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ABSTRACT

This paper studies the effects of jitter in a multipath envi-
ronment. The power spectral density of a process subjected
to jitter and multipath is first derived. The problem of re-
construction of atime continuous process from observations
subjected to jitter and multipath is then considered. Simu-
lation and theoretical results are finally shown to bein good
agreement.

1. INTRODUCTION

The problem addressed in this paper is the study of jitter in
amultipath environment. A random process Z(t) subjected
to jitter and multipath can be written :
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where thejitter is modeled by a random process
{Ak (t) ,t € R}, p represents the number of different paths,
¢ is the complex amplitude associated to each path and
B(t) isan additive noise.

The random process U (t) is observed at time instants
t =n € Z. Z(t) isassumed to be (wide sense) stationary,
with a power spectra density (PS.D.) denoted by sz (w)
such that [9]:

K7 (r)=E[Z() 2 (t—7)] = / 52 (@) eTdo ()

The additive noise B (t), the jitters Ay (¢),—, _,, and
the original process Z (t) are supposed to be independent.

The k'" jitter process Ay, (¢) is supposed to be stationary
in the sense that it is characterized by the two following
characteristic functions[1] :

U (w) = E [eiwAk <t>} €)

Oy (r,w) = E [e“"("‘k (t)—Ak(t—T))}

In the following theoretical developments, the number
of paths p and the coefficients ¢, are assumed to be known.
Notethat the number of paths may be estimated using MDL
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criterion [2] and that MUSIC agorithm [3] [4] can be used
to estimate the coefficients ¢;, and the delay means (£ [Ax (t)])
[5],[6],[7],[8]. ThePS.D. sz (w) of the transmitted random
process Z(t) isalso assumed to beknown : thisisaredistic
assumption when the type of coding (for exampleN.R.Z.) is
known. The problemisto find the best approximation Z (t)
of Z (t) (in the mean square sense) from the observation of
{U ()} ez

Section 2 derivesthe RS.D. of U (t) defined in Eq.(1) in
termsof sz (w), sp (w), ¥y, (w) and @ (7,w). The recov-
ery of Z(t) is studied in Section 3. Simulation results and
conclusion are given in Sections 4 and 5.

2. ADECOMPOSITION OF THE OBSERVED
PROCESS

Let H; denotes the Hilbert space spanned by the random
process Z = {Z (t),t € R}. In what follows, an isometry
1z is used, defining a one-to-one correspondence between
the random process Z (¢) and the function e** :

7 (t) <2 et
Themain interest of thisisometry liesin the transformation
of any process distance into acomplex exponential distance,
as the corresponding inner products are equal :
Ifa(Z(t) <% f(t,w)and B(Z (t) <% g (t,w), then
Ela(Z(t) 5" (2 (t))] =(a(Z (t)) ,ﬂ (Z (t))>HZ
= <f (t,UJ) y g (taw L2 (57) fR ) Sz

Thejitter effect in amultipath environment can be analyzed
as follows (see [10] for more explanations). The process
U(t) (Eq. (1)) can be decomposed into two parts :

Ut)=G(t)+W () (4)

(w) dw

where

t) :Z Gy, ( Z Cka )

Gy (t) (resp. G(t))- corresponds to the orthogonal projec-
tion of Z (t — Ay (t)) (resp. U(t)) onto the Hilbert space
Hz asillustrated on figure 1.
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Figure 1: Projection of U (t) onto the Hilbert space H .

2.1. Projection ontothe Hilbert space Hy

Gy, (t) issuch that
E[Z®)(Z(t—Ac(t) —Gr()] =0 (5

Let S
Gi (t) < [ (t,w)

Eq. (5) can be written :
E[Z()Gr(t)] = /f (t,0)" ets

= t) 27 (t = A (1))]

(w) dw

where

EZ(t) Z* (t — Ak (1))]
=E{E[Z(t)Z" (t — Ak (1)) /Ar(t)]}
=FE[Kz(Ar(t))]=F [ Re“"A"'(t)sZ (w) dw]
= fR Uy (w) sz (w) dw
Consequently, Gy, (t) is defined in the isometry I by

G (t) 2 W () )

This means that G (t) can be viewed as the output of

a linear filter driven by Z (¢), with a frequency response
H¢ (w) such that :

P
:Z eV (w) )
k=1

The PS.D. of G (¢) isthen obtained by Wiener-Leerelation:

P
=D i (w
k=1
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22. PSD.of U(t)
Given Eq.(4), the RS.D. of the random process U (¢) is

su(w) = so ()+Sw() ©

= +Z\0k\ sv; (

w) + sp (w)

where s¢ (w) isdefined in Eq.(8) and sy, (w) issuch that :
Ky, (1) = EVe(@)Vy (t—7)]
= /st (w) e dw
R

The random processes {V}, (¢)} k

toHz (Vi (t) = Z (t — Ag (1) —
(due to the mdependence of the {Ak

, ae orthogonal
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Ky, (1) =E Vi (t) Vi (t—1)]
=E[Ky (T4 Ap(t— 1) — Ag (t))]
—E[Gr ()G (t—17)]

= f]R (‘I’Z (r,w) — | Ty (w)|2) Y (w) dw
Thisallowsto determine the PS.D. of V. (¢) such that
f]R SW ) iw‘rdw
_f]R( — |V, (w)] )e“”sz (w) dw

and the expression of sy (w) in Eq.(9) can be derived.
The random process U (t) issampled at t = n € Z. The
PS.D. of this sampled process denoted by sy, (w) and de-
fined on [—7, 7] expresses as:

