
TIME-SHARED TMR FOR FAULT-TOLERANT CORDIC PROCESSORS
Jae-Hyuck Kwak§, Vincenzo Piuri*, and Earl E. Swartzlander, Jr.§

§ Department of Electrical and Computer Engineering, University of Texas at Austin, USA
* Department of Electronics and Information, Politecnico di Milano, Italy

ABSTRACT

This paper presents a low-cost approach to concurrent error
correction in high-performance CORDIC processors by using
time-shared triple modular redundancy. Operands are partitioned
into three sets of disjoint digits and operations are performed
three times on different hardware components to correct possible
errors by majority voting. The approach has limited latency
increase and throughput reduction. Pipelining can be used to
maintain the same throughput as a conventional design.

1. INTRODUCTION

The CORDIC algorithm is an effective iterative technique for
vector rotation and for evaluating more than a dozen of
elementary functions [1]. Several dedicated VLSI architectures
have been proposed in the literature to achieve high performance
in real-time signal-processing applications. Many solutions are
based on use of the redundant data representations [2, 3]. These
techniques can be effectively applied only if the rotation
directions can be estimated in advance, so that the high
performance of the arithmetic paths is preserved. To predict the
direction a few MSDs (most significant digits) can be inspected
[4]; some architectures of this kind are in [3, 5, 6].

In many mission-critical applications (e.g., in aerospace and
telecommunication), fault tolerance is mandatory. Whenever
decisions, which are critical for the safety either of personnel or
equipment, are taken on the basis of CORDIC processor outputs,
these data must be correct. Similar needs occur when
maintenance is difficult or impossible. On-line correction of all
results can be accomplished by concurrent techniques. In the
literature, many approaches are available for arithmetic
processing arrays and other arithmetic structures, e.g., hardware
redundancy, arithmetic data coding, and time redundancy [9, 10].
Usually, modular hardware redundancy has high performance,
but also high circuit complexity. Arithmetic coding may have
reasonable hardware redundancy and performance decrease, but
only for quite limited fault coverage. Time redundancy may have
low performance and complexity, but high fault coverage,
especially for transient faults.

In this paper, we present an effective way for using Time-
Shared Triple Modular Redundancy (TS-TMR) [11-13] to
introduce fault tolerant capabilities to high-performance
CORDIC processors. Time-shared TMR is an extension of the
technique proposed in [14] for concurrent error detection in
adders. In particular, we deal with the case of concurrent error
correction. The main innovation of this paper consists of the use
of this technique (which is typically used with purely arithmetic
data paths) also for data paths containing conditional operations
(as in the CORDIC algorithm). The proposed architecture is
based on an unpipelined structure for redundant CORDIC as well
as on the prediction scheme for rotation direction introduced in
[4, 6]. A good trade-off between circuit complexity and
performance is achieved by applying this technique at the system

level. The error model encompasses all possible errors (both
permanent and transient) in the output of a single module,
implying that multiple faults at the gate level can be corrected if
they affect only one module output. The error coverage is larger
than that which is achieved with other techniques (like coding) at
a similar level of circuit complexity. Throughput can be
increased by pipelining.

Section 2 summarizes the CORDIC operation and the basic
processor structure. Section 3 introduces the TS-TMR technique
and its use for concurrent error correction. Cost and performance
evaluation are given in Section 4.

2. BASIC CORDIC ARCHITECTURE

The unified CORDIC algorithm [1, 2] is defined by,

i
imS

iii ymxx ⋅⋅⋅−= −
+

),(
1 2 σ

i
imS

iii xyy ⋅⋅+= −
+

),(
1 2 σ (1)

imiii zz ,1 ασ−=+

where m denotes a coordinate system (+1: circular, 0: linear, or
–1: hyperbolic), iσ the rotation direction, and S(m,i) the

iteration sequence. im,α is the rotation angle defined as

)2(tan)/1(),(1
,

imS
im mm −− ⋅⋅=α .

In rotation mode, the processor performs planar vector rotation,
while in vectoring mode the magnitude and the angle of an initial
vector are computed. iσ is thus determined by





→⋅−
→

=
)0(mode for),(

)0(mode for),(

nii

ni
i yvectoringyxsign

zrotationzsign
σ (2)

Estimation of the rotation direction in vectoring mode is usually
based on the parameter wi, defined as wi = 2i⋅ yi [2]. Therefore,
the CORDIC iteration equations become

i
i

iii wxx ⋅⋅−= −
+

2
1 2 σ

)(2 1 iiii xww ⋅+=+ σ (3)

iiii zz ασ 1 −=+

To predict σi, the estimated value of wi, iw
∧

, is first produced by
truncating wi to t MSDs [4]; σi is then given by the sign of iw

∧
.

