PHYSICAL MODELING OF DRUMSBY TRANSFER FUNCTION METHODS
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ABSTRACT

Multidimensional(MD) physicalsystemsareusuallygiven
in termsof partial differential equations(PDES). Similar
to one-dimensionatystemsthey canalsobe describedby
transferfunction models(TFMs). In additionto including
initial and boundaryconditionsaswell asexcitation func-
tions exactly, the TFM can also be discretizedin a sim-
ple way. This leadsto suitableimplementationdor dig-
ital signal processors. Thereforeit is possibleto imple-
ment physicsbaseddigital soundsynthesisalgorithmsde-
rived from TFMs in real-time. This paperextendsthe re-
centlypresentedolutionfor vibrating stringswith onespa-
tial dimensionto two-dimensionatrummodels.

1. INTRODUCTION

Digital soundsynthesi®asedn physicalmodelinghasgain-
ed significantinterestin the last two decades. By mod-
eling the soundproductionmechanismstraditional instru-
mentscan be understoodand reproducedmore intuitively
thanwith classicakignalbasedmethods.

To keepthe physical model of the soundproduction
mechanisnpracticableonly the dominatingeffectsandthe
mainvibrating structureslik e the drumheacf adrum, are
consideredAll othersurroundingnaterialandinsignificant
physicalbehaior areneglectedor aretreatedby fixed one-
dimensionaltransferfunctions. The analysisof this main
vibrating structureusing basicphysicallaws leadsto MD
modelsin form of PDEs.ThesePDEsincludetemporaland
spatial derivatives, initial and boundaryconditionsandin
mostcasesexcitationfunctions.

A commonway to solve PDEsis the finite difference
method[1]. It replacedifferentialoperatorshy difference
functions. To keepthis approximationcloseto the exact
solution, the stepsizeshave to be small. This resultsin
computationallyinefficient algorithms,especiallyfor mod-
elswith two or morespatialdimensions.

A moreeffective way is the digital waveguide method.
It simplifiesthe PDEto the wave equationthathasa closed
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solution in termsof a forward and a backward traveling
wave. Thesewaves can be realizedby delaylines. The
effectsof the othertermsof the PDE are approximatedyy
includingdigital filters of low orderinto the delaylines[2].
On the one handthis is computationallyvery effective for
the one-dimensionatase. But on the otherhandthereare
several disadwantagesfor examplethe lossof the physical
meaningof the parametersFor systemswith two or more
spacecoordinateshe waveguide methodis equivalentto
the finite-differencemethod[3] with similar disadantages
givenabove.

This paperdemonstratethe recentlypresentednethod
of usingTFMs for the solutionandsimulationof MD phys-
ical phenomenaWe extendthe one-dimensiongdroblemof
avibratingstring,alreadysolvedin [4], to atwo-dimensional
drumheadvibration. We considertrans\ersalwaves with
dispersionfrequeng independenandfrequeng dependent
lossesn thedrumhead.

This paperis organizedasfollows: Section2 describes
the physicalmodelof the drum, section3 givesa shortde-
scription of the functional transformationmethodin gen-
eral. Sectiond appliesthis methodto alossyanddispersie
drumheadandsection5 presentsimulationresults.

2. PHYSICAL MODELSOF DRUMS

In this chaptemwe presenthe physicalmodelof avibrating
membrandn form of a PDE. For the solutionof this PDE
we alsoneedboundaryandinitial conditions. To keepthe
examplesimple,we assume linear behaior anda homo-
geneousnaterial.

2.1. ThePartial Differential Equation

Assuminga two-dimensionalmembrane the well known
wave-equations themainpartof the PDE.All othereffects
andtheexcitationareaddedo thewave-equatiorandcanbe
derivedfrom the basiclaws of elasticity The PDEdescrib-
ing thevibrationof amembraneawith dispersionjossesand



anexcitationfunctioncanbewritten asfollows [5]:
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z = z(x1,a,t) is thetime- andspace-dependenteflec-
tion andv = v(zy,z2,t) describeghe excitation-function.
The spatialcoordinatesystem(z, z2) is choseraccording
to the shapeof thedrum. V denoteslerivative with respect
to thesespacecoordinates.