+oo

Sy (w) = Z sy (w4 2wm).

m=—0oQ

3. RECONSTRUCTION

Recall that U(t) is observed at time instantst = n € Z.
The best approximation Z (¢) (in a mean square sense) of
Z (t) belongs to the Hilbert space Hy spanned by U =
{U (n),n € Z} and is determined by the orthogonal pro-
jection of Z(t) onto this space Hy :

E [(z (t) — E(t)) U (n)} =0

Using the isometry I, defined in Eq.(6), it can be shown
that:

E[Z(#)U"(n)] = E[Z(t)G" (n)] (11)
+m
/ a(t,w)e™te™ ™ dw

—T

VneZ (10

where

12”mt\lfk (w4 2mm) sz (w+2mm) .
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Let us define Z (¢) in theisometry I;; by

Un<i>ei“’" 12
(n) (12

Z(t) <5 p(t,w)



Using Eq.(11)and Eq.(12), Eq. (10) can bewritten, Vn € Z:

+7r . .
/ (a (t,w) e — p(t,w) sy (w)) e "dw =0 (13)

—T

Thus, the best approximation Z (t) of Z(t) from the obser-
vation of U(n) isdefined in the isometry I;; by

a(t,w)

twt
@) e (14)

p(t,w) =

Consequently, Z (t) can be viewed as the output of a filter,
driven by U (n), with atransfer function

a(t,w)

R(t,w) = o (@)

(15

Straightforward computations provide the mean square er-
ror (MSE) between Z(¢) and Z(t)

o2 = EDZ(t)—E(t)ﬂ (16)

4. AN IMPORTANT EXAMPLE
Consider the example of a7-bandlimited process
sz(w)=0 for wé|[—m, +7]

In this case, the approximation filter depends no longer on
the time instant ¢ at which the reconstruction is made:

~

R(w) :Z 0 (w) oz Ew
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Thus, Z (t) is obtained by linear filtering of U (n) and the
mean square error o2 can be expressed as :

S et ()57 (@)

+m
_ _ k=1
(ff—UQ—KZ(O)f/_7T o @) dw
(18)

In order to validate these theoretical results, a N.R.Z.
process Z (t) subjected to Gaussian jitter in amultipath en-
vironment is considered. In this case, {A (¢)},—, , ae
supposed to be Gaussian with different means, denoted by
7 and the same variance 0. The two characteristic func-
tions defined in Eq. (3) are of theform

1

Uy (W) = 6”’*“6770%‘“]2 Dy, (7'7(4)) = 67"%1“’2(1*91«(7'))

where 0% p,, (1) = E[Ax(t) Ay (t — 7)]. In the following
simulations, { A, (t)},_, , are uncorrelated.

First of dl, it isimportant to illustrate the jitter effect on
aNRZ process, taking into account only one path, without
additive noise. Figure 2 displays the jitter effect on such
processfor different valuesof jitter standard deviationo 4 =
3,7,15 for aNRZ with 10 samples per bit.
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Figure 2: Effect of Gaussian jitter on a NRZ process Z(t)
such that P[Z(t) = 1] = 0.5, 10 samples per bit, (a) no
jitter,(0) 04 =3,(C) o4 =7,(d) o4 = 15.

In the frequency domain, the jitter tends to whiten the
original process Z(t), as shown on figure 3.

Figure 4(a) shows an example of a NRZ process and
figure 4(b) of its distorted version subjected to 3 multipaths
with SNR=10 dB and Gaussian jitter. The effects of the
optimal linear filter are illustrated in figure 4(c) and figure
4(d) showsthe effect of thresholding on thisfiltered process.
It is worth noting that the optimal filter of Eq.(17) can be
easily approximated by aF.I.R. filter.

It is aso of interest to study the influence of the dif-
ferent parameters on the reconstruction. Two criteria are
considered : the quadratic error (Eq.(18)) and the Bit Error
Rate (BER) which isthereferencein Communications. The
quadratic error can be written asa Signal to Reconstruction
Noise Ratio (SRNR) in dB. In the example of figure 4, the
SRNR is approximately 44 dB and the BER ~ 5%.

Figure 5 highlights the influence of jitter variance on the
reconstruction. Both criteria behave similarly, despite they
arerelated non-linearly.

Figure 6 shows that the reconstruction is not affected by
additive noise, as soon as SNR >10 dB.



Spectra comparison

sy(f) with 0,=3
10" | sy(f) with 0,=7
sy(f) with 0,=15

5
10 . ' ; ¥ ; ! !
0 005 01 015 02 025 03 035 04 045 05

Normalized frequencies

Figure 3: Jitter spectral effect.

5. CONCLUSION

This paper studies the effect of jitter in amultipath environ-
ment. The main focus of this paper is to derive an expres-
sion of an optimal filter in order to achieve the reconstruc-
tion of the continuous time original process. In the case of
an original process under the Shannon condition, it is shown
that this optimal estimation is the result of alinear filter in-
dependent of the time instant ¢ at which the reconstruction
is carried out. Simulations on a NRZ process subjected to
Gaussian jitter and multipath are given, showing that this
optimal filter can be approximated by a FIR one, leading to
satisfying results.
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Figure 4. Reconstruction of a NRZ process: (a) NRZ pro-
cess, (b) NRZ process subjected to 3 multipaths and Gaus-
sianjitter (c4 = 3, 71 = 12, 79 = 5, 73 = 0), SNR=10dB,
(c) filtered process, (d) filtered process after thresholding.
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Figure 5: MSE and BER v.s. jitter standard deviation.
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Figure 6: MSE and BER v.s. SNR.



