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ABSTRACT

This paper presents a new methodology for evaluation and
design of variable step size aaptive dgorithms. The new
methodology is based on a learning plane, which combines the
evolutions of both the step size and the mean square eror. It
includes both transient and stealy-state behaviors and can be
used to compare performances of different algorithms against an
optimum trajectory in the learning plane. The new technique can
also be used for algorithm optimization in system identification
appli cations.

1. INTRODUCTION

Variable step size aaptive dgorithms are useful in severa
practical applications [1], [5], [6], [7], [4]. A proper step size
adjustment strategy can improve dgorithm’s performance (as
compared to its fixed step size counterpart) during both the
transient and steady-state (including tracking in nonstationary
environments) phases of adaptation [5]. Several step size control
approaches have been proposed in the literature [6], [7], [8], [9],
[10], [11], [12], [13], [14]. Most include parameters which
control the time evolution of the step size. Thus, using variable
step size dgorithms raisestwo questions: (i) What isthe best step
size sequence for a given application, and (ii) How to adjust the
algorithm’ s parameters to generate this sequence.

Most design equetions available for variable step size
algorithms are based on stealy-state objectives. The dgorithm’s
transient behavior is usually verified through simulations.
Different algorithms are compared by confronting their simulated
transient performances for a given steady-state behavior. It would
be desirable to consider both transient and stealy-state
performances in an algorithm’s design procedure. It would also
be important to benchmark a given design against a theoretical
optimum performance, not just against the performance of
another algorithm which may have not been designed for optimal
performance.

This paper proposes a new performance evaluation
methodology. It is based on a theoretic optimal step size
sequence and on an adequate simultaneous representation for
both the cost function and the step size time evolutions. Transient
and stealy-state peformance objectives can be benchmarked
against the optimum algorithm behavior. The new methodology
can aso be used for algarithm design optimization in the
important case of system identification with a white reference
inpu. The proposed technique is applied to the design of the
simple VSSalgorithm proposed in [6]. It is shown that by using
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the proposed transient performance optimization in addition to
the stealy-state design equations in [6], the VSSagarithm can
outperform recently proposed algorithms [7], [12].

2. OPTIMAL STEP SIZE SEQUENCE

The system in Fig.1 can model several adaptive filtering
applications [1]. W°:§N8,wf,---,w§_1§ is an unkrown

system response, W(n) =[w,(n), wl(n),---,wN_l(n)]T is the

adaptive filter response, x(n) is the reference signal,
Q) 0
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Fig.1 — Adaptive system

X(n) =[x(n),x(n-1),---,x(n-N+1)]" is the input observation
vector, y(n) =X"(n)W(n) is the aaptive filter output, z(n) is
the measurement noise which is assumed white and Gaussan
(WGN), with variance ¢ and urcorrelated with any other
signal, d(n)=XT(n)W° +z(n) is the noisy primary signa, and
e(n) =d(n) —y(n) is the estimation error. The cost function is

the mean square aror (MSE) &(n)=E{ ez(n)}. The weight upcete
equation for the variable step size LMS algarithm is given by

W(n+1) = W(n) +p(n) e(n)X(n) )

where the step size p(n) must be constrained to aninterval [min ,
Mmax] tO preserve dgorithm’s gability and ability to track
nonstationary environments [1], [6], [7].

For x(n) zero-mean Gausdan, a godal estimate for the
optimal step size sequence can be obtained from the well known
analytical model for the fixed step size LM S algorithm [1], [2]:
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where R = E{X(n)X"(n)} is the inpu autocorrelation matrix,
K(n) =EV(n)VT(n)} is the weight error vector correlation
matrix (V(n)=W(n) -W°), &uin is the minimum MSE and
tr{«} stands for the trace of a matrix. The optimal step size

sequence for stationary environments can be obtained from (2)
and (3) by minimizing §(n+1) for agiven §(n) asafunction of
U [3], [12]. The optimum step size sequenceis given by

tl’{ RZK(n)} (4)
t{R% tr{RK(n)} + 2t{R*K(n)} + &__O{R%

Moy (N) = ‘
This important result is frequently neglected in the literature.
Comparisons of different algorithms are usualy based on
simulation results [6], [7], [11], [13], [14]. The next sections will
show that the results of such comparisons can be misleading.

3. THE LEARNING PLANE

Evaluation of avariable step size dgorithm using separate curves
for p(n) and &(n) isnot trivial [6], [7], [11], [14]. Fig. 2ill ustrates
how p(n) and g(n) can be seen as two possble two-dimensional
projections of the threedimensional trajectory &(j,n). Notice dso
that athird projection on the plane [E ,p] combines smultaneous
(sameindex n) informations about p(n) and &(n) in asingle curve
which establi shes adirect cause-effect relationship. Thislearning
plane permits algorithm evaluation in the transient phase andin
steady-state.

