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ABSTRACT

This paper studies the effects of jitter in a multipath envi-
ronment. The power spectral density of a process subjected
to jitter and multipath is �rst derived. The problem of re-
construction of a time continuous process from observations
subjected to jitter and multipath is then considered. Simu-
lation and theoretical results are �nally shown to be in good
agreement.

1. INTRODUCTION

The problem addressed in this paper is the study of jitter in
a multipath environment. A random process ���� subjected
to jitter and multipath can be written :
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where the jitter is modeled by a random process
��n ��� � � � ��, � represents the number of different paths,
�n is the complex amplitude associated to each path and
���� is an additive noise.

The random process � ��� is observed at time instants
� � 	 � �. ���� is assumed to be (wide sense) stationary,
with a power spectral density (P.S.D.) denoted by 
] ���
such that [9]:
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The additive noise � ���, the jitters �n ���n@4>===>s and
the original process ���� are supposed to be independent.

The �wk jitter process�n ��� is supposed to be stationary
in the sense that it is characterized by the two following
characteristic functions [1] :
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In the following theoretical developments, the number

of paths � and the coef�cients �n are assumed to be known.
Note that the number of paths may be estimated using MDL

criterion [2] and that MUSIC algorithm [3] [4] can be used
to estimate the coef�cients �n and the delay means (� ��n ����)
[5], [6],[7],[8]. The P.S.D. 
] ��� of the transmitted random
process ���� is also assumed to be known : this is a realistic
assumption when the type of coding (for example N.R.Z.) is
known. The problem is to �nd the best approximation �� ���
of � ��� (in the mean square sense) from the observation of
�� �	��

q5]
.

Section 2 derives the P.S.D. of ���� de�ned in Eq.(1) in
terms of 
] ���, 
E ���, �n ��� and �n �
 � ��. The recov-
ery of ���� is studied in Section 3. Simulation results and
conclusion are given in Sections 4 and 5.

2. A DECOMPOSITION OF THE OBSERVED
PROCESS

Let �] denotes the Hilbert space spanned by the random
process � � �� ��� � � � ��. In what follows, an isometry
�] is used, de�ning a one-to-one correspondence between
the random process � ��� and the function �l$w :
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The main interest of this isometry lies in the transformation
of any process distance into a complex exponential distance,
as the corresponding inner products are equal :
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The jitter effect in a multipath environment can be analyzed
as follows (see [10] for more explanations). The process
���� (Eq. (1)) can be decomposed into two parts :
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where

� ��� �

s�
n@4

�n�n ��� and� ��� �

s�
n@4

�n�n ��� �� ��� �

�n ��� (resp. ����)- corresponds to the orthogonal projec-
tion of � ����n ���� (resp. ����) onto the Hilbert space
�] as illustrated on �gure 1.
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Figure 1: Projection of ���� onto the Hilbert space�] .

2.1. Projection onto the Hilbert space�]

�n ��� is such that

�
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Eq. (5) can be written :
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Consequently, �n ��� is de�ned in the isometry �] by
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This means that � ��� can be viewed as the output of
a linear �lter driven by � ���, with a frequency response
�J ��� such that :
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The P.S.D. of� ��� is then obtained by Wiener-Lee relation:
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2.2. P.S.D. of ����

Given Eq.(4), the P.S.D. of the random process ���� is :
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J ��� � 
Z ��� (9)
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where 
J ��� is de�ned in Eq.(8) and 
Yn ��� is such that :

�Yn
�
� � � ��n ����

�

n
��� 
��

�

�
U


Yn ��� �
l$���

The random processes ��n ����n@4>===>s are orthogonal
to �] (�n ��� � � ����n ������n ���) and uncorrelated
(due to the independence of the ��n ����n@4>===>s). More-
over, the autocorrelation function of �n ��� is of the form :
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This allows to determine the P.S.D. of �n ��� such that�
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and the expression of 
X ��� in Eq.(9) can be derived.
The random process ���� is sampled at � � 	 � �. The
P.S.D. of this sampled process denoted by �
X ��� and de-
�ned on ���� �� expresses as :
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3. RECONSTRUCTION

