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ABSTRACT

Multidimensional(MD) physicalsystemsareusuallygiven
in termsof partial differential equations(PDEs). Similar
to one-dimensionalsystems,they canalsobedescribedby
transferfunction models(TFMs). In additionto including
initial andboundaryconditionsaswell asexcitation func-
tions exactly, the TFM can also be discretizedin a sim-
ple way. This leadsto suitableimplementationsfor dig-
ital signal processors.Thereforeit is possibleto imple-
mentphysicsbaseddigital soundsynthesisalgorithmsde-
rived from TFMs in real-time. This paperextendsthe re-
centlypresentedsolutionfor vibratingstringswith onespa-
tial dimensionto two-dimensionaldrummodels.

1. INTRODUCTION

Digital soundsynthesisbasedonphysicalmodelinghasgain-
ed significant interestin the last two decades. By mod-
eling the soundproductionmechanisms,traditional instru-
mentscanbe understoodandreproducedmore intuitively
thanwith classicalsignalbasedmethods.

To keep the physical model of the soundproduction
mechanismpracticableonly thedominatingeffectsandthe
mainvibratingstructures,like thedrumheadof a drum,are
considered.All othersurroundingmaterialandinsignificant
physicalbehavior areneglectedor aretreatedby fixedone-
dimensionaltransferfunctions. The analysisof this main
vibrating structureusingbasicphysicallaws leadsto MD
modelsin form of PDEs.ThesePDEsincludetemporaland
spatialderivatives, initial and boundaryconditionsand in
mostcasesexcitationfunctions.

A commonway to solve PDEsis the finite difference
method[1]. It replacesdifferentialoperatorsby difference
functions. To keepthis approximationcloseto the exact
solution, the stepsizeshave to be small. This resultsin
computationallyinefficient algorithms,especiallyfor mod-
elswith two or morespatialdimensions.

A moreeffective way is thedigital waveguidemethod.
It simplifiesthePDEto thewave equationthathasa closed

solution in terms of a forward and a backward traveling
wave. Thesewaves can be realizedby delay lines. The
effectsof the othertermsof the PDE areapproximatedby
includingdigital filters of low orderinto thedelaylines[2].
On the onehandthis is computationallyvery effective for
the one-dimensionalcase.But on the otherhandthereare
severaldisadvantages,for examplethe lossof the physical
meaningof the parameters.For systemswith two or more
spacecoordinatesthe waveguide methodis equivalent to
the finite-differencemethod[3] with similar disadvantages
givenabove.

This paperdemonstratestherecentlypresentedmethod
of usingTFMsfor thesolutionandsimulationof MD phys-
ical phenomena.Weextendtheone-dimensionalproblemof
avibratingstring,alreadysolvedin [4], to atwo-dimensional
drumheadvibration. We considertransversalwaves with
dispersion,frequency independentandfrequency dependent
lossesin thedrumhead.

This paperis organizedasfollows: Section2 describes
thephysicalmodelof thedrum,section3 givesa shortde-
scription of the functional transformationmethodin gen-
eral.Section4 appliesthis methodto a lossyanddispersive
drumheadandsection5 presentssimulationresults.

2. PHYSICAL MODELS OF DRUMS

In this chapterwe presentthephysicalmodelof a vibrating
membranein form of a PDE.For the solutionof this PDE
we alsoneedboundaryandinitial conditions.To keepthe
examplesimple,we assumea linearbehavior anda homo-
geneousmaterial.

2.1. The Partial Differential Equation

Assuminga two-dimensionalmembrane,the well known
wave-equationis themainpartof thePDE.All othereffects
andtheexcitationareaddedto thewave-equationandcanbe
derivedfrom thebasiclaws of elasticity. ThePDEdescrib-
ing thevibrationof amembranewith dispersion,lossesand



anexcitationfunctioncanbewrittenasfollows[5]:�������	��
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tion and
"$ -"�&.' �/) ' � ) �,+ describestheexcitation-function.

Thespatialcoordinatesystem
&(' �/) ' � + is chosenaccording

to theshapeof thedrum.
�

denotesderivativewith respect
to thesespacecoordinates.

Thefirst term of (1) containingthe materialdependent
constant

� �
denotesdispersionresultingfrom the bending

resistibility of the membrane.The next two termsof (1),
thesecondorderspatialandsecondordertemporalderiva-
tives,constitutethe 2D wave equation.The constant

� �
is

the materialdependentspeedof sound.
� �

is a frequency
independentand

� �
a frequency dependentdecayvariable.

They arederivedfrom a simplifiedmodel[1] that includes
not only thelossesin theair but alsothoseinsidethemem-
braneandthosedueto thecouplingto theresonancebody.