Eas(H,N)
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Fig. 2 — Projections of the threedimensional trajectory
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Fig. 3 shows a typical leaning plane p vs §. The aes are

reversed (compared to Fig. 2) for better visuali zation. Each of the
regions and curves in this plane ae described in the foll owing.

3.1. Theoptimum trajedory

The optimum trajectory is defined by the curve obtained from the
recursive equations (2), (3) and (4) for each n. The closer an
adaptive dgorithm’ strgjectory isto the optimum, the better isthe
algarithm’ s dynamic behavior.
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Fig.3 — Theleaning plane

3.2. The adaptive algorithm’slearning trajedory

A variable step size dgoarithm is characterized by its gep size
upcete euation. Define the alaptive dgarithm’'s leaning
trajectory as the sequence of mean step sizes E[u(n)] as a
function of &(n). To dbtain an analytical model for the adaptive
algarithm'’ s trgjectory, the foll owing simplifying assumptions are
used [1], [6], [7], [11]:

A.1) X(n) and V(n) are statistically independent. This is
the independence assumption, frequently used in adaptive
algarithm behavior analyses [1], [5], [6], [11], [12].

A.2) u(n) and p?(n) are independent of X(n) and V(n)
(61, [7], [11], [12].

A3) E[u*(n)]=E*[u(n)] .

A.2 and A.3 are acaurate when the statistical fluctuations of
p(n) are smal when compared to those of X(n) and e(n) [6],
[7], [11]. Using A.1-A.3 and taking the expectation of (3) (with
replaced with p(n) ) over p(n) yields

K(n+1) =K(n) - E[u(n)] (JRK (n) + K(n)R]
+ E?[u(m] IR ar{RK(n)} + 2RK(NR+R &, { (
5)

Equations (2) and (5) can be combined with an analytical model
for E[p(n)] to describe the leaning trajectory on the [p,&] plane.

3.3. Steady-state and the stagnation curve

The stagnation curve is defined as the locus in the [p,&] plane
corresponding to convergence rate egual to zero, i.e.

£, (W) =lim&(n,) ©)

The stealy-state behavior corresponds to a single point on the
stagnation curve. The dgorithm’s trgjectory starts at the extreme
right and progresses with time towards the stagnation curve. It
stops (steady-state) when it touches the stagnation curve.

&, (1) can be determined from A.1-A.3 and the eyuation for

LMS misadjustment [1]. For x(n) white[1], [2],
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where o2 isthe variance of x(n).

3.4. Thetransient and stagnation regions

The convergence rate reduces sgnificantly as the dgorithm
approaches the stagnation curve. Deviations from the optimum
trajectory in this region have grea impact on agorithm
performance. Define the boundary between a transient region
and a stagnéion region as the vertical line through the point
[Mop(0),&(0)] in the leaning plane (see Fig. 3). This point
corresponds to the stealy-state M SE for the fixed step size LMS
agaithm with p=p,, (0) . Experience shows that agreement

between agarithm and optimum trgjectories within the
stagnaion regionis most important for algorithm’s peformance.

3.5. The optimum solution

This is the optimum stagnation point (seeFig. 3). At this point,
the steady-state mean weight vector is suchthat & =€, ..

4. APPLICATIONS

The initi ali zation and the limits [min , Kmax] Play important roles
in the step size alaptation. A goad strategy for fast convergence
is to initialize the dgorithm with po=po(0) obtained from (4)
using estimates about the signal environment. For white x(n)
white, it can be eaily shown that

2 _ 2
= 20d2 ozz 2 2 (8)
(N +2) g5 (04 - 0,) + No,0;

uo

where a7 is the variance of d(n). 05, ¢ and o’ can be
estimated from data measurements. p, in (8) is used in the

following system identification examples. This is the most used
appli cation to compare diff erent variable step size dgarithms and
alowstoill ustrate the use of the learning plane & adesign tod.

Consider the Variable Sep Sze LMS Algorithm (VSS9
proposed in [6]. Its p adaptation equetion is

H(n+1) = a [u(n) +y&* (n) 9

Taking the expected value of (9) and wing the expresson
derived in [6, Eq. 43] for steady-state misadjustment M yields

Elu(n+1] = o [Eu(n)] + yL&(n) (10

_g-BMEE  @-o®) (11)
H +MOQg23@-a)T{R}o?

Y

Given M and an initia estimate a, for a, y =, is determined
from (11). The pair {a,, Yo} leadsto atrajectory in the plane[u,
€], which is determined from (2), (5) and (10). The initial value
0, can then be iteratively adjusted to determine afinal corrected
pair { Ocor, Yeor} Which leads to the greaest proximity between the
algarithm’s and the optimum trajectories. Usualy, {0cor Yeor}

does not match the design proposed in [6]. Experience shows that
the pair {acor , Yeory Can be usually obtained after few (two o
threg parameter adjustments, making the design optimization
very simple.

