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ABSTRACT

This paper presents a new technique for generating a high
resolution image from a blurred image sequence; this is also
referred to as super-resolution restoration of images. The
image sequence consists of decimated, blurred and noisy
versions of the high resolution image. The high resolution
image is modeled as a Markov random field (MRF) and a
maximum aposteriori (MAP) estimation technique is used.
A simple gradient descent method is used to optimize the
functional. Further, line fields are introduced in the cost
function and optimization using Graduated Non-Convexity
(GNC) is shown to yield improved results. Lastly, we present
results of optimization using Simulated Annealing (SA).

1. INTRODUCTION

The physical characteristics of a sensor, e.g. its size and
density of detectors that form the sensor, limit the resolu-
tion of an image. In addition, the bandwidth limit set by
the sampling rate also indirectly determines the resolution.
These restrictions imposed by the sensor can be overcome
by a method known as the super-resolution restoration of
images. The underlying philosophy of this method is to ac-
quire more samples of the scene so as to get some additional
information which can be utilized, while merging the sam-
ples to get a high resolution image. These samples can be
acquired by sub-pixel shifts, by changing scene illumination
or, as we propose in this paper, by changing the amount of
blur. Super-resolved image generation provides a feasible
option to sensor modification, which is often not an avail-
able option.

Tsai and Huang [1] were the first to propose a frequency
domain approach to reconstruction of a high resolution im-
age from a sequence of undersampled low resolution, noise-
free images. An iterative backpropagation method is used in
[2], wherein a guess of the high resolution output image is
updated according to the error between the observed and the
low resolution images obtained by simulating the imaging
process. A MAP estimator with Huber-MRF prior is de-

scribed by Schultz and Stevenson in [3]. Elad and Feuer [4]
propose a unified methodology for super-resolution restora-
tion from several geometrically warped, blurred, noisy and
downsampled measured images by combining ML, MAP
and POCS approaches. Chiang and Boult [5] use edge mod-
els and a local blur estimate to develop an edge-based super-
resolution algorithm.

In this paper, we present a new technique wherein an
ensemble of decimated, blurred and noisy observations of
an ideal high resolution image are used to generate a super-
resolved image. The super-resolved image is modeled as an
MRF and a MAP estimation technique is used. Since there
is no relative displacement between the input images, the
need for estimating sub-pixel shifts does not arise. Also, the
input images need not be focused as the algorithm carries
out simultaneous restoration (deblurring) in the course of
generating the super-resolution image. The proposed method
is fast as a result of using a simple gradient-descent min-
imization of a convex functional. For a non-convex func-
tional that includes line fields, the graduated non convexity
algorithm is used for minimization. annealing is required.

In the next section we describe how low resolution im-
ages are generated from a high resolution image. In sec-
tion 3, we cast the super-resolution problem in a restoration
framework. The cost function obtained through the MAP
estimate is derived in Section 4. Section 5 presents experi-
mental results and conclusions are given in Section 6.

2. LOW RESOLUTION IMAGE FORMATION

We briefly present the formation of a low resolution image
from a high resolution image. Note that the problem we
solve here is actually the inverse. Suppose the low resolu-
tion image sensor plane is divided into M1 � M2 square
sensor elements and fyi;jg, i = 0; : : : ;M1 � 1 and j =
0; : : : ;M2 � 1 are the low resolution intensity values. For
a decimation ratio of q, the high resolution grid will be of
size qM1�qM2 and fzk;lg; k = 0; : : : ; qM1�1 and l =
0; : : : ; qM2 � 1 will be the high resolution intensity val-
ues. The forward process of obtaining fyi;jg from fzk;lg is



written as [3] yi;j = 1
q2

P(q+1)i�1
k=qi

P(q+1)j�1
l=qj zk;l i.e., the

low resolution intensity is the average of the high resolution
intensities over a neighborhood of q2 pixels.

Each of the decimated images is blurred by a different,
but known linear space invariant blurring kernel. Although
more number of blurred samples of a scene do not provide
any additional information in the same sense as sub-pixel
shifts of the camera or changing illuminant directions do,
it is, nevertheless, possible to achieve super-resolution with
these blurred samples, as shown in [4]. However, no para-
metric model for the image is assumed. Finally, i.i.d. zero
mean Gaussian noise is added to the decimated and blurred
images. Noise is uncorrelated between different low resolu-
tion images.

