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ABSTRACT

In this paper we propose an adaptive delay filter with
complex coefficients for identifying an unknown
system with complex sparse impulse response. The
delay taps can not be determined by the conventional
real adaptive delay filter, which evaluates the mean
squared error with one constant gain in the system with
complex coefficients. In the proposed method, a
modified evaluation function, which consists of the
mean squared error value with a complex constant gain
and one with the conjugate value of the complex
constant gain, is introduced in order to estimate the
delay taps correctly. Using simulations we also clarify
that the identification error is significantly reduced by
means of the proposed complex adaptive delay filter.

1. INTRODUCTION

In some system identification problems, such as in
multipath equalization and echo canceling, we
encounter many unknown systems whose impulse
response is sparse, i.e, many of the coefficients are
zero. When the standard adaptive filter identifies such a
sparse impul se response system, alarge number of filter
taps might be required resulting in misadjustment in
identification and significant increases in computational
requirements. In order to reduce the misadjustment and
computational requirements, an adaptive filter with
variable delay taps and gains, that is, an adaptive delay
filter, has been proposed [1]-[3]. In the adaptive delay
filter, it is obvious that accuracy in the estimation of the
number of delay taps strongly effects the identification.
Cheng and Etter have analyzed the mean squared error
surfaces and proposed an agorithm for the processing
of real signals that sequentially estimates the delay taps
and the corresponding gains [1].

However, in some application such as echo canceling
in radar or communication systems, the unknown
system has a complex impulse response and the input
and output are complex signals. Therefore, Cheng and
Etter's algorithm (the conventional algorithm mentioned
above) can never be gpplied to systems with complex
coefficients because the algorithm reguires the impulse

response and signalsto bereal.

To overcome this problem, we propose a modified
evaluation function, which consists of the mean squared
error value with a complex constant gain and one with
the conjugate value of the complex constant gain, in
order to determine the delay taps. We demonstrate the
effectiveness of the proposed adaptive delay filter with
complex coefficients with a computer simulation.

2. REAL ADAPTIVE DELAY FILTER
Figure 1 shows a block diagram of the conventional
adaptive delay filter with K pairs of the delay z % and
the corresponding gain g, (k :12,~-~,K) [1]. The
estimation process at each stage in the conventiona
adaptive delay filter consists of two steps. The first is
the estimation of the delay in the sparse system. The
second is the adaptive control of their corresponding

gain. During the process of estimating the delay d,,
the corresponding gain value g, has to be held

constant. Here, this constant gain value is denoted as
0. - Let the unknown system be afinite impulse
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Fig. 1 Adaptive delay filter with seria structure [1].

response (FIR) system having a set of coefficients
(qck) The output of the unknown system f(m)

can be written as:



()= cxn-d) ®

where x(m) is the input signal, d, is the delay with the
coefficient ¢, and m is the sample number.

When the input signal x(m) is real, the evaluation
function &)k(d) , to determine the delay d, is expressed

asfollows[1]:
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whered is the variable covering a range from O to some
predetermined maximum delay, g(m) is the error
signal of the k th stage, N is the number of samples
used in calculating the mean squared error and r,, is
the autocorrelation function of the input signal x(m) .
Since the first and third terms of (2) are constant, the
rod-d) is the
autocorrelation function. The expectation of the mean
squared error has amaximum valueat d = d, . We can

second term is rea, and
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Fig.2. Evaluation function ®, (d)

determine the delay d, by searching for the largest
deviation between the mean squared error value and its

simple regression line. Figure 2 shows an example of
the evaluation function ék(d) and itsregression line.
If the input signal and the impulse response of the

unknown system are complex, ®, (d) is expressed as:

‘Dk(d):
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where the asterisk denotes complex conjugate. The
evaluation function &)k(d) in the conventional
algorithm might not have the largest deviation at d =d; .

Thisis because the third term of (3) becomes zero when
the product of the fixed gain and the conjugate

coefficient, gcq* , is a purely imaginary number, so that
the third term can not have amaximum valueat d =d, .

Therefore, when the unknown system is complex, the
delay d, might not be determined by the conventional

agorithm.