4.1. Algorithm comparisons

A Modified VSSagarithm (MVSS has been recently proposed
in [7]. Results in [7] indicate that the MVSS agoarithm
outperforms the VSS algorithm. Examples presented in [7] are
used here to ill ustrate the VSSagorithm design using the new
methodology. Though the responses W° were not provided in
[7], equivalent responses can be used for the case of white x(n)
(symmetric M SE surface) without aff ecting the conclusions.

Low SNR: In [7, Ex. 1] N=4 and x(n) is WGN with g2 =1.
z(n) isalso WGN, with ¢ =1. The unkrown systemis W°=[2.8,
2.8, 2.8, 2.8]". The parameters used in [7] were Oims=0.97,
Vinvs=102, Brvs=0.99, 1 ys=0.97 and y,ss=10°. These parameters
lead to a steady-state excess MSE §_ = -34dB (M=6.9x10%).

AlSo, [WnHs] =[6%10,0.. Fig. 4 shows the optimum
trajectory, aswell astheleaningtrgjectories andthe M SE for the
original VSS and the corrected VSS designs. Note that the
trajectory for the corrected VSSalgarithm is much closer to the
optimum trajectory, specialy in the stagnation region. It was
obtained for i, =5%10™, pmax = H(0) = o= 0.163 0 ,=0.973
and y,r = 9.05x10°% Note from the MSE curves that the
optimized VSSalgorithm outperforms the MV SSalgarithm.

High SNR: [7, Ex.3] uses pmx=0.1 and pmin=5x10"%
Omvss=0.97, Brmvss=0.99, Ymvss=1, 0ys=0.97 and y,e=0.02. For
these parameters &, =-60dB and M=1.38x10° An equivalent
system is W°=[1.58, 1.58, 1.58, 1.58]". x(n) and z(n) are WGN
with ¢?>=1 and ¢2=10°. Traectory correction leas to
Ocor=0.977 and yor =0.0154 with p(0)= pmax =Ho = 0.167. The
results are shown in Fig. 5. The improvement obtained from the
redesign of the VSSagaithmis clea.

4.2. Real time optimization vs design optimization

This example compares two different approaches for p
adjustment. The p-adjustment algorithms proposed in [1], [11],
[12] perform parameter adjustment in red time. Simpler
algorithms (such as VS require parameter optimization in the
design phese. The latter require smaller computational
complexity during gperation. This example compares the NASS
[12] (the most recently proposed from [1], [11], [12]) and the

VSS agarithms. Let W =01, 1,1, -, 1", (Wol=D),
N=30 and M=1%. x(n) and z(n) are WGN with ¢ =1 and
02 =107, 0,=0.994 and y,,,=0.0039 are determined for the
VSS agaithm. p=p,=0.002 and Ly =1 were used for the
NASSalgarithm since x(n) isWGN [12]. Fig. 6 showsthe design
and simulation results. It is clea from the MSE curves that the

VSS agoithm can have a very competitive performance if
optimized using the proposed technique.



4.3. Non-stationary system identification

This example repeds the previous one with an abrupt change
from W° to -W° at n=1000 [7], [1]1]. Fig. 7 shows the
simulation results. It can be again verified that even designed for
a small misadjustment, the optimized VSS algarithm performs
very well during transient after abrupt nonstationariti es.

5. CONCLUSIONS

It is important to devise aalytical tods for the systematic
evaluation of variable step size adaptive dgorithms. The new
methodology proposed in this paper provides a simple and
eff ective technique to compare dgorithms derived fromthe LMS
algorithm. It considers both transient and steady-state behaviors.
In system identification, it is aso posgble to use the
methodology for design. The results have shown that previous
algorithm comparison results were based on poor designs and
must be re-addressed.
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Fig. 4 — Left: (ab) original and corrected VSS
trajectories; (c) optimum trgjectory. Right: (ab) VSS
origina and corrected MSE; (c) MSE for the MVSS
algorithm . Average of 200redi zations
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Fig. 5 — Left: trajectories of (a) origina and (b) corrected
VSS (c) optimum trajectory. Right: MSE for () original
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algarithm. Simulation averaging 200runs.

H &as(N)
&N (©

o ety 1 Y\,(a)
0.02 L . %\J\
0.015; (a) 20 \

0.005 fg_ %} -.SD i "‘
0,35. -30 .25 .20 .15 .10 ,5. 0 EdB.E "°0 200 400 600 800 100012001400 lEDDlEDF]ZDDD
Fig. 6 — Left: Trgectories of (a) NASS (b) VSS
corrected; (c) optimum trgjectory. Right: MSE of ()
NASS (b) original VSS (c) corrected VSS Simulations
averaging 100runs.

&ae(n)

A\ Y‘%
AN

(b)
"0 500 1000 1500 2000 2500 3000 3500 4000
n

Fig. 7 — MSE in non-stationary system identification.
Algarithms: (a) NASS (b) corrected VSS Simulation
averaging 100runs