3. PROBLEM FORMULATION

The super-resolution problem is cast in a restoration frame-
work. There are p observed images fYig

p
i=1 each of size

M1 �M2. These images are decimated, blurred and noisy
versions of a single high resolution image z of size N1�N2,
where N1 = qM1 and N2 = qM2. If yi is the M1M2 � 1
lexicographically ordered vector containing pixels from the
low resolution image Yi, then a vector z of size q2M1M2�1
containing pixels of the high resolution image can be formed
by placing each of the q � q pixel neighborhoods sequen-
tially so a to maintain the relationship between a low resolu-
tion pixel and its corresponding high resolution pixel. After
incorporating the blur matrix and noise vector, the image
formation model is written as

yi = HiDz+ ni; i = 1; : : : ; p (1)

whereD is the decimation matrix of sizeM1M2�q
2M1M2,

H is the blurring matrix (PSF) of size M1M2 �M1M2, ni

is the M1M2 � 1 noise vector and p is the number of low
resolution observations. The decimation matrix D consists
of q2 values of 1

q2
in each row and has the form [3]

D =
1

q2

2
6664

1 1 : : : 1 0
1 1 : : : 1

. . .
0 1 1 : : : 1

3
7775 (2)

Our problem now reduces to estimating z given yi’s,
which is clearly an ill-posed problem.

4. MAP ESTIMATE

The maximum a posteriori (MAP) estimation technique is
used to obtain the high resolution image z given the ensem-
ble of low resolution images, i.e.,

ẑ = argmax
z

P (zjy1;y2; : : : ;yp) (3)

From Bayes’ rule, this can be written as

ẑ = argmax
z

P (y1;y2; : : : ;ypjz)P (z)

P (y1;y2; : : : ;yp)
: (4)

Since the denominator is not a function of ẑ, it can be ig-
nored. Taking the log of posterior probability of the numer-
tor of (4), and since ni’s are independent,

ẑ = argmax
z

"
pX

i=1

logP (yijz) + logP (z)

#
: (5)

Since noise is assumed to be i.i.d Gaussian,

P (y
i
jz) = �

pX
i=1

k yi �HiDz k
2

2�2�

�
M1M2

2
log(2��2�);

where �� is the noise variance.
The high resolution image z is now modeled as a Markov

random field and hence the prior P (z) has a Gibbs distribu-
tion given by

P (z) =
1

Z
expf�

X
c2C

Vc(z)g (6)

where Z is a normalizing constant known as the partition
function, Vc(:) is the clique potential and C is the set of all
cliques in the image. Thus the estimate can now be written
as

ẑ = argmin
z

"
pX

i=1

k yi �HiDz k
2

2�2�
+
X
c2C

Vc(z)

#

(7)

For the cost function in equation (7) to be convex, it
is required that the term Vc(z)g be also convex so that the
minimization of the function does not get trapped in a local
minima. However, as we show later, incorporation of line
fields in the cost function followed by optimization using
GNC [6] and SA algorithms does result in improved high
resolution estimates. We consider pair-wise cliques on a
first order neighborhood and impose a quadratic cost which
is a function of finite difference approximations of the first
order derivative, i.e.

Vc(z) =
1

�

N1X
k=1

N2X
l=1

[(zk;l � zk;l�1)
2 + (zk;l � zk�1;l)

2] (8)

Substituting equation (8) in equation (7), we get the final
cost function as

ẑ = argmin
z

"
pX

i=1

k yi �HiDz k
2

2�2�

+
1

�

N1X
k=1

N2X
l=1

[(zk;l � zk;l�1)
2 + (zk;l � zk�1;l)

2]

#
:



Thus the cost function is quadratic and a simple minimiza-
tion technique like gradient descent is used to carry out the
optimization. The initial estimate z(0) is chosen as the bilin-
ear interpolation of the available least blurred low resolution
image. The estimate at (n+1)th iteration, z(n+1) = z(n)�
�g(n), where � is the step size and g(n) is the gradient, is
computed iteratively until k z(n+1) � z(n) k < Threshold.
The initial estimate z(0) is chosen as the bilinear interpo-
lation of the available least blurred, low resolution image.
Note tha it is the parameteric representation of the super-
resolved image z (in terms of the MRF model) that provides
the necessary cue for super-resolution.

On inclusion of line field terms [7] in the cost function
to account for discontinuities in the image, the gradient de-
scent technique is liable to get trapped in local minima. To
avoid such an eventuality, we resort to GNC algorithm for
minimizing the modified cost function described below.

