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ABSTRACT

Event based sampling occurs when the time instants are
measured everytime the amplitude passes certain pre-defined
levels. This is in contrast with classical signal process-
ing where the amplitude is measured at regular time inter-
vals. The signal processing problem is to separate the signal 4
component from noise in both amplitude and time domains.

Standard sampling

Event based sampling occurs in a variety of applications.
The purpose here is to explain the new types of signal pro- B
cessing problems that occur, and identify the need for pro- gk

cessing in both the time and event domains. We focus on
rotating axles, where amplitude disturbances are causedby €2
vibrations and time disturbances from measurement equip- E

ment. As one application, we examine tire pressure mon-
itoring in cars where suppression of time disturbance is of
utmost importance. osf A~
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Event-based sampling

The classical sampling technique measures the amplitude
of a signaly(t) (continuous in both time and amplitude) at BBl
regular time intervals

ylk] = y(kA,), k=1,2,...,N,. 1)

The alternative studied here is to measure the times when g ... ...
the signal amplitude crosses pre-defined and here equidis-
tant levels:

tk] = t(kA,), k=1,2,...,N, @)

This will be refered to as thevent domainwhile (1) is the : I :

usualtime domain % >0 a0 & 80 00
Figure 1 illustrates the principle. Compared to inte- Time

gral theory, these principles might be called Riemann and

Lebesgue sampling, respectively. There are at least two rea

sons for studying event based sampled signals:

Fig. 1. Sampling with equidistant time (a) and amplitude
(b) levels.

e Periodicity in the event domain comes naturally from
certain disturbances and faults. Spectral analysis of
t[k] might reveal this information, which might leak
out in the spectrum of[k].



e Many sensors deliver signals in the event domain. In the signal processing community, event based sam-
) . . pling seems not very deeply studied. Existing literature

We will focus on rotating axles as the wheel axles in cars, 5y non-standard sampling focusesralti-rate signal pro-
the camshaft axle in engines, motor axles in roteo¢s In cessing(the use of different sampling intervals), or non-
these applications, the standard sensor is a toothed whee|,nitorm frequency resolution, see [1]. Recently, event-based
see Figure 2. The sensor generates a pulse each time a toolf mjing has been studied in the control community. The
passes, glther utilizing changes in the elgctromagnetlc ﬂeldpaper [2] examines if control actions only undertaken when
or by using the Hall effect. Because of imperfect teeth, a ihe output passes certain levels can improve control perfor-
periodic error will occur in the measurements. mance. They analyse first order systems. As they point out,

Thus, the signal can be seen as consisting of three coMye analytic complexity seems tremendous for higher order
ponents systems.

That event based sampling is beneficial for modeling is
pointed out in [3]. Modeling using a linear model may be
Here s(¢) is the signal component from angular velocity, able to describe measured data more accurately, when the

euime(t) is a disturbance caused by the toothed wheel andtime iS replaced by the flow, which is supported by data
also imbalance in the rotating parts, whilg,piitudc(t) is a from a paper plants.
disturbance on amplitude caused for instance by vibrations.
We will assume that we have a tool for interpolating 2. MOTIVATING EXAMPLE
back and forth between the timgk] and event[k] do-
mains. The termame(t) in (3) assumes that the event sam- Consider an axle which is rotating with velocity
pled signal is interpolated back to time domain data.

y(t) = S(t) + eamplitude(t) + etime(t)~ (3)

. - 1 _G-1/2)?
We suggest the following general definitions: v(t) = Yme sT2/4 4+ Aw + Asin(wt)  (4)
Ve D e —
e A disturbance in thevent domairis additive ont[k] Camplituds

and gives rise to the termine(t) in (3). =)

where the latter term is an external harmonic disturbance.
The angle is thus given by(t) = ffoo v(T)dr. Sam-
pling is performed, = 4 times per revolution. There is a
In the application, the vibration contains useful information timing error in the sampling, so a vector, . .., ¢, implies
about the tire pressure, so the signal processing task is tghat
extracteamplitude(t) While being insensitive teyin,e (%) and

s(t).

e A disturbance in theime domainis additive ony[k]
and is the (standard) noise tet@npiitude () in (3).

t[k] = t(kAy + Yk mod n)- (5)

Thus, the signal and sampling can be described as

/3721
ty) =y (), @)
t[k] = t(kAy + <pkmodn)~ (8)

Here® is the Gaussian probability distribution function.
Figure 1 shows the result with

y(t) =Y <ﬂ> + Aw + Aw cos(wt), (6)

A=1w=2Y =1T=100,A, =1,0=(0,1,-2,3).

