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ABSTRACT

An approachis presentedboth theoreticallyand experi-
mentallywhich overcomesnumberof existingconceptual
andperformancegroblemsn densityestimation.Thethe-
oreticalapproactshavs methoddor incorporatingor esti-
matinguncertaintiesnto speectrecognition. In the MMI
andML case preciseformulaearegivenfor estimationof
densitiesfor uncertaintyvariancessmall comparedo the
curvatureof the posteriors.
Forimplementationthetheoreticaformulaearepresented
in sucha way that the additionalcomputationeffort goes
linearly with the numberof densities.

Experimentson car digits shav relative improvementsin
word errorrateof at most4.8%relative. Uncertaintymod-
elling is shavn to help remedyeffects of the sparsedata
problemin densityestimation.

1. INTRODUCTION

Density estimationin the methodologynormally usedin
speechrecognitionhassomeknown dravbacks:[5]

¢ Densityestimatiordoesnotfollow asuitable consistent
statisticalapproach.

e TheunderlyingMaximum Likelihood(ML) theoryhas
dangersf false(too narraw) variancesvhich atthemo-
mentareonly coveredby variancepoolingandotherad-
hocmethods.

¢ ML theoryisill-posedin the presencef ary finite data.

e Otherrisk functionslike MaximumMutual Information
(MMI) or StructuralRisk minimizationoutperformML.

Uncertaintymodellingas proposechereattacksseveral of
theseproblemswithout paradignshiftsin theory andwith-
outheary redesigreffort. It is acompromiséetweemon-
parametricahndparametricastatisticq1].

e The problem of finite datais approachedyy explicit
modelling of uncertaintyof the obsened data. This
modelling canbe doneanalyticallyand only resultsin
modificationsf theestimatiorformulae notin datadif-
fusionor otherdata-relatedexpensve methods.
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e This modelling cantake into account,if available,the
known uncertaintyin given data. This knowledgecan
be available externally (databaseuality, etc.) or inter-
nally (confidencaneasures).

e Having modelleduncertainty variancenarroning can-
not occurary more. The dangersof abandoningvari-
ancepooling arethereforeovercome;unpooledor less
pooledvariancesanbe estimated.

This paperis organizedasfollows: Thetheorywill bede-
velopedn section2 for thecaseof estimatingsingledensi-
tiesin theMMI casewherelinearcomputatioreffort is par

ticularly explained.Usingstriking similarities,in section3

mixture density estimationunder ML is considered. An

extensionto reestimationn HiddenMarkov Modelsis dis-

cussedn section4. Uncertaintyvarianceswill be treated
asa model parameter in section5. In speechrecognition,
viterbi pathsand maximumapproximationsare treatedin

section6. Experimentswill be presentedor the ML case
in section?, for theexampleof cardigit recognition.

2. SINGLE DENSITY ESTIMATION UNDER THE
MMI CRITERION

Explicit uncertaintymodellingassumeshatthe dataz,, is

not a pointedobsenation (delta-function) but insteadthe
meanof a continuous(!) distribution of obsenationsy

modeledas Gaussiansvith diagonalcovariancematrices
in an M -dimensionakpace:
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Let k,c, ! be classesyg data,and A the parametersf the
givenmodel. UnderMMI, we optimizefor crisp datathe
following criterion:
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and with the corventional [3] setting p(l|z,) =
pod(!|zn) — D /N oneobtainsfor zeroderivativeswith re-
spectto theparameters. = yut, o! the solution:
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With D large, changesare slight, and the methodworks
iteratively. The inclusion of uncertaintyafter eq. 2 now
changeshe MMI formula,usingvectornotation:
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Sinceintegrationis linear, it goesthat summationis re-
placedeverywherewith summationt integration:
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Theintegrationscanbetreatedanalyticallyif:

¢ theuncertaintyvariancds smallcomparedo thecurva-
ture of the posteriorat z,,

e the curvatureof the posterioris smoothalmostevery-
where, in particularin regions where classificationis

(almost)definite,i.e. within the rangeof the variance

of adensity

Thenit is appropriateo expandthe posteriorp(l|y) about
the obsenationz,,. For the Gaussiarmodelp(y|c), eq. 6
thisyieldsin seconcbrder:
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wheretheadd|t|onalcomputat|oreffeortis linear with the
numberof densitiessincethe latter sumsareonly depen-
denton the dimensions, j, but independentf [. Hence
they needonly be evaluatedonce per dimension,andcan
thenbe usedfor all G, H};. Performingthe integrations
for the estimationformulaenow allows integrationof the
uncertaintyy.
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wherethedependengw.r.t. the uncertaintyvariancecom-

ponenty} goeswith thecorrectionfactors:
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3. MIXTURE DENSITY ESTIMATION UNDER
THE ML CRITERION

We considera scenariowhereeachobsenation z,, is as-
sociatedwith exactly oneclassc. For eachclasse (index
omittedin thefollowing), we aim at estimatinghe param-
eters\ of a mixture densityZﬁ\;1 cip(zn|k, X) from the
associatedbsenations.UnderML, we thenhave to max-
imize in the crisp casethe Kullback-Leiblerstatisticsover
componendensitie% (seee.qg.[4])
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with respecto new (starred)modelparametersyherethe
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The componentensitiep(z|k, A) aremodelledas Gaus-
sians,cf. eq. 6. With inclusionof uncertaintyintegration
goeslinearly asabove. Settingto zerothe derivatives of
Q +A(X, i — 1) (Lagrangeparameten) with respecto
thestarredparametersesultsin (¥ = componenindex, i =
dimensionndex)
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Thereis now a striking similarity to the estimationformu-
laein MMI. In facttheonly differencds theabsensef the
termswith dy,, ; andD.

