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ABSTRACT 
 
This paper presents a new methodology for evaluation and 
design of variable step size adaptive algorithms. The new 
methodology is based on a learning plane, which combines the 
evolutions of both the step size and the mean square error. It 
includes both transient and steady-state behaviors and can be 
used to compare performances of different algorithms against an 
optimum trajectory in the learning plane. The new technique can 
also be used for algorithm optimization in system identification 
appli cations. 
 

1. INTRODUCTION 
 
Variable step size adaptive algorithms are useful in several 
practical appli cations [1], [5], [6], [7], [4]. A proper step size 
adjustment strategy can improve algorithm’s performance (as 
compared to its fixed step size counterpart) during both the 
transient and steady-state (including tracking in nonstationary 
environments) phases of adaptation [5]. Several step size control 
approaches have been proposed in the literature [6], [7], [8], [9], 
[10], [11], [12], [13], [14]. Most include parameters which 
control the time evolution of the step size. Thus, using variable 
step size algorithms raises two questions: (i) What is the best step 
size sequence for a given appli cation, and (ii ) How to adjust the 
algorithm’s parameters to generate this sequence. 
  Most design equations available for variable step size 
algorithms are based on steady-state objectives. The algorithm’s 
transient behavior is usuall y verified through simulations. 
Different algorithms are compared by confronting their simulated 
transient performances for a given steady-state behavior. It would 
be desirable to consider both transient and steady-state 
performances in an algorithm’s design procedure. It would also 
be important to benchmark a given design against a theoretical 
optimum performance, not just against the performance of 
another algorithm which may have not been designed for optimal 
performance. 
 This paper proposes a new performance evaluation 
methodology. It is based on a theoretic optimal step size 
sequence and on an adequate simultaneous representation for 
both the cost function and the step size time evolutions. Transient 
and steady-state peformance objectives can be benchmarked 
against the optimum algorithm behavior. The new methodology 
can also be used for algorithm design optimization in the 
important case of system identification with a white reference 
input. The proposed technique is applied to the design of the 
simple VSS algorithm proposed in [6]. It is shown that by using 

the proposed transient performance optimization in addition to 
the steady-state design equations in [6], the VSS algorithm can 
outperform recently proposed algorithms [7], [12]. 
 

2. OPTIMAL STEP SIZE SEQUENCE 
 
The system in Fig. 1 can model several adaptive fil tering 

appli cations [1]. 
To o o o

0 1 N 1W w , w , , w − =  
�  is an unknown 

system response, [ ]T

0 1 N 1W(n) w (n), w (n), , w (n)−= �  is the 

adaptive filt er response, x(n)  is the reference signal, 

[ ]T
X(n) x(n),x(n 1), ,x(n N 1)= − − +�  is the input observation 

vector, Ty(n) X (n)W(n)=  is the adaptive filt er output, z(n) is 
the measurement noise which is assumed white and Gaussian 
(WGN), with variance 2

zσ  and uncorrelated with any other 

signal, T od(n) X (n)W z(n)= +  is the noisy primary signal, and 

)n(y)n(d)n(e −=  is the estimation error. The cost function is 
the mean square error (MSE) ξ(n)=E{ e2(n)} . The weight update 
equation for the variable step size LMS algorithm is given by  

)n(X)n(e )n()n(W)1n(W µ+=+            (1) 

where the step size µ(n) must be constrained to an interval [µmin , 
µmax] to preserve algorithm’s stabilit y and abilit y to track 
nonstationary environments [1], [6], [7].  

For x(n)  zero-mean Gaussian, a good estimate for the 
optimal step size sequence can be obtained from the well known 
analytical model for the fixed step size LMS algorithm [1], [2]: 
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Fig.1 – Adaptive system 
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where )}n(X)n(X{ER T=  is the input autocorrelation matrix, 

)}n(V)n(V{E)n(K T=  is the weight error vector correlation 

matrix ( oV(n) W(n) W= − ), ξmin is the minimum MSE and 

tr{ }�  stands for the trace of a matrix. The optimal step size 
sequence for stationary environments can be obtained from (2) 
and (3) by minimizing (n 1)ξ +  for a given (n)ξ  as a function of 
µ  [3], [12]. The optimum step size sequence is given by 

2

opt 2 3 2
min

tr{R K(n)}
(n)

 tr{R } tr{RK(n)}    2 tr{R K(n)}   tr{R }
µ =

+ + ξ ⋅
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This important result is frequently neglected in the literature. 
Comparisons of different algorithms are usuall y based on 
simulation results [6], [7], [11], [13], [14]. The next sections will 
show that the results of such comparisons can be misleading. 
 

