,10~ 1,

4. CONTINUOUS-TIME SIGNALS WITH FINITE
RATE OF INNOVATION

We derive now theequialentresultsbutin continuougime,
againbuilding up from streamof Diracsto piecavise poly-
nomialsignals.

4.1. Streamof Diracs

Considera periodic signal z(t) of period containing K
Diracsatlocations{t; }r— with ¢;, € [0,7), or

K-1
z(t) = Zch5(t—nT—tk). (10)

neN k=0

Considerthe continuous-timd-ourier series(CTFS)coefi-
cientsof z(t)

1 f —i2rmt/T 1 = —i2mrmty /T
X[m]:; z(t)e dt = - Z cre (11)
0 k=0

Assumewe convolvez(t) with aperiodicsincfilter of band-
width [- K, K]. Thisleadsto alowpassapproximationy(t)
givenby

K
yt) = ) X[m]e® ™. (12)
m=—K

Considemnow samplingy(t) atmultiplesof T', wherer /T €
Na

K
Z X[m]ei%rmlT/T' (13)
m=—K

yslll = 9y(T) =

Clearly aslongast/T > 2K + 1, (13) canbe usedto
recover X[m]. To find the ¢;’s in (11), we needto find
theannihilatingfilter H = (1, H[1], H[2], ... , H[K]) such
that

Hx.X = 0. (14)
K
Considerthe z—transformof H, or H(z) = 3. H[l] 2~
=0
which factorizesnto
K-1
Hz) = [[a-2"2) (15)
k=0
andwe find
Zr = 671'27rt;c/‘r7 (16)

thatis, the K locations{t; }5—,'. The systemto solve in
(14) is the sameToeplitz systemthat we consideredn the
previous section. Similarly, a Vandermondesystemthen
givesthevalues{c; } 1 '. Thereforewe canstate:

Proposition2 Considera continuous-tim@eriodicstream
of K weightedDiracswith periodr anda periodicsincsam-
pling kernelof bandwidth— K, K]. Thestreamof Diracsis

uniquelydefinedby taking /T € N samplesgy;[!] defined
in (13),with7/T > 2K + 1.

Theproofis foundin [5].

4.2. PiecewisePolynomial Signals

Without gettinginto detailsat this point, we simply mimic
theapproactshovnin thediscrete-timecase. The CTFSof
thesamplingkernelneedgo have afactorization

¥[m] = (Dm])™" @[m] a7



where D[m] = i2wm is the CTFS of the derivative and
®[m] is the appropriateRect function. Thus, ¥[m)] is the
CTFSof abandlimited(R + 1)th derivative. The simplest
form of theresultappeardor piecavise polynomialsof de-
gree R which have (R — 1) continuousderwatives (e.g.
piecavise linear and continuous). The first factorin (17)
leadsto the (R + 1)th derivative of z(¢), which canbere-
coveredfrom samplingasshovn in the previoussubsection,
andthus[5]

Theorem2 Considera continuous-tim@eriodicpiecevise
polynomialsignal,z(t), with periodr and K’ piecesof max-
imumdegree R, belongingto C#~! andhavingzeio mean.
Considera samplingkernelasin (17) with a Rectof width
[-K,K]. If 7/T > 2K + 1 thenz(¢t) canbe uniquelyre-
coveredfromther /T € N samples

ys(l] =< 2(t),¢(t —IT) >

1=0,...,7/T —1. (18)

4.3. Finite length signals

It is possiblao considewusinginfinitely supportecsampling
kernels(lik e the sinc or the Gaussiarkernel)to samplefi-
nite lengthsignalswhich are piecavise polynomial. Then,
a finite numberof samplesallows to reconstructhe signal.
The techniqueswhile similar in spirit, are more comple,
andwe referto [5] for details.

5. LOCAL RECONSTRUCTION ALGORITHMS

The methodsseenso far requireglobal informationto re-
constructthe signal,or the signalhasto be of finite length.
A questionof interestis to seeunderwhich conditionsa
local reconstructiorschemeis possible. To explore this,
we consideithe simplestpiecavise polynomial,namelythe
bilevel signal.We thenuse—splinesof varyingdegreesas
local samplingkernels.

5.1. Bilevel Signals

Definea bilevel signalasa continuous-timesignalz(t) =

0or1,t € RT, with £(0) = 1. Consideffirst thebox spline
wo(t) = 1if 0 < t < 1,0 otherwise Supposer(n) = 1

andthereis a transitiont,, in [n,n + 1]. Thenthe sample
valuey;[n] =< z(t), po(t —n) >= t —n whichimplies
that the transitiont;, = ys[n] + n. This leadsus to the
following proposition.

Proposition3 A bilevel signalz(t) is uniquelydetermined
from the samplesy,[n] =< z(t), po(t — n) if and only if
thereis at mostonetransitiont,, in eadhinterval [n, n + 1].

Sufficiengy was shavn above and necessitycanbe shovn
by countergample seg[5].

An obviousquestionis: Whathappensvhengoingto sam-
pling kernelswith largersupport?Considetthelinearspline
or thehatfunctiony (¢) = 1 — |¢] if |¢| < 1,0 otherwise

Proposition4 A bilevel signalz(t) is uniquelydetermined
fromthe samplesz[n] obtainedusingthe hat samplingker-
nely; (t) withT = 1 in (1) if andonly if there are at most
twotransitionst; # ¢; in eadhinterval [n, n + 2].

Whengoingto higherordersplines,necessitycarriesover.
Sufficiengy, ontheotherhandrequirego solve higherorder
polynomialequationsyhich becomedifficult. Thedetails
of the proofsarefoundin [5].

5.2. PiecewisePolynomial Signals

Herewejustmentionthatwhensamplingpiecevisepolyno-
mial signalsusingthe box samplingkernelnot only arethe
transitionvaluesunknown but the polynomial coeficients
aswell and so we needto increasethe samplingrate by
R + 2 whereR is the degreeof the polynomial. An itera-
tive algorithmfor piecavise constantand piecevise linear
signalsis givenin [5].

6. CONCLUSION

In this paper we have shavn that piecavise polynomials
with a rate of innovation of p canessentiallybe sampled
with anappropriatessamplingkernel(e.qg. sinckernel)with

asamplingperiodT < 1/p andcanbe perfectlyrecovered
from thesesamplesThis extendstheideaof uniform sam-
pling to awider classthantheclassicalpandlimitedsignals.
For example, piecevise bandlimitedsignalsare treatedin

[6].
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