3. COMPLEX ADAPTIVE DELAY FILTER
In this section, we propose a novel agorithm for a
complex adaptive delay filter in order to identify a
system with complex impulse response. A modified
evaluation function is introduced using a constant

complex gain value g, and its conjugate value g; S0 as
to estimate the delay d, correctly even if the impulse
response of the system is complex. We propose the
modified evaluation function é'k (d) asfollows:

810)=,, @)+, @) @

1N1

0 @= 55 o sm-axtm-ay?] @

() WmZN%K - gox(m- d)| 5(6)

where N and N — N’ (> O) are the number of samples
used for calculating the mean sgquared error function.
Figure 3 shows a processing diagram of the proposed
delay estimation technique of thek th stage for the
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Fig.3. Processing diagram for delay estimation
in the proposed technique

system with complex coefficients. Equation (4) can be
rewritten asfollows:
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wherer,, denotes the approximated autocorrelation
function using (N —N') samples of the input signal
x(m) . In (7), even if the product g.c is a purely

imaginary number or the fifth term becomes zero, the
sixth term has a maximum value atd = d, . Therefore,

when the input signal and the impulse response of the
unknown system are complex, we can correctly
estimate the delayd, by searching the maximum

deviation in the modified evaluation function @} (d).
After determining the delay d, in the k th stage, the

corresponding gain value g, can be estimated by

means of a normalized least mean squared (NLMYS)
agorithm [4] as follows:

gc(m+1)= g, (m)
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wherea and 3 denote step size parameters. By means

of the adaptation described above for &l the stages
sequentially, we can identify the unknown system with
a complex sparse impulse response. The adaptive
agorithm adopting the proposed delay estimation
technique is summarized below.

.  Set k=1.

I[l. Set some complex constant gain g.in place
of g, . Thenform g .

I1l.  Calculate the modified evaluation function
;(d) using eq. (4).

IV. Determine the delay d, by searching for the
maximum deviation between the evaluation
function @ (d) and its regression line.

V. Compute gain g, by means of NLMS algorithm

shown in eqg. (8).

VI. Calculate the error signal eK(m) given by eq.
9.

VII. If k<K then k=k+1, and go to Il

Otherwise, end.

4. SIMULATION RESULTS
We demonstrate the effectiveness of the proposed
complex adaptive delay filter by computer simulation.
We assume that the unknown system has the following
transfer function H (z)

H(z)=@-j)z°+252"

(10)
+(1.05- 11.5)2 Sl_joz™
This means that ¢, =1-j,c, =25,c;=1.05- j1.5,
¢, =-j2 and d, =9,d, =10,d; =51,d, =71. Table 1
shows the true delays and impulse responses of the
complex sparse unknown system. In this simulation

model, the input signa is complex Gaussian white
noise with zero mean and variance one for both the real



and imaginary part of the signal. A plant white noise at
0.5 power is added to the output of the system. One
hundred samples are wused to determine the
delaysd, (N =100). In the proposed method, the

number of samples used for calculating ®,, (d) and
@, (d) are 60 and 40, respectively (N’ = 60). Three

hundred samples are used for estimating the gain value
gy - In this simulation the constant gain value g, is set

to 2- j1.4, the range for searching the delay from O to
80 and a =0.025,3 =0.05. It should be noted that the
product gcé is equal to a purely imaginary value
(- j14)x@.05- j15)=-j4.47).

Table 1 The delays and coefficients
of the unknown system

i delay d coefficient ¢
1 9 14

2 10 2.5

3 51 1.05-j1.5
4 71 -j2

Table 2 shows the estimated delays and gains. From
Table 2, we find that the misestimation occurs in the
conventional technique at not only d =51, in which
the product gcc; is a purely imaginary value, but also
at other delay points. The estimation of the gain is aso

incorrect due to the misestimation of delays. On the
other hand, the proposed complex adaptive delay filter

can estimate the delays correctly; i. e. d=d.

Table 2 The estimated delays and gains

proposed conventional

delay o delay o
k o gang o gang
1 10 2.58+j0.33 50 0.61-j0.68
2 51 0.59-j1.48 59 0.75-j0.26
3 9 0.09-j0.09 19 -0.10-j0.15
4 9 1.00-j0.61 11 -0.59+j0.75
5 71 -0.01-j1.10 33 0.15+j0.27

Figure 4 illustrates the mean squared errors between
the output signal of the unknown system and that of the
adaptive delay filter for one hundred independent trias.
From Fig. 4, we observed that the mean squared error

of the proposed complex adaptive filter converges to
one, which is equal to the noise power. On the other
hand, the mean sgquared error of the conventiona
technique does not converge. This means that the
proposed method is much more accurate than the
conventional one for identification of a system with
complex coefficients.
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Fig. 4. The mean squared errors of the conventional and
proposed complex adaptive filters

5. CONCLUSIONS

In this paper we have presented the complex adaptive
delay filter in order to identify an unknown system with
acomplex sparse impul se response. With this technique,
the delays are determined by means of the modified
evaluation function, which consists of the mean squared
error vaue with a complex constant gain and one with
the conjugate of the constant gain. From the simulation
results, this technique is able to identify an unknown
system with complex sparse impulse response that the
conventional method can not identify.
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