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ABSTRACT
An approachis presentedboth theoreticallyand experi-
mentallywhichovercomesanumberof existingconceptual
andperformanceproblemsin densityestimation.Thethe-
oreticalapproachshowsmethodsfor incorporatingor esti-
matinguncertaintiesinto speechrecognition. In the MMI
andML case,preciseformulaearegivenfor estimationof
densitiesfor uncertaintyvariancessmall comparedto the
curvatureof theposteriors.
For implementation,thetheoreticalformulaearepresented
in sucha way that the additionalcomputationeffort goes
linearlywith thenumberof densities.
Experimentson car digits show relative improvementsin
worderrorrateof atmost4.8%relative. Uncertaintymod-
elling is shown to help remedyeffectsof the sparsedata
problemin densityestimation.

1. INTRODUCTION

Density estimationin the methodologynormally usedin
speechrecognitionhassomeknown drawbacks:[5]� Densityestimationdoesnot follow asuitable,consistent

statisticalapproach.� TheunderlyingMaximumLikelihood(ML) theoryhas
dangersof false(toonarrow) varianceswhichatthemo-
mentareonly coveredby variancepoolingandotherad-
hocmethods.� ML theoryis ill-posedin thepresenceof any finite data.� Otherrisk functionslike MaximumMutual Information
(MMI) or StructuralRiskminimizationoutperformML.

Uncertaintymodellingasproposedhereattacksseveralof
theseproblemswithoutparadigmshiftsin theory, andwith-
outheavy redesigneffort. It is acompromisebetweennon-
parametricalandparametricalstatistics[1].� The problem of finite data is approachedby explicit

modelling of uncertaintyof the observed data. This
modellingcanbe doneanalyticallyandonly resultsin
modificationsof theestimationformulae,notin datadif-
fusionor otherdata-related,expensivemethods.

� This modellingcan take into account,if available, the
known uncertaintyin givendata. This knowledgecan
beavailableexternally (databasequality, etc.) or inter-
nally (confidencemeasures).� Having modelleduncertainty, variancenarrowing can-
not occurany more. The dangersof abandoningvari-
ancepooling arethereforeovercome;unpooledor less
pooledvariancescanbeestimated.

This paperis organizedasfollows: Thetheorywill bede-
velopedin section2 for thecaseof estimatingsingledensi-
tiesin theMMI casewherelinearcomputationeffort is par-
ticularly explained.Usingstrikingsimilarities,in section3
mixture densityestimationunderML is considered.An
extensionto reestimationin HiddenMarkov Modelsis dis-
cussedin section4. Uncertaintyvarianceswill be treated
asa model parameter in section5. In speechrecognition,
viterbi pathsandmaximumapproximationsaretreatedin
section6. Experimentswill bepresentedfor theML case
in section7, for theexampleof cardigit recognition.

2. SINGLE DENSITY ESTIMATION UNDER THE
MMI CRITERION

Explicit uncertaintymodellingassumesthat thedata ��� is
not a pointedobservation(delta-function),but insteadthe
meanof a continuous(!) distribution of observations �
modeledas Gaussianswith diagonalcovariancematrices
in an � -dimensionalspace:��� �
	 � ����
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Let G , H5I8J be classes,� data,and K the parametersof the
givenmodel. UnderMMI, we optimizefor crispdatathe
following criterion:
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and with the conventional [3] setting ��� J8	 � ��� 
� 7 \ k � Jl	 � �m� $Onpodq oneobtainsfor zeroderivativeswith re-
spectto theparametersK = j
r� , i r� thesolution:
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Since integration is linear, it goesthat summationis re-
placedeverywherewith summation+ integration:
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Theintegrationscanbetreatedanalyticallyif:� theuncertaintyvarianceis smallcomparedto thecurva-
tureof theposteriorat � �� the curvatureof the posterioris smoothalmostevery-
where, in particular in regions whereclassificationis
(almost)definite, i.e. within the rangeof the variance
of a density.

