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ABSTRACT
In this paper we propose an adaptive delay filter with
complex coefficients for identifying an unknown

system with complex sparse impulse response. The

delay taps can not be determined by the conventional
real adaptive delay filter, which evaluates the mean

squared error with one constant gain in the system with
complex coefficients. In the proposed method, a

modified evaluation function, which consists of the

mean squared error value with a complex constant gain
and one with the conjugate value of the complex

constant gain, is introduced in order to estimate the

delay taps correctly. Using simulations we also clarify
that the identification error is significantly reduced by

means of the proposed complex adaptive delay filter.

1. INTRODUCTION
In some system identification problems, such as in

multipath equalization and echo canceling, we

encounter many unknown systems whose impulse
response is sparse, i.e., many of the coefficients are

zero. When the standard adaptive filter identifies such a

sparse impulse response system, a large number of filter
taps might be required resulting in misadjustment in

identification and significant increases in computational
requirements. In order to reduce the misadjustment and

computational requirements, an adaptive filter with

variable delay taps and gains, that is, an adaptive delay
filter, has been proposed [1]-[3]. In the adaptive delay

filter, it is obvious that accuracy in the estimation of the

number of delay taps strongly effects the identification.
Cheng and Etter have analyzed the mean squared error

surfaces and proposed an algorithm for the processing
of real signals that sequentially estimates the delay taps

and the corresponding gains [1].

However, in some application such as echo canceling
in radar or communication systems, the unknown

system has a complex impulse response and the input

and output are complex signals. Therefore, Cheng and
Etter's algorithm (the conventional algorithm mentioned

above) can never be applied to systems with complex
coefficients because the algorithm requires the impulse

response and signals to be real.
To overcome this problem, we propose a modified

evaluation function, which consists of the mean squared

error value with a complex constant gain and one with
the conjugate value of the complex constant gain, in

order to determine the delay taps. We demonstrate the
effectiveness of the proposed adaptive delay filter with

complex coefficients with a computer simulation.

2. REAL ADAPTIVE DELAY FILTER
Figure 1 shows a block diagram of the conventional

adaptive delay filter with K pairs of the delay kdz− and

the corresponding gain kg  ( )Kk ,,2,1 �=  [1].  The

estimation process at each stage in the conventional
adaptive delay filter consists of two steps. The first is

the estimation of the delay in the sparse system. The

second is the adaptive control of their corresponding

gain. During the process of estimating the delay kd ,

the corresponding gain value kg  has to be held

constant. Here, this constant gain value is denoted as

cg . Let the unknown system be a finite impulse
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Fig. 1 Adaptive delay filter with serial structure [1].

response (FIR) system having a set of coefficients

( )kcc ,,1 � . The output of the unknown system ( )mf

can be written as:
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where ( )mx  is the input signal, id is the delay with the

coefficient ic and m is the sample number.

When the input signal ( )mx  is real, the evaluation

function ( )dkΦ̂ , to determine the delay kd is expressed

as follows [1]:
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where d is the variable covering a range from 0 to some

predetermined maximum delay, ( )mek  is the error

signal of the k th stage, N  is the number of samples

used in calculating the mean squared error and xxr  is

the autocorrelation function of the input signal ( )mx  .

Since the first and third terms of (2) are constant, the

second term is real, and ( )ixx ddr −  is the

autocorrelation function. The expectation of the mean

squared error has a maximum value at idd = .  We can

regression line

 destimated delay tap kd

( )dkΦ̂

Fig.2. Evaluation function ( )dkΦ̂

determine the delay kd  by searching for the largest

deviation between the mean squared error value and its

simple regression line. Figure 2 shows an example of

the evaluation function ( )dkΦ̂  and its regression line.

If the input signal and the impulse response of the

unknown system are complex, ( )dkΦ̂  is expressed as:
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where the asterisk denotes complex conjugate. The

evaluation function ( )dkΦ̂  in the conventional

algorithm might not have the largest deviation at idd = .

This is because the third term of (3) becomes zero when

the product of the fixed gain and the conjugate

coefficient, *
iccg , is a purely imaginary number, so that

the third term can not have a maximum value at idd = .

Therefore, when the unknown system is complex, the
delay kd might not be determined by the conventional

algorithm.

3. COMPLEX ADAPTIVE DELAY FILTER
In this section, we propose a novel algorithm for a

complex adaptive delay filter in order to identify a

system with complex impulse response. A modified
evaluation function is introduced using a constant

complex gain value cg  and its conjugate value *
cg  so as

to estimate the delay kd correctly even if the impulse

response of the system is complex. We propose the

modified evaluation function ( )dkΦ′ˆ  as follows:

 ( ) ( ) ( )ddd
kk ggk *

ˆˆˆ Φ+Φ=Φ′       (4)
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where N ′ and ( )0>′− NN  are the number of samples

used for calculating the mean squared error function.