3 Figure 3 shows frequency analysis [df FT (y[k])| (a,b)
and|FFT(t[k])| (c,d), respectively, Figure 3(a) shows fre-
quency analysis of(t) and (b) ofs(¢) + eamplitude(t). The

— Ideal Toothed wheel ‘ amplitude disturbance gives rise to a distinct peak. Figure
Unideal Toothed Whee! 3(c) shows frequency analysis€f) +eamplitude(t) and (d)
of 5(t) + eamplitude (t) + etime(t). The energy in the ampli-
Fig. 2. Toothed wheel performs event based sampling on tyde disturbance is leaking out and hard to see, and the vis-
rotating axles. The teeth are not exactly equally large, whichiple peaks come from the time disturbance. If one interpo-
implies a periodic measurement error. lates the latter signal back to the time domain, the frequency




content would be very much destroyed by the time distur-
bance, as the application study in the next section clearly
demonstrates.

Frequency analysis on time domain data
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Frequency

Fig. 3. Frequency analysis from time domain without dis- Returning to (3), the signal(¢) has all its energy for
turbance (a) and with disturbang&) + eamplitude(t) (D). low frequencies below 5 Hz. Figure 4(a) shows the high
Frequency analysis from event domain with amplitude dis- pass original filtered signal to remove the otherwise domi-
turbance (c) and both kind of disturbances (d). nating signal energy. The time disturbangg,.(t) has its
dominating disturbance frequency at= 11 Hz. Here the
test drive was conducted with constant speed, that is why

3. TIRE PRESSURE MONITORING etime(t) gives a distinct peak. When car speed changes, its
' energy will leak out and the situation is even worse.

The wheel speed is central for many control tasks in modern_ The proposal to get rid of the problems due to mechan-
cars, for instance ABS, traction control, anti-spin control, ical errors in the toothed wheel is to identify the magnl_tude
cruise control and dynamic stability control. Besides this, it Of the errors. Because the toothed wheel can be subject of

is central for estimation purposes as navigation [4], friction Wear and tear or it can be hit by stones, the identification

estimation and tire pressure monitoring [5]. algorithm is recursive. _
One approach to tire pressure monitoring is based onthe A linear regression model for the toothed wheel is
assumption that the tire can be queled as a spring-damper y[k] = wlk] - (tx — ta_1) — 27/ L 9)
system, see [6, 7] and [8]. The spring constant then changes .
when the tire air pressure changes. A spring-damper sys- = ¢[k]" 0 + e[K] (10)
tem is characterized by its resonance frequency. The idea is 0 = (610---6)T (11)
to estimate th|s_resonance frequency and detect whether it olk] = (01---0) posk mod Lis1 (12)
changes or not in order to detect e.g. a puncture before the o
tire breaks down so the vehicle can be stopped safely. The wk] = ——— (13)
resonance frequency can be expected to be in the interval b = tr—r
40-50 Hertz, depending on tire type and pressure. L
If the wheel speed signal is directly transformed to the Z % =0 (14)

frequency domain, Figure 4(a) shows that a disturbance is
dominating. One of its harmonics lie in the interesting fre- wherew is the angular velocity of the wheel arddis the
guency range, so simple band-pass filtering is not enough. number of teeth in the toothed wheel. The measurement is



here based on the mean velocity over one revolution of theevent domains, respectively. Finally, a method to estimate
wheel, and the deviation from the mean level is modeled the timing errors was given and applied to real data for the

as tooth offsets. An important assumption for (9) to work
satisfactory is that the angular velocity is almost constant
during one cycle (one wheel revolution), i.e. the time con-

purpose of tire pressure monitoring.

5. REFERENCES

stant of the signal needs to be much larger than the cycle

time. In vehicle dynamic applications, this is not a limita-
tion because the time constant for the velocity of a car is
much larger than one wheel revolution. An identification of
the mechanical errors in a toothed wheel using (9) can be
seen in Figure (5).
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Fig. 5. Identified mechanical errors in toothed wheel using

9).

As can be seen in the figure some of the mechanical er-
rors are too large to be neglected. Instead the identified off-
sets can be used to correct the original signal. The idea with
the correction is to compensate for the mechanical errors:

Atcorr = Tk, - 6/w[k] (15)
After correction, the signal can be transformed, and the re-
sult can be seen in Figure 4(b). Obviously, (9) and (15)
works and no signs from false frequencies from the mechan-
ical errors can be seen in the figure. Now it is possible to
identify the resonance frequency in the range— 50H z
corresponding to the tire air pressure. The details of this
algorithm, not specific for event based sampling, are de-
scribed in [6].

4. CONCLUSIONS

Event based sampling seems to be an important concept fo
noise rejection and estimation in rotating axles. It occurs
naturally by the commonly used toothed wheel sensoring
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angular speed, but also in other type of flow sensors. It was

pointed out by both a simulated example and real data from
a car wheel that additive harmonic signals and timing errors
in the sensor give rise to two totally different kind of distur-

bances, which may be analysed and rejected in the time and