The horizontal line field li;j connecting site (i; j) to (i; j�
1) aids in detecting a horizontal edge, while the vertical line
field vi;j connecting site (i; j) to (i � 1; j) helps in detect-
ing a vertical edge. Note that we have chosen li;j and vi;j
to be binary variables in this study. The log of the prior dis-
tribution in equation (6), neglecting the normalizing term,
becomesX

c2C

Vc(z) =
X
i;j

�[(zi;j � zi;j�1)
2(1� vi;j)

+ (zi;j+1 � zi;j)
2(1� vi;j+1)

+ (zi;j � zi�1;j)
2(1� li;j)

+ (zi+1;j � zi;j)
2(1� li+1;j)]

+ 
[li;j + li+1;j + vi;j + vi;j+1]

= V (z) (say): (9)

Given a preset threshold, if the gradient at a particular lo-
cation is above that threshold, the corresponding line field
is activated to indicate the presence of a discontinuity. The
term multiplying 
 provides a penalty for every discontinu-
ity so created. Putting the above expression into equation
(7), we arrive at the modified cost function

ẑ = argmin
z

"
pX

i=1

k yi �HiDz k
2

2�2�
+ V (z)

#
; (10)

which is solved using either the GNC or the SA algorithms.

5. EXPERIMENTAL RESULTS

Figure 1 shows two of the five low resolution noisy images
of Lena and CT obtained by decimating the original image
and blurring the decimated images with Gaussian blurs of
� = 0:3; 0:5; 0:7; 0:9 and 1:1. Although the Gaussian blur
has infinite extent, for purpose of computation we chose the
kernel size corresponding to an extent of �3�. Each low

resolution image contains zero mean Gaussian noise with
variance 5.0. The super-resolved images of Lena and CT,

(a) (b)

Fig. 1. One of the low resolution, noisy images of (a) Lena
and (b) CT with blur � = 1:1.

using all the five low resolution observations are shown in
Figures 2 and 3 respectively.

Fig. 2. Super-resolved Lena image using gradient-descent
optimization.

Fig. 3. Super-resolved CT image using gradient-descent.

Next, we present results of minimization of the modi-
fied cost function when line processes were used to preserve
discontinuity. The GNC algorithm, in which a sequence
of convex approximations to the true cost function is op-
timized, was used for minimization. In our simulations, six
approximations to the cost function were minimized using
the gradient-descent technique to determine the global min-
imum. Super-resolved Lena and CT images using the GNC



algorithm are shown in Figures 4 and 5. An improvement in
the final estimate of the super-resolved image is seen due

Fig. 4. Super-resolved Lena image using discontinuity pre-
serving method (GNC).

Fig. 5. Super-resolved CT image using discontinuity pre-
serving method (GNC).

to incorporation of line fields in the cost function. Areas in
the images with large discontinuities, like the hair portion
in the Lena image, have been recovered. Simulations were
also carried out to generate the super-resolved image with
simulated annealing (SA) using the output of the GNC al-
gorithm as the initial estimate. However, due to paucity of
space, we are unable to include the results here. The mean
squared error between the original image and generated im-
ages is defined as

MSE =

PN1

i=1

PN2

j=1(ẑi;j � zi;j)
2PN1

i=1

PN2

j=1(zi;j)
2

: (11)

Table 1 shows the comparison of MSE for the proposed
method with standard methods like zero-order hold (ZOH).
We include the errors for the case of minimization using
simulated annealing (SA) also.

6. CONCLUSIONS
This paper addresses the problem of generating a super-
resolution image from a sequence of blurred, decimated and

Method Lena CT
ZOH 0.012061 0.899187

Gradient Descent 0.010355 0.021216
GNC 0.009473 0.021085
SA 0.008820 0.007615

Table 1. Comparison of MSEs of different interpolation
schemes.

noisy observations of an ideal image. A MAP-MRF ap-
proach was used to minimize the function. Comparison
with zero order hold shows that the proposed method is su-
perior. Since there is no relative motion between the ob-
served images, as is the case in most of the previous work
in super-resolution, the difficult tasks of image registration
and motion estimation are done away with. The proposed
technique is fast due to optimization using the gradient de-
scent approach. Next, the cost function was modified to in-
clude line fields to preserve discontinuitites. In addition to
significant noise reduction, the sharpness in the image was
also observed to be enhanced.
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