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ABSTRACT
Event based sampling occurs when the time instants are
measured everytime the amplitude passes certain pre-defined
levels. This is in contrast with classical signal process-
ing where the amplitude is measured at regular time inter-
vals. The signal processing problem is to separate the signal
component from noise in both amplitude and time domains.
Event based sampling occurs in a variety of applications.
The purpose here is to explain the new types of signal pro-
cessing problems that occur, and identify the need for pro-
cessing in both the time and event domains. We focus on
rotating axles, where amplitude disturbances are caused by
vibrations and time disturbances from measurement equip-
ment. As one application, we examine tire pressure mon-
itoring in cars where suppression of time disturbance is of
utmost importance.

1. INTRODUCTION

The classical sampling technique measures the amplitude
of a signaly(t) (continuous in both time and amplitude) at
regular time intervals

y[k] = y(k∆t), k = 1, 2, . . . , Ny. (1)

The alternative studied here is to measure the times when
the signal amplitude crosses pre-defined and here equidis-
tant levels:

t[k] = t(k∆y), k = 1, 2, . . . , Nt (2)

This will be refered to as theevent domain, while (1) is the
usualtime domain.

Figure 1 illustrates the principle. Compared to inte-
gral theory, these principles might be called Riemann and
Lebesgue sampling, respectively. There are at least two rea-
sons for studying event based sampled signals:

• Periodicity in the event domain comes naturally from
certain disturbances and faults. Spectral analysis of
t[k] might reveal this information, which might leak
out in the spectrum ofy[k].
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Fig. 1. Sampling with equidistant time (a) and amplitude
(b) levels.



• Many sensors deliver signals in the event domain.

We will focus on rotating axles as the wheel axles in cars,
the camshaft axle in engines, motor axles in robotsetc. In
these applications, the standard sensor is a toothed wheel,
see Figure 2. The sensor generates a pulse each time a tooth
passes, either utilizing changes in the electromagnetic field
or by using the Hall effect. Because of imperfect teeth, a
periodic error will occur in the measurements.

Thus, the signal can be seen as consisting of three com-
ponents

y(t) = s(t) + eamplitude(t) + etime(t). (3)

Here s(t) is the signal component from angular velocity,
etime(t) is a disturbance caused by the toothed wheel and
also imbalance in the rotating parts, whileeamplitude(t) is a
disturbance on amplitude caused for instance by vibrations.

We will assume that we have a tool for interpolating
back and forth between the timey[k] and eventt[k] do-
mains. The termetime(t) in (3) assumes that the event sam-
pled signal is interpolated back to time domain datay(t).

We suggest the following general definitions:

• A disturbance in theevent domainis additive ont[k]
and gives rise to the termetime(t) in (3).

• A disturbance in thetime domainis additive ony[k]
and is the (standard) noise termeamplitude(t) in (3).

In the application, the vibration contains useful information
about the tire pressure, so the signal processing task is to
extracteamplitude(t) while being insensitive toetime(t) and
s(t).
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Fig. 2. Toothed wheel performs event based sampling on
rotating axles. The teeth are not exactly equally large, which
implies a periodic measurement error.

In the signal processing community, event based sam-
pling seems not very deeply studied. Existing literature
on non-standard sampling focuses onmulti-rate signal pro-
cessing(the use of different sampling intervals), or non-
uniform frequency resolution, see [1]. Recently, event-based
sampling has been studied in the control community. The
paper [2] examines if control actions only undertaken when
the output passes certain levels can improve control perfor-
mance. They analyse first order systems. As they point out,
the analytic complexity seems tremendous for higher order
systems.

That event based sampling is beneficial for modeling is
pointed out in [3]. Modeling using a linear model may be
able to describe measured data more accurately, when the
time is replaced by the flow, which is supported by data
from a paper plants.

2. MOTIVATING EXAMPLE

Consider an axle which is rotating with velocity

v(t) = Y
1√

2π3T 2/4
e
− (t−T/2)2

3T2/4︸ ︷︷ ︸
s(t)

+Aω +A sin(ωt)︸ ︷︷ ︸
eamplitude

(4)

where the latter term is an external harmonic disturbance.
The angle is thus given byy(t) =

∫ t
−∞ v(τ)dτ . Sam-

pling is performedn = 4 times per revolution. There is a
timing error in the sampling, so a vectorϕ1, . . . , ϕn implies
that

t[k] = t(k∆y + ϕk mod n). (5)

Thus, the signal and sampling can be described as

y(t) = Y Φ

(
t− T/2√

3T 2/4

)
+Aω +Aω cos(ωt), (6)

t(y) = y−1(t), (7)

t[k] = t(k∆y + ϕkmodn). (8)

HereΦ is the Gaussian probability distribution function.
Figure 1 shows the result with

A = 1, ω = 2, Y = 1, T = 100,∆t = 1, ϕ = (0, 1,−2, 3).