Thefirst term of (1) containingthe materialdependent
constantS* denoteddispersionresultingfrom the bending
resistibility of the membrane.The next two termsof (1),
the secondorderspatialand secondordertemporalderiva-
tives, constitutethe 2D wave equation. The constanic? is
the materialdependenspeedof sound. d; is a frequeny
independentindds a frequeny dependentlecayvariable.
They arederivedfrom a simplified model[1] thatincludes
notonly thelossesn theair but alsothoseinsidethe mem-
braneandthosedueto the couplingto theresonanc&ody.
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2.2. Boundary conditions

The shapeof the membranes definedby its boundary a
closedcurve B aroundan areaA. The numberof bound-
ary conditionsis determinedby the highestorder of spa-
tial derivativesof the PDE. In caseof fourth order spatial
derivatives,two boundaryconditionsmustbe given. If we
considera fixed membraneat the boundary the deflection
(2) andthe skewness(3) arezeroon B [5]. Hencethe two
boundaryconditionsare:

lexZJ | El,wg)EB = 0 (2)

V z 1131,.’1)'2, | zl,z2)€B = 0 (3)

2.3. Initial conditions

Since(1) hassecondrdertime derivatives,two initial con-
ditions arerequired. We considerherethat the deflection
(4) andits first derivative (5) aregivenatthe beginning. To
modelthe excitation of the membranéy aninitial velocity
vp atonepoint (x10,x20), We setthe deflection(4) to zero
andthevelocity (5) to a spatialimpulsefunction~g.

Z(.’L’l,.’L'Q) |t:0 = 0 (4)

2(x1,%2) [t=0 = wvoY0(T1 — Z10,T2 — T20) 5)
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2.4. Concise notation

To simplify the descriptionof the generalprocedureof the
functionaltransformatiormethod,a concisenotationis in-

troduced4, 6]. The PDE (1) canbewritten asfollows:

D{Z(.’L‘l,xg,t)} +L{Z(.CL'1,.’L'2,t)} +
+W{Z($1,.’L’2,t)}:U(Sﬂl,xz,t) (6)

wherethe operatorD includesall temporalderivatives,the
operatorL all spatialderivatives and the operatori¥ the
mixedderivatives.

Thetwo boundaryconditions(2) and(3) aswell asthe
initial conditions(4) and(5) canbewrittenin vectorform:
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3. FUNCTIONAL TRANSFORMATION METHOD

The basicideaof the functional transformatiormethodis

well known from time-dependerdrdinarydifferentialequa-
tions (ODESs). The Laplacetransformatioris usedto elim-

inate the time derivativesandto include the initial condi-

tions. For PDEsthe Sturm-Liouville (SL) transformation
is usedfor the spacevariables. It transformsthe resulting
boundaryvalueprobleminto the spatialfrequeny domain.
Solving this algebraicequationfor the outputvariable,we

obtaina MD TFM. After inversetransformationanddis-

cretizationof the TFM the resultingsystemis suitablefor

computersimulation.

3.1. Transformation with respect totime

By applyingthe Laplacetransformatiorto (6-8) we obtain
aboundaryvalueproblemwith spatialderivativesonly. Ac-
cordingto (1) thevibratingmembrane&anbedescribedvith

§2Z(x1,29,5) — szi0 (w1, T2) — 2i1 (21, T2)
+ L{Z(x1,x9,8)} + sWi {Z(21,22,5)}
— Wi {zio(z1,22)} = V(21,22,5), (9)

fb {Z($17w27s)} :07 (10)

where the operatoriWW {z} is split into two operators
W {z} = Wp {Wp, {z}} with only temporalderivativesin
Wp andonly spatialderivativesin Wr,.

3.2. Transformation with respect to space

TheSL transformations definedsimilarto theLaplacetrans-
formationbut with finite integrationlimits andthereforeit



usesadifferentanda priori unknavn transformatiorkernel
K (B, z1,z2) with the spatialfrequeng variableg.

Z(/Bas) = TH{Z(z1,22,5)}

= /Z(wl,xz,s)K(,B,:Ul,m2)d$1dx2 (11)
A

To obtainanalgebraicequationafter SL transformation
of (9) the transformatiorkernel K (3, 1, z2) mustsatisfy
the socalledSturm-Liouville problem[6]:

L{K}+ sW.{K} BK , (12)
fi{K} = 0. (13)

Its solutiondepend®nthe shapeof A andcannotbesolved
analytically in most cases. But solving (12,13) with nu-
merical methodsleadsto a transformatiornkernel K with
which the spatialtransformation11) is defined. Applying

this transformatiorto (9), we obtainan algebraicequation
thatcanbe solvedfor the outputvariableZ.

zi1(B) + V (B, 5)

Z(B,s) = 2 +dys + B (14)
Zin(B) = woK(B,210,720) (15)
V(B,s) = / V(x1,x2,s)K(B, 1, 2z2)dz1dzs  (16)

3.3. Inversetransformation

To applytheinverseSL transformatiora shortlook at gen-

eralizedFourier seriesis needed. Accordingto [7] every

piecavisecontinuoudunctionz(x1, z») in theboundedarea
A canbedescribedasa generalized-ourierseries
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with orthogonalfunctions K, (z1,z2). The coeficientsc,,
canbe calculatedwith

Cy = /z(xl,w2)KH($1,w2)dx1dx2. (18)
A
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Since SL problemspossesorthogonaleigenfunctionskK’
and discreteeigervaluesg,, ¢ € N, we canseethat the
SL transformationis a generalized-ourier series. The for-
ward transformatiorcorrespondso (18) with ¢, = Z(5,)
andtheinversetransformatioris performedby (17).