2.2. Boundary conditions

The shapeof the membraneis definedby its boundary, a
closedcurve 0 aroundan area 1 . The numberof bound-
ary conditionsis determinedby the highestorder of spa-
tial derivativesof the PDE. In caseof fourth orderspatial
derivatives,two boundaryconditionsmustbe given. If we
considera fixed membraneat the boundary, the deflection
(2) andtheskewness(3) arezeroon 0 [5]. Hencethe two
boundaryconditionsare:��&.'2� ) ' � ) �,+4336587*9;: 7	<,=?>A@  B
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2.3. Initial conditions

Since(1) hassecondordertimederivatives,two initial con-
ditions are required. We considerherethat the deflection
(4) andits first derivative(5) aregivenat thebeginning.To
modeltheexcitationof themembraneby aninitial velocity"*C

at onepoint
&(' � C ) ' � C + , we setthedeflection(4) to zero

andthevelocity (5) to aspatialimpulsefunction D C .��&.' �E) ' � +GF H(I C  B
(4)���� ��&.'2� ) ' � +GF H(I C  " C D C &('J�K
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2.4. Concise notation

To simplify thedescriptionof the generalprocedureof the
functionaltransformationmethod,a concisenotationis in-

troduced[4, 6]. ThePDE(1) canbewrittenasfollows:MON ��&('2� ) ' � ) �,+QP ��R N ��&('2� ) ' � ) �,+SP ���T N ��&.'2� ) ' � ) �,+QP  #"2&('J� ) ' � ) �,+ (6)

wheretheoperator
M

includesall temporalderivatives,the
operator

R
all spatialderivativesand the operator

T
the

mixedderivatives.
Thetwo boundaryconditions(2) and(3) aswell asthe
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3. FUNCTIONAL TRANSFORMATION METHOD

The basicideaof the functional transformationmethodis
well knownfromtime-dependentordinarydifferentialequa-
tions (ODEs). TheLaplacetransformationis usedto elim-
inate the time derivativesand to include the initial condi-
tions. For PDEsthe Sturm-Liouville (SL) transformation
is usedfor the spacevariables. It transformsthe resulting
boundaryvalueprobleminto thespatialfrequency domain.
Solving this algebraicequationfor the outputvariable,we
obtaina MD TFM. After inversetransformationsanddis-
cretizationof the TFM the resultingsystemis suitablefor
computersimulation.

3.1. Transformation with respect to time

By applyingtheLaplacetransformationto (6-8) we obtain
aboundaryvalueproblemwith spatialderivativesonly. Ac-
cordingto (1) thevibratingmembranecanbedescribedwith^ �*_!&('2� ) ' � ) ^ + 
 ^ � [6C &('J� ) ' � + 
L� [ �*&('J� ) ' � +��R N _!&('J� ) ' � ) ^ +QP � ^ Ta` N _!&('J� ) ' � ) ^ +QP
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where the operator
T N � P is split into two operatorsT N � P  dTfe N Tf` N � PAP with only temporalderivativesinTfe

andonly spatialderivativesin
Ta`

.

3.2. Transformation with respect to space

TheSL transformationisdefinedsimilarto theLaplacetrans-
formationbut with finite integrationlimits andthereforeit



usesadifferentanda priori unknown transformationkernelg &.h ) ' �*) ' � + with thespatialfrequency variable
h
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To obtainanalgebraicequationafterSL transformation
of (9) the transformationkernel

g &(h ) ' �*) ' � + mustsatisfy
thesocalledSturm-Liouvilleproblem[6]:R Npg P � ^ T ` N�g P  h � g )

(12)UqV N�g P  Y�r
(13)

Its solutiondependsontheshapeof 1 andcannotbesolved
analytically in most cases. But solving (12,13) with nu-
merical methodsleadsto a transformationkernel

g
with

which the spatialtransformation(11) is defined.Applying
this transformationto (9), we obtainan algebraicequation
thatcanbesolvedfor theoutputvariable

i_
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3.3. Inverse transformation

To applytheinverseSL transformationa shortlook at gen-
eralizedFourier seriesis needed. According to [7] every
piecewisecontinuousfunction

��&.'2� ) ' � + in theboundedarea1 canbedescribedasa generalizedFourierseries��&('J� ) ' � +  Zv t � t g t &('J� ) ' � + (17)

with orthogonalfunctions
g t &(' �*) ' � + . Thecoefficients

� t
canbecalculatedwith� t  lm ��&('2� ) ' � + g t &('2� ) ' � +,n '2� n ' � r (18)

SinceSL problemspossessorthogonaleigenfunctions
g

and discreteeigenvalues
h t )xwzy|{

, we can seethat the
SL transformationis a generalizedFourierseries.The for-
ward transformationcorrespondsto (18) with

� t  i�}&(h t +
andtheinversetransformationis performedby (17).

Thus, inverseLaplacetransformationand inverseSL
transformationyield the solution of (1) in the form of an
orthogonalseries��&(' �E) ' � ) �,+  v t i��&(h t ) �,+ g &(h t ) '2� ) ' � +~ g &.h t ) ' �*) ' � + ~ �� r

(19)

The inverseSL transformation(19) is computednumeri-
cally by a parallel arrangementof recursive discretesys-
tems.They arerealizedefficiently on digital signalproces-
sors.