Expandingthe posteriorp(k|y, ) in eq. 18 to secondbr-
derin (y — z,) changeghe termsasabove in egns. 12 -
14,with P(k|z,) replaceddy P(k|z,, A). Theresultsare,
againfor diagonaluncertaintycovariancematricesgq. 1:
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Soall variablesweights,meansandvariancesareshifted
dueto uncertaintyof the data.

4. HIDDEN MARKOV MODELS

In HMM, notonly dowe havethe parametersf theoutput
probability densitymodel,but aswell theinitial probabili-
tiesIl; andtransitionprobabilitiesa; ; [4]. Furthermorein

contrasto dataobsenations the probabilitiesof observing
astatedependnthefull setof dataobsenations.Onecan
shawv [6] thatthe I1;, a; ; and mixture weightsc* do not

change underthefollowmg conditions:

. Themdependen;cHt 1 P(ye|ze)

e linearizationof the posteriors

If oneexpandgheposteriorgo secondrder, orif onecom-
putesthe meansandvariancesof the densitiess emission
probabilitiesevenwith linearizationof the posteriorssec-
ondordertermsemegewhich do notvanish. Theseterms
dependn the currentpathtakenout of the N7 mary pos-
sible paths hencethe usualcomputatiorof posteriorswith

forward- and backward probabilitiesdoesnot work any-

more. Including uncertaintymodellinginto the forward-
andbackwardprobabilityschemewill bepresentedh [6].

5. UNCERTAINTY VARIANCESASMODEL
PARAMETERS

So far we have treatedthe uncertaintyvariancesas prop-
erties of the data,which we eitherknown in advance,e.g.
from corpusinformation,or which we obtainin an unsu-
pervisedmode,e.g. from SNR investigationn the data
or from confidencemeasuref atwo-passapproach.

We may however alsotreatthe uncertaintyvarianceas a
speechrecognitionparameter whichwe setin asupervised
mode e.g.by optimizingtheWERin anevaluationset. Al-
ternatvely, onecanusea global uncertaintyvariancevec-
tor v asanadditionalmodelparametewhich we estimate
accordingo our optimizationcriterion.

Wewill demonstrat¢his optimizationherefor thescenario
of section3. The Kullback-LeiblerstatisticsQ (A, A*) eq.
17, integratedfor uncertaindata,hasto be optimizedwith
respecto new (starred)modelparametersinderthe con-
dition >°, ¢ = 1. Notethat now the vectorv* belongs
to the starredmodel parameters\*, ratherthan being a
property of the data. Settingto zero the derivatives of
Q + A3, ¢ — 1) with respecto the starredparameters
resultsin (k = componenindex, ¢ = dimensionindex)
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Thelastequatiorof this setis animplicit equationin {vj }.
Solutionof this setof equationsanto very goodapproxi-
mationbe doneby takingtheold v insteadof v* in thefirst
threeequation26, which canthenbe explicitly solved as
demonstratedbove. Q(\, \*) canaswell be expressed
with theseparameterggiving for componentg
* * M
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Using @ andtheresultingstarredparameters*, u*, o*,
we iteratetheforth equation27 with respecto v*.

6. VITERBI PATHSAND MAXIMUM
APPROXIMATION

Underthe Viterbi approximatiorin speechrecognitionthe
associatiorof obsenationswith stateds fixedby the path.
It is thereforenecessargnly to estimateghe parametersf
the densitiesassociateavith the stateq givenall obsena-
tionsz™ correspondingp this stateaccordingo the Viterbi
path.This setof obsenationsthenactsasuncorrelateab-
senationsfor the estimationof amixture,seesection3.
Ratherthan estimatingparameterof the densitiesfrom
posteriorsP(component| obsenation z), the maximum
approximation [4] canbe usedin the estimationformulae
with uncertaintymodelling. Thenegns.11for theGradient
andtheHessiarbothbecomd). Thereasorfor thisis that
P(c|z) = d;,. sincetheobsenrationz will only contribute
to densityl if it is closesto ;. Soin thecaseof maximum
approximationwhatremainsfor the updatesare

which amountdo a simpleadditionof theuncertaintyvari-
anceto theformervarianceestimate Hencewe have given
athoroughtheoreticajustificationfor variancebiasing.

7. EXPERIMENTSWITH CSDCDIGITS

In CSDCdigits [2], the training setare 19477words,the
testsetare7731words(incl. garbage).Experimentsvere
donefor densityspecificvariancesViterbi paths ML esti-

mationandsumof likelihoodsfor densityestimation.Un-
certaintymodellingsin trainingandrecognitionmatch.We
comparethe baseling(no uncertaintymodelling)word er
ror rateswith a globaluncertaintyvariancewhich is mod-
eratecomparedo the baselinedensityvariancespoth for
modelsresolhed with a rangeof densities. Standarder-
ror barsizeis about1% absolute.While the baselineper
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Fig. 1. WERonCSDC

formanceis suchthat WER initially reduceswith higher
numberof densitiesandlaterincreasesgaindueto sparse
datafor densityestimationuncertaintymodellingreaches
a lower WER minimum thanthe baselineat higher num-
berof densitiesandis notsubjecto severeWER increases
dueto sparsedata. This underlineghe proposeceffect of
prohibitingvariancenarraving. However, with aglobalun-
certaintyvariancechosenthe powersof uncertaintymod-
elling areshowvn hereonly at afirst stage.
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