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ABSTRACT 

This paper presents a low-cost approach to concurrent error 
correction in high-performance CORDIC processors by using 
time-shared triple modular redundancy. Operands are partitioned 
into three sets of disjoint digits and operations are performed 
three times on different hardware components to correct possible 
errors by majority voting. The approach has limited latency 
increase and throughput reduction. Pipelining can be used to 
maintain the same throughput as a conventional design.  

1. INTRODUCTION 

The CORDIC algorithm is an effective iterative technique for 
vector rotation and for evaluating more than a dozen of 
elementary functions [1]. Several dedicated VLSI architectures 
have been proposed in the literature to achieve high performance 
in real-time signal-processing applications. Many solutions are 
based on use of the redundant data representations [2, 3]. These 
techniques can be effectively applied only if the rotation 
directions can be estimated in advance, so that the high 
performance of the arithmetic paths is preserved. To predict the 
direction a few MSDs (most significant digits) can be inspected 
[4]; some architectures of this kind are in [3, 5, 6].  

In many mission-critical applications (e.g., in aerospace and 
telecommunication), fault tolerance is mandatory. Whenever 
decisions, which are critical for the safety either of personnel or 
equipment, are taken on the basis of CORDIC processor outputs, 
these data must be correct. Similar needs occur when 
maintenance is difficult or impossible. On-line correction of all 
results can be accomplished by concurrent techniques. In the 
literature, many approaches are available for arithmetic 
processing arrays and other arithmetic structures, e.g., hardware 
redundancy, arithmetic data coding, and time redundancy [9, 10]. 
Usually, modular hardware redundancy has high performance, 
but also high circuit complexity. Arithmetic coding may have 
reasonable hardware redundancy and performance decrease, but 
only for quite limited fault coverage. Time redundancy may have 
low performance and complexity, but high fault coverage, 
especially for transient faults. 

In this paper, we present an effective way for using Time-
Shared Triple Modular Redundancy (TS-TMR) [11-13] to 
introduce fault tolerant capabilities to high-performance 
CORDIC processors. Time-shared TMR is an extension of the 
technique proposed in [14] for concurrent error detection in 
adders. In particular, we deal with the case of concurrent error 
correction. The main innovation of this paper consists of the use 
of this technique (which is typically used with purely arithmetic 
data paths) also for data paths containing conditional operations 
(as in the CORDIC algorithm). The proposed architecture is 
based on an unpipelined structure for redundant CORDIC as well 
as on the prediction scheme for rotation direction introduced in 
[4, 6]. A good trade-off between circuit complexity and 
performance is achieved by applying this technique at the system 

level. The error model encompasses all possible errors (both 
permanent and transient) in the output of a single module, 
implying that multiple faults at the gate level can be corrected if 
they affect only one module output. The error coverage is larger 
than that which is achieved with other techniques (like coding) at 
a similar level of circuit complexity. Throughput can be 
increased by pipelining.  

Section 2 summarizes the CORDIC operation and the basic 
processor structure. Section 3 introduces the TS-TMR technique 
and its use for concurrent error correction. Cost and performance 
evaluation are given in Section 4.  

2. BASIC CORDIC ARCHITECTURE 

The unified CORDIC algorithm [1, 2] is defined by, 
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where m denotes a coordinate system (+1: circular, 0: linear, or  
–1: hyperbolic), iσ  the rotation direction, and S(m,i) the 

iteration sequence. im,α  is the rotation angle defined as 
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In rotation mode, the processor performs planar vector rotation, 
while in vectoring mode the magnitude and the angle of an initial 
vector are computed. iσ  is thus determined by 
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Estimation of the rotation direction in vectoring mode is usually 
based on the parameter wi, defined as wi = 2i⋅ yi [2]. Therefore, 
the CORDIC iteration equations become 
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To predict σi, the estimated value of wi, iw
∧

, is first produced by 
truncating wi to t MSDs [4]; σi is then given by the sign of iw

∧
. 

For 16- and 32-bit operands, t is equal to 6 and 8, respectively 
[4]. This technique was efficiently applied in [6] to achieve a 
very high performance, by fully overlapping the computation 
along the arithmetic data paths and the rotation direction 
selection. Pipelining can be adopted to increase the throughput at 
different granularities with different cost/performance trade-offs 
[8]. The finer is the granularity, the higher the throughput, the 
circuit complexity and the latency. 

3. CONCURRENT ERROR CORRECTION APPROACH 

The basic concept of time redundancy [9, 10] is to perform the 
same computation several times in order to detect or correct 



errors. Recomputation with the same functional modules and 
input operands can detect or correct transient failures only, not 
permanent ones. To deal with permanent failures, it is necessary 
either to change the functional modules or the operands. 

Time-shared TMR has been shown an effective technique for 
concurrent error correction in arithmetic systems [11-15], at 
reasonable circuit complexity. Basic arithmetic operations 
(addition and multiplication) are divided in three parts by 
splitting the operands: each part of the operands is treated by the 
corresponding partial operation. Fault tolerance is achieved by 
performing the partial operations by using three circuits in 
parallel. Majority voting determines the correct output of each 
partial operation in the presence of any kind of fault confined to 
any of the functional modules. A self-checking voter is used.  