3. THE LEARNING PLANE 
 
Evaluation of a variable step size algorithm using separate curves 
for µ(n) and ξ(n) is not trivial [6], [7], [11], [14]. Fig. 2 ill ustrates 
how µ(n) and ξ(n) can be seen as two possible two-dimensional 
projections of the three-dimensional trajectory ξ(µ,n). Notice also 
that a third projection on the plane [ ]µξ ,  combines simultaneous 
(same index n) informations about µ(n) and ξ(n) in a single curve 
which establi shes a direct cause-effect relationship. This learning 
plane permits algorithm evaluation in the transient phase and in 
steady-state.  
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Fig. 2 – Projections of the three-dimensional trajectory 

 
Fig. 3 shows a typical learning plane µ  vs ξ . The axes are 
reversed (compared to Fig. 2) for better visuali zation. Each of the 
regions and curves in this plane are described in the following. 
 
3.1.  The optimum trajectory 
 
The optimum trajectory is defined by the curve obtained from the 
recursive equations (2), (3) and (4) for each n. The closer an 
adaptive algorithm’s trajectory is to the optimum, the better is the 
algorithm’s dynamic behavior. 
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Fig.3 – The learning plane 

 
3.2.  The adaptive algor ithm’s learning trajectory 
 
A variable step size algorithm is characterized by its step size 
update equation. Define the adaptive algorithm’s learning 
trajectory as the sequence of mean step sizes E[µ(n)] as a 
function of  ξ(n).  To obtain an analytical model for the adaptive 
algorithm’s trajectory, the following simpli fying assumptions are 
used [1], [6], [7], [11]: 

A.1) X(n)  and V(n)  are statisticall y independent. This is 
the independence assumption, frequently used in adaptive 
algorithm behavior analyses [1], [5], [6], [11], [12]. 

A.2) (n)µ  and 2 (n)µ  are independent of X(n)  and V(n)  
[6], [7], [11], [12]. 

A.3) ])n([E(n)][E 22 µ≈µ  . 
A.2 and A.3 are accurate when the statistical fluctuations of 

(n)µ  are small when compared to those of X(n)  and e(n)  [6], 

[7], [11]. Using A.1-A.3 and taking the expectation of (3) (with µ 
replaced with (n)µ ) over (n)µ  yields 

[ ] [ ]
[ ] { }2

min

 K (n 1) K (n) - E (n) RK(n) K(n)R  

                        E (n) R tr RK(n)   2RK(n)R R  

+ = µ ⋅ +

+ µ ⋅ ⋅ + + ⋅ ξ  
(

5) 

Equations (2) and (5) can be combined with an analytical model 
for E[µ(n)] to describe the learning trajectory on the [ ],µ ξ  plane. 

 
3.3.  Steady-state and the stagnation curve 
 
The stagnation curve is defined as the locus in the [ ],µ ξ  plane 

corresponding to convergence rate equal to zero, i.e. 

n
( ) lim (n, )∞ →∞

ξ µ = ξ µ        (6) 

The steady-state behavior corresponds to a single point on the 
stagnation curve. The algorithm’s trajectory starts at the extreme 
right and progresses with time towards the stagnation curve. It 
stops (steady-state) when it touches the stagnation curve. 

( )∞ξ µ  can be determined from A.1-A.3 and the equation for 

LMS misadjustment [1]. For x(n)  white [1], [2], 
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where 2
xσ  is the variance of x(n) . 

 
3.4.  The transient and stagnation regions 
 
The convergence rate reduces significantly as the algorithm 
approaches the stagnation curve. Deviations from the optimum 
trajectory in this region have great impact on algorithm 
performance. Define the boundary between a transient region 
and a stagnation region as the vertical li ne through the point 
[µopt(0),ξ(∞)] in the learning plane (see Fig. 3). This point 
corresponds to the steady-state MSE for the fixed step size LMS 
algorithm with opt (0)µ = µ . Experience shows that agreement 

between algorithm and optimum trajectories within the 
stagnation region is most important for algorithm’s peformance. 
 
3.5.  The optimum solution 
 
This is the optimum stagnation point (see Fig. 3). At this point, 
the steady-state mean weight vector is such that min∞ξ = ξ . 

 
4. APPLICATIONS 

 
The initi ali zation and the limits [µmin , µmax] play important roles 
in the step size adaptation. A good strategy for fast convergence 
is to initi ali ze the algorithm with µo=µopt(0) obtained from (4) 
using estimates about the signal environment. For white x(n)  
white, it can be easil y shown that  

2 2
d z

o 2 2 2 2 2
x d z x z(N 2) ( ) N

σ − σ
µ =

+ σ σ − σ + σ σ
  (8) 

where 2
dσ  is the variance of d(n). 2

dσ , 2
xσ  and 2

zσ  can be 

estimated from data measurements. oµ  in (8) is used in the 

following system identification examples. This is the most used 
appli cation to compare different variable step size algorithms and 
allows to ill ustrate the use of the learning plane as a design tool. 