Thenit is appropriateto expandtheposterior��� Jl	 � � about
theobservation � � . For theGaussianmodel ��� �
	 H � , eq. 6
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wheretheadditionalcomputationeffeort is linear with the
numberof densities,sincethe lattersumsareonly depen-
denton the dimensions�|I � , but independentof J . Hence
they needonly be evaluatedonce per dimension,andcan
thenbe usedfor all

� r � , � r� � . Performingthe integrations
for the estimationformulaenow allows integrationof the
uncertainty� .j r � 
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wherethedependency w.r.t. theuncertaintyvariancecom-
ponents� �� goeswith thecorrectionfactors:
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Bothmeanandvarianceareshifteddueto datauncertainty.

3. MIXTURE DENSITY ESTIMATION UNDER
THE ML CRITERION

We considera scenariowhereeachobservation � � is as-
sociatedwith exactly oneclass H . For eachclass H (index
omittedin thefollowing), we aim at estimatingtheparam-
eters K of a mixture density

X P�T��� Hhb ��� � � 	 G4I8K � from the
associatedobservations.UnderML, we thenhave to max-
imize in thecrispcasetheKullback-Leibler-statisticsover
componentdensitiesG (seee.g.[4])± � K>I8K4² �;
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with respectto new (starred)modelparameters,wherethe
componentweights
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Thecomponentdensities��� ��	 G4I|K � aremodelledasGaus-
sians,cf. eq. 6. With inclusionof uncertainty, integration
goeslinearly asabove. Settingto zero the derivativesof± zM³ � X b H ²b $ � � (Lagrangeparameter

³
) with respectto

thestarredparametersresultsin ( G = componentindex, � =
dimensionindex)Hh²b 
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Thereis now a striking similarity to theestimationformu-
laein MMI. In facttheonly differenceis theabsenseof the
termswith shb g t r and n .
Expandingtheposteriors��� GV	 �4I8K � in eq. 18 to secondor-
der in � � $ � ��� changesthe termsasabove in eqns.12 -
14,with

� � GV	 � �f� replacedby
� � GV	 � � I|K � . Theresultsare,

againfor diagonaluncertaintycovariancematrices,eq.1:H!bU² 
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with the correctionfactors £ b� and § b� given in eqns. 15,
16above(whereashereG = component),andµ b � �m� �;
 �� P&� ��� � b�-� � �� (25)

Soall variables,weights,meansandvariances,areshifted
dueto uncertaintyof thedata.

4. HIDDEN MARKOV MODELS

In HMM, notonly dowehavetheparametersof theoutput
probabilitydensitymodel,but aswell theinitial probabili-
ties ¶ � andtransitionprobabilities· � t � [4]. Furthermore,in
contrastto dataobservations,theprobabilitiesof observing
a statedependon thefull setof dataobservations.Onecan
show [6] that the ¶ � , · � t � andmixture weights H b do not
change underthefollowing conditions:� Theindependency

�M¸¹ ��� ��� � ¹ 	 � ¹ �� linearizationof theposteriors
If oneexpandstheposteriorstosecondorder, or if onecom-
putesthe meansandvariancesof the densities’s emission
probabilitiesevenwith linearizationof theposteriors,sec-
ondordertermsemergewhich do not vanish.Theseterms
dependon thecurrentpathtakenout of the q ¸ many pos-
siblepaths,hencetheusualcomputationof posteriorswith
forward- and backward probabilitiesdoesnot work any-
more. Including uncertaintymodelling into the forward-
andbackwardprobabilityschemewill bepresentedin [6].