Thus, inverse Laplacetransformationand inverse SL
transformationyield the solution of (1) in the form of an
orthogonakeries

0, 1) = 2(ﬂu7t)K(ﬂH7mlax2) . (19)
z($1 z2 ) ; ||K(ﬂ,“$1,$2)||§

The inverseSL transformation(19) is computednumeri-
cally by a parallel arrangemendf recursve discretesys-
tems. They arerealizedefficiently on digital signalproces-
Ssors.

4. DRUM MODELS

Dueto thedependencef K (3,, z1, z2) ontheshapeof the

membranethe SL transformatiorhasto be calculatedsep-
aratelyfor differentshapesThisis shovn for arectangular
andfor acircularmembrane.

4.1. Rectangular membrane

Therectangulamembranaes the easiesshapefor the spa-
tial transformationCartesiarcoordinategz, y) canbecho-
senfor (z1,z2) andthe SL problemcanbe solved with a
separatiorof the spatialvariables.

K(Bu,x,y) = Kz(ﬂuaw) : Ky(ﬂuay) (20)

This approactreduceghetwo-dimensionaproblemto two
one-dimensiongdroblemsthatareverysimilarto thestring
modelspresentedn [4]. Thetransformatiorkernelandthe
discretespatialfrequeng variablesn,, n, € N resultin

Do sin My™ , (22)
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4.2. Circular membrane

Much moreinterestingarecircularmembranesThey area
good approachfor real drumsand are very differentfrom
thestringmodel.

Here polar coordinateswith radiusr andangley are
chosen.The boundaryof the membranes givenby thera-
dius R. TheresultingSL problemis

S*VAK - *V’K +d3sV’K = BiK, (23)
K(ﬂﬂu T; (P) |7’:R = 0 ) (24)
V2K (Bu,r,0) lr=r = 0. (25)

The first stepis alsothe separatiorof the spatialvariables
similarto (20). Thespatialfrequeng variableandthetrans-
formationkernelarenow functionsof the integervaluesn
andk.

K(n, k.1, ¢) = cos(n(p = 90))Jn (pnk ) (26)
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Jn(+) is the Besselfunction of ordern, g is the phaseof
the initial excitation, andn andk areintegers. To satisfy
the boundaryconditions(24,25)the variable u1,,, mustbe
the k-th zerocrossingof the Besselfunctionof ordern.

The dependencen two independenintegersis typical
for 2D problems,but the sumin the inversetransforma-
tion andthe discretespatialfrequencies3, = S, arenot
touched. The summationover y resultsin a doublesum
overn andk.

Theresultingtransferfunctionmodelwith anexcitation
function and an initial velocity is calculatedaccordingto
(14). TheinverselLaplacetransformationof (14) is well
known andtheinverseSL transformations realizedoy (19).

4.3. Discretization

To implementthe analytic solutionin the computerit has
to be discretized. Thereforethe deflectionz(z1, z2,t) is
sampledat t = mT, with the temporalstepsizeTs. As
shavn in [4] a setof secondorderrecursve systemsanbe
derived,onefor eachspatialfrequeny 3,,.

To avoid aliasingthe temporalfrequenciesnay not be
largerthanhalf the samplingfrequeng [4]. Sothesumma-
tion in the inversefunctionaltransformatioris truncatedo
afinite length V.

5. RESULTS

Due to the physicalinterpretationof all the constantsaand
variablegheresultscanbeinterpretedreryintuitively. Chan-
gesin theparametersausechangesn thewave propagation
andthereforealsoin the producedsoundasexpected.

Every drummerknows abouttheimportanceof the hit-
point. An excitationin themiddleof themembraneauses
verydifferentsoundthananexcitationatry = %R. Figurel
illustratesthis effect very clearly. Therearemuchmorevi-
brationmodesfor rq = %R in comparisorto ro = 0. This
effectis well known from theone-dimensionatringmodel,
butis evenmoreimpressiein two-dimensionamembranes.
Figure 2 shows the wave propagationof an impulseon a
rectangulamembrane.
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Fig. 1. Transwersalvibrating membranewith excitation
pointatry = 0 andrg = 2R.

Fig. 2. Wave propagatioron arectangulamembraneshort-
time afterthe excitationimpulse.

6. CONCLUSIONS

The presentednultidimensionakransferfunction modelis
anew approachor soundsynthesisasedn physicalmod-
els. Even PDEswith multiple spatialdimensionscan be
handledby this method. The physicsbasedmultidimen-
sional PDE canbe transformednto the temporaland spa-
tial frequeny domainwhereit is solvedanalytically After
inversetransformationand discretizationthe solution can
easilybeimplementecn a digital signalprocessarDueto
the physicsbasednodelthe propertiesof the soundcanbe
changedntuitively accordingto the experienceof the mu-
sician.
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