For 16- and 32-bit operands, t is equal to 6 and 8, respectively
[4]. This technique was efficiently applied in [6] to achieve a
very high performance, by fully overlapping the computation
along the arithmetic data paths and the rotation direction
selection. Pipelining can be adopted to increase the throughput at
different granularities with different cost/performance trade-offs
[8]. The finer is the granularity, the higher the throughput, the
circuit complexity and the latency.

3. CONCURRENT ERROR CORRECTION APPROACH

The basic concept of time redundancy [9, 10] is to perform the
same computation several times in order to detect or correct

errors. Recomputation with the same functional modules and
input operands can detect or correct transient failures only, not
permanent ones. To deal with permanent failures, it is necessary
either to change the functional modules or the operands.

Time-shared TMR has been shown an effective technique for
concurrent error correction in arithmetic systems [11-15], at
reasonable circuit complexity. Basic arithmetic operations
(addition and multiplication) are divided in three parts by
splitting the operands: each part of the operands is treated by the
corresponding partial operation. Fault tolerance is achieved by
performing the partial operations by using three circuits in
parallel. Majority voting determines the correct output of each
partial operation in the presence of any kind of fault confined to
any of the functional modules. A self-checking voter is used.

Time-shared TMR is more efficient from the points of view of
circuit complexity, latency, and throughput if voting is performed
at the highest level of the system. This is possible whenever
carries do not need to be propagated immediately to the most
significant parts, i.e., when the overall computation can be
viewed as a cascade of arithmetic operations and the carry
propagation delayed till the last stage of the nominal operations.
This is the case of the inner product and the convolution [15], the
FFT algorithm [13], and the data path in the CORDIC processor.
In these cases, we can avoid voting and storing the intermediate
carries within the individual step of the envisioned DSP
algorithm. This results in saving circuit complexity and latency.

3.1. Carry propagation in the arithmetic data paths and
rotation prediction for Time-Shared TMR

The CORDIC architecture without fault tolerance abilities
essentially consists of three arithmetic data paths and the rotation
direction generators for each CORDIC stage. Each arithmetic
data path is composed by adders/subtractors and hardwired
shifters. Carry propagation within the arithmetic data paths is
needed both to select the rotation direction at each CORDIC
stage and to generate the final outputs. The final carry
propagation produces the CORDIC results in the conventional
binary representation.

Carry propagation within a CORDIC stage is necessary in
order to produce the information to be used for rotation selection
in the subsequent CORDIC stage. This would make it impossible
to use TS-TMR effectively since each CORDIC stage should
wait for completion of the iterations and, consequently, for
generation of the whole output of the CORDIC stage. Latency
will triplicate with respect to the non fault tolerant case; circuit
complexity will increase massively due to the additional
registers.

However, in [4] it was proven that only a limited number t of
digits is actually needed to predict the rotation direction
accurately. Let's consider the first CORDIC stage of the iteration
in which the most-significant parts of the operands are processed.
Let's assume that the number of digits, n, that is processed by this
iteration is not smaller than the value t [4] required for rotation
direction prediction on the total number, b, of the operand bits.
(If this condition does not hold, we simply consider the smallest
of the higher numbers of operand bits that satisfies this
condition.) By applying the TS-TMR technique as presented
above for adders, n should be equal to  3/b . The most-
significant t bits of the first CORDIC stage are the same that are

used both in the prediction schemes described in [4, 6] and in the
iteration performed on most-significant n-bit operand parts. The
rotation direction of the first CORDIC stage will be the same.

Let's now consider the subsequent CORDIC stages. The higher
the index of the CORDIC stage, the more the carries need to be
propagated from the middle-significant part of the computation
to guarantee the same accuracy of the prediction over the t most-
significant digits. For b-bit operands (and b CORDIC stages), we
need  b2log guard bits to ensure the same accuracy of the t
most-significant bits. The most significant n-bit part of the
operands to be processed during the iteration consists of at least
of  bt 2log+ bits. In the case of b=32, n is 13 bits.

3.2. Partitioning in the arithmetic data paths for Time-
Shared TMR and execution order

By partitioning the CORDIC operands in three n-bit parts with

 btn 2log+= , the rotations computed on the most-significant
operand part in all iterations will be identical to the ones
generated in [4, 6] by processing all the operand bits. This makes
the computation on the most-significant operand parts
independent from the computation of the other parts. Carry
propagation is confined to the final adding stage.