5. UNCERTAINTY VARIANCES AS MODEL
PARAMETERS

So far we have treatedthe uncertaintyvariancesasprop-
erties of thedata,which we eitherknown in advance,e.g.
from corpusinformation,or which we obtainin an unsu-
pervisedmode,e.g. from SNR investigationson the data
or from confidencemeasuresin a two-passapproach.
We may however also treat the uncertaintyvarianceas a
speechrecognitionparameter whichwesetin asupervised
mode,e.g.by optimizingtheWERin anevaluationset.Al-
ternatively, onecanusea global uncertaintyvariancevec-
tor � asanadditionalmodelparameterwhich we estimate
accordingto ouroptimizationcriterion.
Wewill demonstratethisoptimizationherefor thescenario
of section3. TheKullback–Leiblerstatistics

± � K>I8K ² � eq.
17, integratedfor uncertaindata,hasto beoptimizedwith
respectto new (starred)modelparametersunderthe con-
dition

X b H ²b 
 �
. Note that now the vector � ² belongs

to the starredmodel parametersK ² , rather than being a
property of the data. Setting to zero the derivatives of± zº³ � X b H ²b $ � � with respectto thestarredparameters
resultsin ( G = componentindex, � = dimensionindex)
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Thelastequationof thissetis animplicit equationin 2 � ²b 3 .
Solutionof this setof equationscanto very goodapproxi-
mationbedoneby takingtheold � insteadof � ² in thefirst
threeequations26, which canthenbeexplicitly solvedas
demonstratedabove.

± � K>I8K ² � can as well be expressed
with theseparameters,giving for componentsG± � K>I8K4² �;
 q & b Hh²b � $ � � z R�S H ²b� �� ���;¿ ���Ài b� ² � (28)

Using
±

andthe resultingstarredparametersH ² I j ² I i ² ,we iteratetheforth equation27with respectto � ² .
6. VITERBI PATHS AND MAXIMUM

APPROXIMATION

UndertheViterbi approximationin speechrecognition,the
associationof observationswith statesis fixedby thepath.
It is thereforenecessaryonly to estimatetheparametersof
thedensitiesassociatedwith thestateÁ givenall observa-
tions � � correspondingto thisstateaccordingto theViterbi
path.Thissetof observationsthenactsasuncorrelatedob-
servationsfor theestimationof amixture,seesection3.
Ratherthan estimatingparametersof the densitiesfrom
posteriorsP(componentGV	 observation � ), the maximum
approximation [4] canbeusedin the estimationformulae
with uncertaintymodelling.Theneqns.11for theGradient
andtheHessianbothbecomew . Thereasonfor this is that� � HU	 � �¦
 s r t Y sincetheobservation � will only contribute
to densityJ if it is closestto j r . Soin thecaseof maximum
approximation,whatremainsfor theupdatesare£ r � � � �f�;
 w I § r� � � �f�;
 � �� I µ r � � �f�;
 w (29)

whichamountsto asimpleadditionof theuncertaintyvari-
anceto theformervarianceestimate.Hencewehavegiven
a thoroughtheoreticaljustificationfor variancebiasing.

7. EXPERIMENTS WITH CSDC DIGITS

In CSDCdigits [2], the training setare19477words,the
testsetare7731words(incl. garbage).Experimentswere
donefor densityspecificvariances,Viterbi paths,ML esti-

mationandsumof likelihoodsfor densityestimation.Un-
certaintymodellingsin trainingandrecognitionmatch.We
comparethebaseline(no uncertaintymodelling)word er-
ror rateswith a globaluncertaintyvariancewhich is mod-
eratecomparedto thebaselinedensityvariances,both for
modelsresolved with a rangeof densities. Standarder-
ror barsizeis about1% absolute.While thebaselineper-
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formanceis suchthat WER initially reduceswith higher
numberof densities,andlaterincreasesagaindueto sparse
datafor densityestimation,uncertaintymodellingreaches
a lower WER minimum thanthe baselineat highernum-
berof densities,andis notsubjectto severeWERincreases
dueto sparsedata. This underlinestheproposedeffect of
prohibitingvariancenarrowing. However, with aglobalun-
certaintyvariancechosen,thepowersof uncertaintymod-
elling areshown hereonly ata first stage.
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