Figure 3 shows frequency analysis of|FFT (y[k])| (a,b)
and|FFT (t[k])| (c,d), respectively, Figure 3(a) shows fre-
quency analysis ofs(t) and (b) ofs(t) + eamplitude(t). The
amplitude disturbance gives rise to a distinct peak. Figure
3(c) shows frequency analysis ofs(t)+eamplitude(t) and (d)
of s(t) + eamplitude(t) + etime(t). The energy in the ampli-
tude disturbance is leaking out and hard to see, and the vis-
ible peaks come from the time disturbance. If one interpo-
lates the latter signal back to the time domain, the frequency



content would be very much destroyed by the time distur-
bance, as the application study in the next section clearly
demonstrates.
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Fig. 3. Frequency analysis from time domain without dis-
turbance (a) and with disturbances(t) + eamplitude(t) (b).
Frequency analysis from event domain with amplitude dis-
turbance (c) and both kind of disturbances (d).

3. TIRE PRESSURE MONITORING

The wheel speed is central for many control tasks in modern
cars, for instance ABS, traction control, anti-spin control,
cruise control and dynamic stability control. Besides this, it
is central for estimation purposes as navigation [4], friction
estimation and tire pressure monitoring [5].

One approach to tire pressure monitoring is based on the
assumption that the tire can be modeled as a spring-damper
system, see [6, 7] and [8]. The spring constant then changes
when the tire air pressure changes. A spring-damper sys-
tem is characterized by its resonance frequency. The idea is
to estimate this resonance frequency and detect whether it
changes or not in order to detect e.g. a puncture before the
tire breaks down so the vehicle can be stopped safely. The
resonance frequency can be expected to be in the interval
40-50 Hertz, depending on tire type and pressure.

If the wheel speed signal is directly transformed to the
frequency domain, Figure 4(a) shows that a disturbance is
dominating. One of its harmonics lie in the interesting fre-
quency range, so simple band-pass filtering is not enough.
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Fig. 4. Signal spectra from measurements (a) and after time
disturbance estimation and rejection (b).

Returning to (3), the signals(t) has all its energy for
low frequencies below 5 Hz. Figure 4(a) shows the high
pass original filtered signal to remove the otherwise domi-
nating signal energy. The time disturbanceetime(t) has its
dominating disturbance frequency atf = 11 Hz. Here the
test drive was conducted with constant speed, that is why
etime(t) gives a distinct peak. When car speed changes, its
energy will leak out and the situation is even worse.

The proposal to get rid of the problems due to mechan-
ical errors in the toothed wheel is to identify the magnitude
of the errors. Because the toothed wheel can be subject of
wear and tear or it can be hit by stones, the identification
algorithm is recursive.

A linear regression model for the toothed wheel is

y[k] = ω[k] · (tk − tk−1)− 2π/L (9)

= ϕ[k]T θ + e[k] (10)

θ = (δ1δ2 · · · δL)T (11)

ϕ[k] = (01 · · · 0) posk mod L is 1 (12)

ω[k] =
2π

tk − tk−L
(13)

L∑
i=1

δi = 0 (14)

whereω is the angular velocity of the wheel andL is the
number of teeth in the toothed wheel. The measurement is



here based on the mean velocity over one revolution of the
wheel, and the deviation from the mean level is modeled
as tooth offsets. An important assumption for (9) to work
satisfactory is that the angular velocity is almost constant
during one cycle (one wheel revolution), i.e. the time con-
stant of the signal needs to be much larger than the cycle
time. In vehicle dynamic applications, this is not a limita-
tion because the time constant for the velocity of a car is
much larger than one wheel revolution. An identification of
the mechanical errors in a toothed wheel using (9) can be
seen in Figure (5).
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Fig. 5. Identified mechanical errors in toothed wheel using
(9).

As can be seen in the figure some of the mechanical er-
rors are too large to be neglected. Instead the identified off-
sets can be used to correct the original signal. The idea with
the correction is to compensate for the mechanical errors:

∆tcorr = Tk − δ/ω[k] (15)

After correction, the signal can be transformed, and the re-
sult can be seen in Figure 4(b). Obviously, (9) and (15)
works and no signs from false frequencies from the mechan-
ical errors can be seen in the figure. Now it is possible to
identify the resonance frequency in the range40 − 50Hz
corresponding to the tire air pressure. The details of this
algorithm, not specific for event based sampling, are de-
scribed in [6].

4. CONCLUSIONS

Event based sampling seems to be an important concept for
noise rejection and estimation in rotating axles. It occurs
naturally by the commonly used toothed wheel sensoring
angular speed, but also in other type of flow sensors. It was
pointed out by both a simulated example and real data from
a car wheel that additive harmonic signals and timing errors
in the sensor give rise to two totally different kind of distur-
bances, which may be analysed and rejected in the time and

event domains, respectively. Finally, a method to estimate
the timing errors was given and applied to real data for the
purpose of tire pressure monitoring.
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