Conversely, computation of each CORDIC stage on the
middle- and least- significant parts of the operands still depends
on the rotation directions decided during the CORDIC iteration
on the most-significant parts of the operands. The rotation
predicted in each CORDIC stage during such any iteration holds
also for the other iterations on the middle- and the least-
significant parts. The rotation directions must be computed
during the iteration on the most significant parts of the operands,
stored within each stage, and then used during the subsequent
iterations on the middle- and the least- significant parts. The need
of predicting first the rotation directions on the most-significant
parts of the operands induces a partial order in the execution of
the iterations. The most significant iteration must precede the
other two. No execution order is implied by rotation direction
prediction between the iteration on the middle- and least-
significant parts.

This execution order differs from the one usually adopted, e.g.,
see [11, 13, 15]. In these latter cases, the natural execution order
is due to the ease of carry management and propagation in the
final addition. Starting from the least-significant digits allows for
partially overlapping the carry propagation of digits generated
during one iteration with the computation performed in the
subsequent iteration on most significant digits, thus resulting in
low latency. In the above execution order, the order that naturally
follows the carry propagation cannot be adopted since rotation
direction prediction must be performed before any computation.

Since the prediction does not force any execution order
between the iterations on the middle- and the least- significant
parts of the operands, we can still adopt the natural order
suggested by the carry propagation for these two iterations so as
to minimize the overall latency. The bits that must be processed
by these two iterations are  btbnb 2log−−=− . Usually, this
number of bits is higher than n. To maximize the use of hardware
devices, one of the iterations will process n bits, while the other

will deal with  btb 2log22 −− bits. In the case of b=32, two
iterations will process 13 bits and the third one will work on 6
bits only.

In summary, the first iteration will process the n most-
significant bits of the operands – three times in parallel – to
generate the rotation directions and the most significant
contribution to the final CORDIC result. The second iteration
will process the n least-significant bits to generate the least
significant part of the final CORDIC result. While carries are
propagated in the positions exceeding the n least significant ones,
the third iteration will process the remaining  btb 2log22 −−
middle-significant bits. The bits in these positions are added to
the carries produced by the second iteration to produce the
middle part of the final CORDIC result. Carries exceeding the

 btb 2log−− position are added to the contribution computed
by the first iteration to generate the most significant part of the
result. Such an addition can start as soon as the output bits
corresponding to the  btb 2log22 −− input bits are generated
since the other bits are not relevant. The three copies of the final
CORDIC result are voted to correct possible errors.

3.3. The rotation direction generators

The irregularity of the structure of the rotation direction
generators [4, 6] and the presence of non-arithmetic functions in
them make replication [9] more practical for these circuits.
Complexity of such circuits is very low with respect to the adders
in the three arithmetic data paths. An error in the computation of
any rotation direction appears (if not masked) as an erroneous
final result produced by the circuit computing the corresponding
iteration. Under the single-module fault assumption, at most one
final output will be affected by a fault that occurs in one of the
rotation direction generators. Therefore, even if rotation
directions are not directly checked and corrected within each
stage, errors due to a fault in one of the direction generators are
still detected and corrected at the final outputs. To limit the
circuit complexity without impairing the correction abilities, we
introduce one rotation direction generator in each stage of every
iteration. The three copies of the rotation direction generated in
each stage are not voted but used independently in the
corresponding iteration since possible errors will be indirectly
detected and corrected by voting the replicas of the final results.

3.4. The fault tolerant architecture

The resulting architecture with concurrent error correction ability
is shown in Figure 1. Essentially, it is obtained by tripling the
non fault tolerant architecture. More precisely, the fault-tolerant
architecture consists of three triplets of n-bit data paths: each
triplet realizes the computation of the corresponding b-bit data
path in the nominal architecture. The n-bit data paths of a triplet
operate in parallel on the corresponding inputs: each of them
processes in parallel the same portion (most-, middle-, or least-
significant) of the operands during each iteration. The internal
structure of each data path is identical to the nominal one (except
that the data word size is reduced). The proposed approach can
be adopted with any type of adders/subtractors in each stage (i.e.,
ripple-carry, carry-look-ahead, conditional-sum, carry-save
units). Registers in each stage hold the portions of the

intermediate results that have been produced by the first iteration
in the x and y data paths and that are needed in the subsequent
stage in the other iterations of the y and x data paths.

Each stage contains three copies of the rotation direction
generator. One is used for each iteration, the internal structure of
these generators is identical to that which is used in [4, 6].
Rotations independently computed during the first iteration are
stored (without being voted) in registers to be used during the
subsequent two iterations. The contribution to the final results
generated by the stages during the first iteration are stored in
registers until they can be added to the least significant portions.
Similarly, the contribution of the second iteration is stored in
other registers until the middle-significant part of the results
become available in the third iteration. The merging and voting
module at the outputs of the stages provides the final carry
propagation and the appropriate merging of the intermediate
partial results produced by the iterations. Voting corrects any
single error in the three values of each output.