Recall that ���� is observed at time instants � � 	 � �.
The best approximation �� ��� (in a mean square sense) of
� ��� belongs to the Hilbert space �X spanned by � �
�� �	� � 	 � �� and is determined by the orthogonal pro-
jection of ���� onto this space�X :
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Using the isometry �] de�ned in Eq.(6), it can be shown
that:
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Let us de�ne �� ��� in the isometry �X by
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Using Eq.(11)and Eq.(12), Eq. (10) can be written, 
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Thus, the best approximation ����� of ���� from the obser-
vation of ��	� is de�ned in the isometry �X by

� ��� �� �
� ��� ���
X ���

�l$w (14)

Consequently, ����� can be viewed as the output of a �lter,
driven by ��	�, with a transfer function
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Straightforward computations provide the mean square er-
ror (MSE) between ���� and �����
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4. AN IMPORTANT EXAMPLE

Consider the example of a �-bandlimited process
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In this case, the approximation �lter depends no longer on
the time instant � at which the reconstruction is made:
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Thus, �� ��� is obtained by linear �ltering of � �	� and the
mean square error !5

w
can be expressed as :
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In order to validate these theoretical results, a N.R.Z.

process ���� subjected to Gaussian jitter in a multipath en-
vironment is considered. In this case, ��n ����n@4===s are
supposed to be Gaussian with different means, denoted by

n and the same variance !5

D
. The two characteristic func-

tions de�ned in Eq. (3) are of the form
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where !5
D
$
n
�
� � � ��n����n ��� 
��. In the following

simulations, ��n ����n@4===s are uncorrelated.

First of all, it is important to illustrate the jitter effect on
a NRZ process, taking into account only one path, without
additive noise. Figure 2 displays the jitter effect on such
process for different values of jitter standard deviation !D �
�� �� 
� for a NRZ with 10 samples per bit.
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Figure 2: Effect of Gaussian jitter on a NRZ process ����
such that % ����� � 
� � 	��, 10 samples per bit, (a) no
jitter, (b) !D � �, (c) !D � �, (d) !D � 
�.

In the frequency domain, the jitter tends to whiten the
original process ����, as shown on �gure 3.

Figure 4(a) shows an example of a NRZ process and
�gure 4(b) of its distorted version subjected to 3 multipaths
with SNR=10 dB and Gaussian jitter. The effects of the
optimal linear �lter are illustrated in �gure 4(c) and �gure
4(d) shows the effect of thresholding on this �ltered process.
It is worth noting that the optimal �lter of Eq.(17) can be
easily approximated by a F.I.R. �lter.

It is also of interest to study the in�uence of the dif-
ferent parameters on the reconstruction. Two criteria are
considered : the quadratic error (Eq.(18)) and the Bit Error
Rate (BER) which is the reference in Communications. The
quadratic error can be written as a Signal to Reconstruction
Noise Ratio (SRNR) in dB. In the example of �gure 4, the
SRNR is approximately 44 dB and the BER � 5%.

Figure 5 highlights the in�uence of jitter variance on the
reconstruction. Both criteria behave similarly, despite they
are related non-linearly.

Figure 6 shows that the reconstruction is not affected by
additive noise, as soon as SNR �10 dB.
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Figure 3: Jitter spectral effect.

5. CONCLUSION

This paper studies the effect of jitter in a multipath environ-
ment. The main focus of this paper is to derive an expres-
sion of an optimal �lter in order to achieve the reconstruc-
tion of the continuous time original process. In the case of
an original process under the Shannon condition, it is shown
that this optimal estimation is the result of a linear �lter in-
dependent of the time instant � at which the reconstruction
is carried out. Simulations on a NRZ process subjected to
Gaussian jitter and multipath are given, showing that this
optimal �lter can be approximated by a FIR one, leading to
satisfying results.
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Figure 4: Reconstruction of a NRZ process: (a) NRZ pro-
cess, (b) NRZ process subjected to 3 multipaths and Gaus-
sian jitter (!D � �, 
4 � 

, 
5 � �, 
6 � 	), SNR=10dB,
(c) �ltered process, (d) �ltered process after thresholding.
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Figure 5: MSE and BER v.s. jitter standard deviation.
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