Figure 3 shows a processing diagram of the proposed

delay estimation technique of the k th stage for the
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 in the proposed technique

system with complex coefficients. Equation (4) can be

rewritten as follows:

   

( ) ( )

( )

( )

( ) ( )

( )

( )





 −′−







 −−

−
′−

+

−′+

−
′

+

−=Φ′

∑

∑

∑

∑ ∑

∑

∑ ∑

=

=

−

′=

= =

−′

=

= =

K

i
ixxic

K

i
ixxic

N

Nm
c

K

i

K

j
jixxji

N

m
c

K

i

K

j
jixxjik

ddrcg

ddrcg

dmx
NN

g

ddrcc

dmx
N

g

ddrccd

1

**

1

*

1 22*

1 1

*

1

0

22

1 1

*

Re

Re

1

1

ˆ

(7)

where xxr′ denotes the approximated autocorrelation

function using ( )NN ′−  samples of the input signal

( )mx  . In (7), even if the product *
iccg  is a purely

imaginary number or the fifth term becomes zero, the

sixth term has a maximum value at idd = . Therefore,

when the input signal and the impulse response of the
unknown system are complex, we can correctly

estimate the delay kd by searching the maximum

deviation in the modified evaluation function ( )dkΦ′ˆ .

After determining the delay kd  in the k th stage, the

corresponding gain value kg can be estimated by

means of a normalized least mean squared (NLMS)
algorithm [4] as follows:
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whereα and β denote step size parameters. By means

of the adaptation described above for all the stages

sequentially, we can identify the unknown system with

a complex sparse impulse response. The adaptive
algorithm adopting the proposed delay estimation

technique is summarized below.

 I. Set 1=k .

 II. Set some complex constant gain cg in place

of kg . Then form *
cg .

 III. Calculate the modified evaluation function

( )dkΦ′ˆ  using eq. (4).

 IV. Determine the delay kd  by searching for the

maximum deviation between the evaluation

function ( )dkΦ′ˆ  and its regression line.

 V. Compute gain kg by means of NLMS algorithm

shown in eq. (8).

 VI. Calculate the error signal ( )mek  given by eq.

(9).

 VII. If Kk <  then 1+= kk , and go to II.

Otherwise, end.

4. SIMULATION RESULTS
We demonstrate the effectiveness of the proposed
complex adaptive delay filter by computer simulation.

We assume that the unknown system has the following

transfer function ( )zH .

   
( ) ( )

( ) 7151

109

25.105.1

5.21
−−

−−

−−+

+−=

zjzj

zzjzH
 (10)

This means that ,5.105.1,5.2,1 321 jccjc −==−=

24 jc −=  and 71,51,10,9 4321 ==== dddd . Table 1

shows the true delays and impulse responses of the

complex sparse unknown system. In this simulation
model, the input signal is complex Gaussian white

noise with zero mean and variance one for both the real



and imaginary part of the signal. A plant white noise at
0.5 power is added to the output of the system. One

hundred samples are used to determine the

delays kd ( )100=N . In the proposed method, the

number of samples used for calculating ( )d
kgΦ  and

( )d
kg

*Φ  are 60  and 40 , respectively ( )60=′N . Three

hundred samples are used for estimating the gain value

kg . In this simulation the constant gain value cg is set

to 4.12 j− , the range for searching the delay from 0 to

80 and 05.0,025.0 == βα . It should be noted that the

product *
3cgc  is equal to a purely imaginary value

( ) ( )( )47.45.105.14.12 jjj −=−×− .

Table 1 The delays and coefficients

of the unknown system

i delay d coefficient c

1 9 1-j

2 10 2.5

3 51 1.05-j1.5

4 71 -j2

Table 2 shows the estimated delays and gains. From

Table 2, we find that the misestimation occurs in the

conventional technique at not only 51=d , in which

the product *
3cgc  is a purely imaginary value, but also

at other delay points. The estimation of the gain is also
incorrect due to the misestimation of delays. On the

other hand, the proposed complex adaptive delay filter

can estimate the delays correctly; i. e. dd =ˆ .

Table 2 The estimated delays and gains

proposed conventional

k
delay

d̂
gain ĝ

delay

d̂
gain ĝ

1 10 2.58+j0.33 50 0.61-j0.68

2 51 0.59-j1.48 59 0.75-j0.26

3 9 0.09-j0.09 19 -0.10-j0.15

4 9 1.00-j0.61 11 -0.59+j0.75

5 71 -0.01-j1.10 33 0.15+j0.27

Figure 4 illustrates the mean squared errors between

the output signal of the unknown system and that of the
adaptive delay filter for one hundred independent trials.

From Fig. 4, we observed that the mean squared error

of the proposed complex adaptive filter converges to
one, which is equal to the noise power. On the other

hand, the mean squared error of the conventional

technique does not converge. This means that the
proposed method is much more accurate than the

conventional one for identification of a system with
complex coefficients.
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proposed complex adaptive filters

5. CONCLUSIONS
In this paper we have presented the complex adaptive

delay filter in order to identify an unknown system with

a complex sparse impulse response. With this technique,
the delays are determined by means of the modified

evaluation function, which consists of the mean squared
error value with a complex constant gain and one with

the conjugate of the constant gain. From the simulation

results, this technique is able to identify an unknown
system with complex sparse impulse response that the

conventional method can not identify.
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