To minimize the latency, conditional-sum based structures can
be adopted for the arithmetic units [6]. Computation in data paths
and generation of the rotation direction can thus be parallelized.
To enhance the throughput, pipelining can be implemented by
placing pipeline registers between each pair or stages, as shown
in [8]. Registers are implicitly protected by the use of TS-TMR.
The error correction ability is identical in all these architectures.

4. PERFORMANCE AND CONCLUSION

The design of a CORDIC architecture with concurrent error
correction abilities has been presented by using Time-Shared
Triple Modular Redundancy. This technique is typical of purely
arithmetic data paths: we have shown how to apply it
successfully also to data paths with conditioned operations.
Rotation prediction schemes have been used to predict the
rotation direction while processing only a portion of each
operand, thus allowing for the application of TS-TMR.

The circuit complexity increase with respect to a conventional
(i.e., non-fault-tolerant) design is about 100%. The latency
increase is about 40% for ripple-carry adders, but it is well over
200% for carry-look-ahead, conditional-sum and carry-save units.
The throughput reduction is about 30% for ripple-carry adders
and about 70% for the others. The TS-TMR design has less
circuit complexity than other modular redundancy techniques. It
is also more effective than other time redundancy approaches
when the latency increase is considered since the TS-TMR
operands are shorter than the nominal ones.

5. REFERENCES

[1] J. S. Walther, "A Unified Algorithm for Elementary
Functions," Proc. of Spring Joint Computer Conference, pp.
379-385, 1971.

[2] M. D. Ercegovac and T. Lang, "Redundant and On-line
CORDIC: Application to Matrix Triangularization and
SVD," IEEE Trans. on Comput., vol. 39, pp. 725-740, 1990.

[3] N. Takagi, T. Asada, and S. Yajima, "Redundant CORDIC
Methods with a Constant Scale Factor for Sine and Cosine
Computation," IEEE Trans. on Comput., vol. 40, pp. 989-
995, 1991.

[4] J.-A. Lee and T. Lang, "Constant-Factor Redundant CORDIC
for Angle Calculation and Rotation," IEEE Trans. on
Comput., vol. 41, pp. 1016-1025, 1992.

[5] D. Timmermann, H. Hahn, and B.J. Hosticka, "Low Latency
Time CORDIC Algorithms," IEEE Trans. on Comput., vol.
41, pp. 1010-1014, 1992.

[6] J.-H. Choi, J.-H. Kwak, and E. E. Swartzlander, Jr., "High-
Speed CORDIC Architecture Based on Redundant Sum
Formation and Overlapped Sigma-Selection," IEEE Proc. of
the International Conference on Computer Design, 1999.

[7] S. Wang, V. Piuri, and E. E. Swartzlander, Jr., "Hybrid
CORDIC Algorithm," IEEE Trans. on Comput., vol. 46, pp.
1202-1207, 1997.

[8] S. Wang and V. Piuri, "A Unified View of CORDIC
Processor Design," in Application Specific Processing,
Boston: Kluwer Publishing, pp. 121-160, 1997.

[9] D.P. Siewiorek and R.S. Swarz, Reliable computer systems:
design and evaluation, Burlington, MA: Digital Press,
1992.

[10] T.R.N. Rao, Error Coding for Arithmetic Processors, New
York: Academic Press, 1974.

[11] Y.-M. Hsu and E.E. Swartzlander, Jr., "VLSI concurrent
error correcting adders and multipliers," Proc. 1993 IEEE
Int'l Workshop on Defect and Fault Tolerance in VLSI
Systems, pp. 287-294.

[12] Y.-M. Hsu, V. Piuri, and E.E. Swartzlander, Jr., "Efficient
time redundancy for error correcting inner-product units and
convolvers," Proc. 1995 IEEE Int'l Workshop on Defect and
Fault Tolerance in VLSI Systems, pp. 287-294.

[13] V. Piuri and E.E. Swartzlander, Jr., "Time-Shared Modular
Redundancy for Fault-Tolerant FFT Processors," Proc.
1999 IEEE Int'l Symposium on Defect and Fault Tolerance
in VLSI Systems, 1999.

[14] B.W. Johnson, J.H. Aylor, and H.H. Hana, "Efficient use of
time and hardware redundancy for concurrent error
detection in a 32-bit VLSI adder," IEEE J. Solid-State
Circuits, Vol. 23, pp. 208-215, 1988.

σ -predict

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

MUX least

middle
most

MUX least
middle

most
y

MUX least

middle
most

z

merging
module

merging
module

merging
module

merging
module

merging
module

merging
module

1st
iteration

2nd
3rd

voter
x

voter
y

voter
z

σ

σ -predict σ

σ

σ

σ

σ

σ

σ

σ

σ

merging
module

merging
module

merging
module

-predict

Figure 1. The CORDIC structure with concurrent error correction ability.