Time-shared TMR is more efficient from the points of view of 
circuit complexity, latency, and throughput if voting is performed 
at the highest level of the system. This is possible whenever 
carries do not need to be propagated immediately to the most 
significant parts, i.e., when the overall computation can be 
viewed as a cascade of arithmetic operations and the carry 
propagation delayed till the last stage of the nominal operations. 
This is the case of the inner product and the convolution [15], the 
FFT algorithm [13], and the data path in the CORDIC processor. 
In these cases, we can avoid voting and storing the intermediate 
carries within the individual step of the envisioned DSP 
algorithm. This results in saving circuit complexity and latency. 

3.1.  Carry propagation in the arithmetic data paths and 
rotation prediction for Time-Shared TMR 

The CORDIC architecture without fault tolerance abilities 
essentially consists of three arithmetic data paths and the rotation 
direction generators for each CORDIC stage. Each arithmetic 
data path is composed by adders/subtractors and hardwired 
shifters. Carry propagation within the arithmetic data paths is 
needed both to select the rotation direction at each CORDIC 
stage and to generate the final outputs. The final carry 
propagation produces the CORDIC results in the conventional 
binary representation.  

Carry propagation within a CORDIC stage is necessary in 
order to produce the information to be used for rotation selection 
in the subsequent CORDIC stage. This would make it impossible 
to use TS-TMR effectively since each CORDIC stage should 
wait for completion of the iterations and, consequently, for 
generation of the whole output of the CORDIC stage. Latency 
will triplicate with respect to the non fault tolerant case; circuit 
complexity will increase massively due to the additional 
registers.  

However, in [4] it was proven that only a limited number t of 
digits is actually needed to predict the rotation direction 
accurately. Let's consider the first CORDIC stage of the iteration 
in which the most-significant parts of the operands are processed. 
Let's assume that the number of digits, n, that is processed by this 
iteration is not smaller than the value t [4] required for rotation 
direction prediction on the total number, b, of the operand bits. 
(If this condition does not hold, we simply consider the smallest 
of the higher numbers of operand bits that satisfies this 
condition.) By applying the TS-TMR technique as presented 
above for adders, n should be equal to  3/b . The most-
significant t bits of the first CORDIC stage are the same that are 

used both in the prediction schemes described in [4, 6] and in the 
iteration performed on most-significant n-bit operand parts. The 
rotation direction of the first CORDIC stage will be the same. 

Let's now consider the subsequent CORDIC stages. The higher 
the index of the CORDIC stage, the more the carries need to be 
propagated from the middle-significant part of the computation 
to guarantee the same accuracy of the prediction over the t most-
significant digits. For b-bit operands (and b CORDIC stages), we 
need  b2log  guard bits to ensure the same accuracy of the t 
most-significant bits. The most significant n-bit part of the 
operands to be processed during the iteration consists of at least 
of  bt 2log+  bits. In the case of b=32, n is 13 bits.  

3.2. Partitioning in the arithmetic data paths for Time-
Shared TMR and execution order 

By partitioning the CORDIC operands in three n-bit parts with 

 btn 2log+= , the rotations computed on the most-significant 
operand part in all iterations will be identical to the ones 
generated in [4, 6] by processing all the operand bits. This makes 
the computation on the most-significant operand parts 
independent from the computation of the other parts. Carry 
propagation is confined to the final adding stage. 

Conversely, computation of each CORDIC stage on the 
middle- and least- significant parts of the operands still depends 
on the rotation directions decided during the CORDIC iteration 
on the most-significant parts of the operands. The rotation 
predicted in each CORDIC stage during such any iteration holds 
also for the other iterations on the middle- and the least- 
significant parts. The rotation directions must be computed 
during the iteration on the most significant parts of the operands, 
stored within each stage, and then used during the subsequent 
iterations on the middle- and the least- significant parts. The need 
of predicting first the rotation directions on the most-significant 
parts of the operands induces a partial order in the execution of 
the iterations. The most significant iteration must precede the 
other two. No execution order is implied by rotation direction 
prediction between the iteration on the middle- and least- 
significant parts.  

This execution order differs from the one usually adopted, e.g., 
see [11, 13, 15]. In these latter cases, the natural execution order 
is due to the ease of carry management and propagation in the 
final addition. Starting from the least-significant digits allows for 
partially overlapping the carry propagation of digits generated 
during one iteration with the computation performed in the 
subsequent iteration on most significant digits, thus resulting in 
low latency. In the above execution order, the order that naturally 
follows the carry propagation cannot be adopted since rotation 
direction prediction must be performed before any computation.  

Since the prediction does not force any execution order 
between the iterations on the middle- and the least- significant 
parts of the operands, we can still adopt the natural order 
suggested by the carry propagation for these two iterations so as 
to minimize the overall latency. The bits that must be processed 
by these two iterations are  btbnb 2log−−=− . Usually, this 
number of bits is higher than n. To maximize the use of hardware 
devices, one of the iterations will process n bits, while the other 



will deal with  btb 2log22 −−  bits. In the case of b=32, two 
iterations will process 13 bits and the third one will work on 6 
bits only.  