4. DRUM MODELS

Dueto thedependenceof
g &.h t ) ' �E) ' � + ontheshapeof the

membrane,theSL transformationhasto becalculatedsep-
aratelyfor differentshapes.This is shown for a rectangular
andfor acircularmembrane.

4.1. Rectangular membrane

Therectangularmembraneis theeasiestshapefor thespa-
tial transformation.Cartesiancoordinates

&(' )�� + canbecho-
senfor

&(' �/) ' � + andthe SL problemcanbe solved with a
separationof thespatialvariables.g &(h t ) ' )�� +  g 7 &(h t ) ' +4� gc� &(h t ),� + (20)

This approachreducesthetwo-dimensionalproblemto two
one-dimensionalproblems,thatareverysimilarto thestring
modelspresentedin [4]. Thetransformationkernelandthe
discretespatialfrequency variables� 7 ) � � y${ resulting & � 7 ) � � ) ' ),� +  Z�,����� � 7*�� 7d� ������� � � �� � � ) (21)
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4.2. Circular membrane

Much moreinterestingarecircularmembranes.They area
goodapproachfor real drumsandarevery different from
thestringmodel.

Here polar coordinateswith radius � and angle � are
chosen.Theboundaryof themembraneis givenby thera-
dius � . TheresultingSL problemis�4�	��� g 

���	��� g ��� � ^ ��� g  hG�t g )

(23)g &.h t ) � ) � +GF �;IG�  B )
(24)��� g &.h t ) � ) � +GF �;IG�  B�r
(25)

The first stepis alsothe separationof the spatialvariables
similar to (20). Thespatialfrequency variableandthetrans-
formationkernelarenow functionsof the integervalues�
and � . g & � ) � ) � ) � +  #�p���p& � & � 
 � C +,+Q �¡£¢ w ¡ � ��¥¤ (26)
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� �� � X (27)  ¡ & �¨+ is theBesselfunctionof order � , � C is the phaseof
the initial excitation, and � and � are integers. To satisfy
the boundaryconditions(24,25)the variable

w ¡�§ mustbe
the � -th zerocrossingof theBesselfunctionof order � .

Thedependenceon two independentintegersis typical
for 2D problems,but the sum in the inversetransforma-
tion andthe discretespatialfrequencies

h t  ©h ¡A§ arenot
touched. The summationover

w
resultsin a doublesum

over � and � .
Theresultingtransferfunctionmodelwith anexcitation

function and an initial velocity is calculatedaccordingto
(14). The inverseLaplacetransformationof (14) is well
knownandtheinverseSL transformationis realizedby (19).

4.3. Discretization

To implementthe analyticsolution in the computerit has
to be discretized. Thereforethe deflection

��&.'2� ) ' � ) �,+ is
sampledat �  «ª¥¬G­

with the temporalstepsize
¬G­

. As
shown in [4] a setof secondorderrecursivesystemscanbe
derived,onefor eachspatialfrequency

h t .
To avoid aliasingthe temporalfrequenciesmay not be

largerthanhalf thesamplingfrequency [4]. Sothesumma-
tion in the inversefunctionaltransformationis truncatedto
a finite length ® .

5. RESULTS

Due to the physicalinterpretationof all the constantsand
variablestheresultscanbeinterpretedveryintuitively. Chan-
gesin theparameterscausechangesin thewavepropagation
andthereforealsoin theproducedsoundasexpected.

Every drummerknows aboutthe importanceof thehit-
point. An excitationin themiddleof themembranecausesa
verydifferentsoundthananexcitationat � C� �� � . Figure1
illustratesthis effect very clearly. Therearemuchmorevi-
brationmodesfor � C� �� � in comparisonto � Cj -B

. This
effectis well knownfrom theone-dimensionalstringmodel,
but isevenmoreimpressivein two-dimensionalmembranes.
Figure 2 shows the wave propagationof an impulseon a
rectangularmembrane.

Fig. 1. Transversal vibrating membranewith excitation
pointat � C  #B and � C  �� � .

Fig. 2. Wavepropagationonarectangularmembraneshort-
time aftertheexcitationimpulse.

6. CONCLUSIONS

The presentedmultidimensionaltransferfunctionmodelis
anew approachfor soundsynthesisbasedonphysicalmod-
els. Even PDEswith multiple spatialdimensionscan be
handledby this method. The physicsbasedmultidimen-
sionalPDE canbe transformedinto the temporalandspa-
tial frequency domainwhereit is solvedanalytically. After
inversetransformationand discretizationthe solution can
easilybeimplementedon a digital signalprocessor. Dueto
thephysicsbasedmodelthepropertiesof thesoundcanbe
changedintuitively accordingto the experienceof the mu-
sician.
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