Consider the Variable Step Size LMS Algorithm (VSS) 
proposed in [6]. Its µ adaptation equation is 

)n(e)n()1n( 2⋅γ+µ⋅α=+µ        (9) 

Taking the expected value of (9) and using the expression 
derived in [6, Eq. 43] for steady-state misadjustment M yields 

)n(    )]n([E)]1n([E ξ⋅γ+µ⋅α=+µ                 (10) 
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Given M and an initi al estimate αo for α, γ = γo is determined 
from (11). The pair { αo, γo} leads to a trajectory in the plane [µ , 
ξ], which is determined from (2), (5) and (10). The initi al value 
αo can then be iteratively adjusted to determine a final corrected 
pair { αcor, γcor} which leads to the greatest proximity between the 
algorithm’s and the optimum trajectories. Usuall y, { αcor, γcor} 

does not match the design proposed in [6]. Experience shows that 
the pair { αcor , γcor} can be usuall y obtained after few (two or 
three) parameter adjustments, making the design optimization 
very simple. 

 
4.1.  Algor ithm compar isons 
 
A Modified VSS algorithm (MVSS) has been recently proposed 
in [7]. Results in [7] indicate that the MVSS algorithm 
outperforms the VSS algorithm. Examples presented in [7] are 
used here to ill ustrate the VSS algorithm design using the new 
methodology. Though the responses oW  were not provided in 
[7], equivalent responses can be used for the case of white x(n) 
(symmetric MSE surface) without affecting the conclusions. 

Low SNR: In [7, Ex. 1] N=4 and x(n) is WGN with 12
x =σ . 

z(n) is also WGN, with 2
z 1σ = . The unknown system is Wo=[2.8, 

2.8, 2.8, 2.8]T. The parameters used in [7] were αmvss=0.97, 
γmvss=10-3, βmvss=0.99, α vss=0.97 and γvss =10-5. These parameters 
lead to a steady-state excess MSE ex 34dBξ = − (M≈6.9×10-4). 

Also, 4
min max[ , ] [5 10 ,0.1]−µ µ = × . Fig. 4 shows the optimum 

trajectory, as well as the learning trajectories and the MSE for the 
original VSS and the corrected VSS designs. Note that the 
trajectory for the corrected VSS algorithm is much closer to the 
optimum trajectory, speciall y in the stagnation region. It was 
obtained for 4

min 5 10−µ = × , µmax = µ(0) = µo= 0.163, α cor=0.973 

and γcor = 9.05×10-6. Note from the MSE curves that the 
optimized VSS algorithm outperforms the MVSS algorithm. 

High SNR: [7, Ex. 3] uses µmax=0.1 and µmin=5×10-4; 
αmvss=0.97, βmvss=0.99, γmvss=1, αvss=0.97 and γvss=0.02. For 
these parameters ex 60dBξ ≈ −  and M≈1.38×10-3. An equivalent 

system is Wo=[1.58, 1.58, 1.58, 1.58]T. x(n) and z(n) are WGN 
with 2

x 1σ =  and 2 3
z 10−σ = . Trajectory correction leads to 

αcor=0.977 and γcor =0.0154, with µ(0)= µmax =µo ≈ 0.167. The 
results are shown in Fig. 5.  The improvement obtained from the 
redesign of the VSS algorithm is clear. 
 
4.2.  Real time optimization vs design optimization 
 
This example compares two different approaches for µ 
adjustment. The µ-adjustment algorithms proposed in [1], [11], 
[12] perform parameter adjustment in real time. Simpler 
algorithms (such as VSS) require parameter optimization in the 
design phase. The latter require smaller computational 
complexity during operation.  This example compares the NASS 
[12] (the most recently proposed from [1], [11], [12]) and the 

VSS algorithms. Let [ ]To 1
30

W 1 ,  1 ,  1 ,   ,  1= ⋅ � , (|Wo|=1), 

N=30 and M≈1%. x(n) and z(n) are WGN with 12
x =σ  and 

2 3
z 10−σ = . αcor=0.994 and γcor=0.0039 are determined for the 

VSS algorithm. ρ = ρτ = 0.002 and Ld =1 were used for the 
NASS algorithm since x(n) is WGN [12]. Fig. 6 shows the design 
and simulation results. It is clear from the MSE curves that the 
VSS algorithm can have a very competiti ve performance if 
optimized using the proposed technique. 
 
 



4.3.  Non-stationary system identification 
 
This example repeats the previous one with an abrupt change 
from oW  to oW−  at n=1000 [7], [11]. Fig. 7 shows the 
simulation results. It can be again verified that even designed for 
a small misadjustment, the optimized VSS algorithm performs 
very well during transient after abrupt nonstationariti es. 
 

5. CONCLUSIONS 
 
It is important to devise analytical tools for the systematic 
evaluation of variable step size adaptive algorithms. The new 
methodology proposed in this paper provides a simple and 
effective technique to compare algorithms derived from the LMS 
algorithm. It considers both transient and steady-state behaviors. 
In system identification, it is also possible to use the 
methodology for design. The results have shown that previous 
algorithm comparison results were based on poor designs and 
must be re-addressed. 
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Fig. 7 – MSE in non-stationary system identification. 
Algorithms: (a) NASS; (b) corrected VSS. Simulation 
averaging 100 runs 