In summary, the first iteration will process the n most-
significant bits of the operands – three times in parallel – to 
generate the rotation directions and the most significant 
contribution to the final CORDIC result. The second iteration 
will process the n least-significant bits to generate the least 
significant part of the final CORDIC result. While carries are 
propagated in the positions exceeding the n least significant ones, 
the third iteration will process the remaining  btb 2log22 −−  
middle-significant bits. The bits in these positions are added to 
the carries produced by the second iteration to produce the 
middle part of the final CORDIC result. Carries exceeding the 

 btb 2log−−  position are added to the contribution computed 
by the first iteration to generate the most significant part of the 
result. Such an addition can start as soon as the output bits 
corresponding to the  btb 2log22 −−  input bits are generated 
since the other bits are not relevant. The three copies of the final 
CORDIC result are voted to correct possible errors. 

3.3. The rotation direction generators 

The irregularity of the structure of the rotation direction 
generators [4, 6] and the presence of non-arithmetic functions in 
them make replication [9] more practical for these circuits. 
Complexity of such circuits is very low with respect to the adders 
in the three arithmetic data paths. An error in the computation of 
any rotation direction appears (if not masked) as an erroneous 
final result produced by the circuit computing the corresponding 
iteration. Under the single-module fault assumption, at most one 
final output will be affected by a fault that occurs in one of the 
rotation direction generators. Therefore, even if rotation 
directions are not directly checked and corrected within each 
stage, errors due to a fault in one of the direction generators are 
still detected and corrected at the final outputs. To limit the 
circuit complexity without impairing the correction abilities, we 
introduce one rotation direction generator in each stage of every 
iteration. The three copies of the rotation direction generated in 
each stage are not voted but used independently in the 
corresponding iteration since possible errors will be indirectly 
detected and corrected by voting the replicas of the final results. 

3.4. The fault tolerant architecture 

The resulting architecture with concurrent error correction ability 
is shown in Figure 1. Essentially, it is obtained by tripling the 
non fault tolerant architecture. More precisely, the fault-tolerant 
architecture consists of three triplets of n-bit data paths: each 
triplet realizes the computation of the corresponding b-bit data 
path in the nominal architecture. The n-bit data paths of a triplet 
operate in parallel on the corresponding inputs: each of them 
processes in parallel the same portion (most-, middle-, or least- 
significant) of the operands during each iteration. The internal 
structure of each data path is identical to the nominal one (except 
that the data word size is reduced). The proposed approach can 
be adopted with any type of adders/subtractors in each stage (i.e., 
ripple-carry, carry-look-ahead, conditional-sum, carry-save 
units). Registers in each stage hold the portions of the 

intermediate results that have been produced by the first iteration 
in the x and y data paths and that are needed in the subsequent 
stage in the other iterations of the y and x data paths. 

Each stage contains three copies of the rotation direction 
generator. One is used for each iteration, the internal structure of 
these generators is identical to that which is used in [4, 6]. 
Rotations independently computed during the first iteration are 
stored (without being voted) in registers to be used during the 
subsequent two iterations. The contribution to the final results 
generated by the stages during the first iteration are stored in 
registers until they can be added to the least significant portions. 
Similarly, the contribution of the second iteration is stored in 
other registers until the middle-significant part of the results 
become available in the third iteration. The merging and voting 
module at the outputs of the stages provides the final carry 
propagation and the appropriate merging of the intermediate 
partial results produced by the iterations. Voting corrects any 
single error in the three values of each output. 

To minimize the latency, conditional-sum based structures can 
be adopted for the arithmetic units [6]. Computation in data paths 
and generation of the rotation direction can thus be parallelized.  
To enhance the throughput, pipelining can be implemented by 
placing pipeline registers between each pair or stages, as shown 
in [8]. Registers are implicitly protected by the use of TS-TMR. 
The error correction ability is identical in all these architectures.  

4. PERFORMANCE AND CONCLUSION 

The design of a CORDIC architecture with concurrent error 
correction abilities has been presented by using Time-Shared 
Triple Modular Redundancy. This technique is typical of purely 
arithmetic data paths: we have shown how to apply it 
successfully also to data paths with conditioned operations. 
Rotation prediction schemes have been used to predict the 
rotation direction while processing only a portion of each 
operand, thus allowing for the application of TS-TMR.  

The circuit complexity increase with respect to a conventional 
(i.e., non-fault-tolerant) design is about 100%. The latency 
increase is about 40% for ripple-carry adders, but it is well over 
200% for carry-look-ahead, conditional-sum and carry-save units. 
The throughput reduction is about 30% for ripple-carry adders 
and about 70% for the others. The TS-TMR design has less 
circuit complexity than other modular redundancy techniques. It 
is also more effective than other time redundancy approaches 
when the latency increase is considered since the TS-TMR 
operands are shorter than the nominal ones. 
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Figure 1. The CORDIC structure with concurrent error correction ability. 


