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ABSTRACT

This paper explores blind deconvolution of reverber-
ated speech signals in microphone array applications.
Two regularization approaches are proposed based on
available a priori knowledge. The regularized least-
squares (LS) approach uses the speech signal charac-
teristics and the lowpass nature of the reverberation
channel; and the regularized cross correlation (CR) ap-
proach requires more precise knowledge of reverbera-
tion which can be obtained through training. The two
methods are robust to the presence of noise.

1. INTRODUCTION

In a typical office room environment, speech signals are
distorted due to the reflection of walls, whiteboards,
furniture, and other objects. The signal recorded at
a microphone or a microphone array often sounds re-
verberated because of the multipath effect. The re-
verberation brings difficulty to speech processing such
as recognition and compression. Recovering the clean
signal from the reverberated observation is thus an im-
portant problem.

This paper discusses blind deconvolution of rever-
berated speech signals in microphone array applica-
tions. Fig. 1 describes a microphone array system with
P microphones. The observation y, (1 < i < P) de-
notes the signal recorded at the ¢th microphone. Each
y, isa reverberated version of the original clean speech
z, and the channel h;(n) characterizes the acoustic dis-
tortion from the sound source to the ith microphone.
In practical microphone array systems, channels are
often time-varying due to the movement of the sound
source and changes in the environment. The goal is to
recover the clean signal z and the channels h;(n) from
the reverberated signal y;(n) (1 <1i < P).

One important issue in blind deconvolution is iden-
tifiability: can the signal and the channels be identi-
fied uniquely (up to scaling factors) from the outputs?
Xu et al in [1] and Hua and Wax in [2] give identifia-
bility conditions for multiple channel blind deconvolu-
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tion applications: first, the channels should be coprime,
i.e., they cannot share common zeros; second, the sig-
nal z must have sufficient spectral richness. Based
on those analyses, eigenstructure-based or likelihood-
based methods have been proposed. See [1, 3, 4, 5, 6]
for examples.

In practical microphone array systems, signals are
often corrupted by noise, which complicates the blind
deconvolution problem. Hua [4] gives a comparison of
representative blind deconvolution methods and also
the Cramer-Rao lower bound. The performance of such
identification methods decreases quickly as the signal-
to-noise ratio (SNR) decreases (e.g., < 30dB). This
calls for suitable a priori knowledge to stabilize the so-
lution, and to restrict the size of the solution set. This
paper presents two such regularization approaches.
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Fig. 1. A multichannel system

2. A REGULARIZED LS APPROACH

The basic idea is to penalize unlikely estimates by a
regularization penalty. The choice of the penalty is
often critical to the performance. In this section, we
present a blind deconvolution approach using the char-
acteristics of speech signal and the lowpass nature of
reverberation channels. We define the composite obser-
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vation vector y = (QT:Q; --,yp)", and the impulse

response vector ﬁé (Bl nY,...hE)T. Let H; be the
Toeplitz convolution matrix for the ith channel, and let



H=(HLI HY,...,HL)T be the composite convolution
operator. We design the cost function to be minimized
as

€ =lly— Hz|]” + pa®o(2) + pn®a(h). (1)

where each term has the following interpretation:

e ||y — Hz||? is a least-squares metric, the L? dis-
tance between the data y and the channel outputs
given by the estimate (z,h). It measures the fi-
delity to the data.

e &,(z) is the regularization penalty on z, penal-
izing unlikely signals. In a microphone array sys-
tem, z is mostly speech, which can be well pre-
dicted by linear predictive coding (LPC) analy-
sis. Hence we choose the LPC residual energy
as the regularization penalty. More specifically,
®,(z) = ||Crz||?, where C, denotes the Toeplitz
convolution operator obtained from the LPC co-
efficients.

e &, (h) penalizes unlikely room impulse responses.
The reverberation components of room impulse
responses are usually lowpass, because high-fre-
quency sound waves are more likely to be ab-
sorbed by walls and other surfaces. We choose
®,(h) to be the total energy of the output of
convolving each h; with a simple 4-tap highpass
filter ¢ = {1, —1,0.6, —0.3}. This simple filter has
worked well in our experiments.

e The regularization parameters p, and pp control
the tradeoff between the least-squares term and
the regularization penalties.

2.1. Optimization Algorithm

Finding the (h,#) that minimizes £ is a high-dimen-
sional nonlinear optimization problem. We solve it by
a coordinate descent approach [7], which takes turns in
optimizing with respect to z, h, and C,. After proper
initialization, the algorithm does the following;:

e Fix h and C,, and find
z = argming {|ly — Hzl|]” + a||Caz]*}.
Since the H; and C,, are all convolution operators,
the optimization problem can be solved using fre-
quency domain filtering and inverse filtering op-
erations.

e Fix z and find C,. This is equivalent to finding
the LPC coefficients of z.

e Fix z, find

h = argming {|ly = Hal > + jn 5, @ (k) }.
Each channel can be estimated separately.

The steps above are repeated in sequence, until conver-
gence is attained. Each step is a quadratic optimization
problem, for which a global minimum is guaranteed to
be found. Therefore, the algorithm is guaranteed to
converge to a local minimum [7].

In practice, to further reduce the computational
cost, the observation is divided into blocks of suitable
length (e.g. 32 ms). The algorithm iteratively finds the
estimate, and carries the estimated channel to the suc-
ceeding blocks. Moreover, we use a forgetting factor to
stabilize h, i.e., bt = (1 — a)hk + ah®

Zinitial — zmtzal estzmate’
where k is the block index, and A% ... and b . .
denote the initialized value and the optimized estimate
in block k respectively. The forgetting factor a € (0, 1)
controls the learning rate of h, prohibiting it to vary
too quickly. In essence, noise in successive blocks are
smoothed by using small forgetting factors. In our ex-
periments, we use « between 0.1 and 0.2. As more
blocks are processed, the estimate of h gets more accu-
rate, i.e. the blind deconvolution algorithm learns the
reverberation channels gradually.

2.2. Experimental Results

To evaluate the algorithm proposed above, we gener-
ated the observations y by passing a signal x through
five 80-tap FIR channels h(n), ho(n), ..., hp(n) (with
P =5 and all filters having length L = 80). Each chan-
nel is contaminated with white noise with an SNR of
24 dB. Figure 2 shows an of the performance of our reg-
ularized least-squares approach. The estimated chan-
nel after processing 40,000 samples (the dashed curve)
is close to its true value (the solid curve), both in the
time domain (see Fig. 2a) and in the frequency domain
(see Fig. 2b). The SNR in estimating |H (w)| is 9.7 dB.

We compared the restored speech signal & using our
technique to the result using a simple delay-and-sum
beamforming technique (in which the multiple chan-
nel observations y Y,>Yy» - Y p are time aligned and then
averaged [8]). The SNR gain of our £ over delay-and-
sum beamforming estimate is 5.6 dB. Similar results
are achieved when the channels are contaminated with
nonwhite or ambient noise, which suggests the robust-
ness of the regularized least-squares method.

3. A REGULARIZED CR APPROACH

In a system with P = 2 channels, it is easy to see that
in the absence of noise, we have y *h, —y, xh; =
x % (hy * ha — ha x hy) = 0. This observatlon forms the
basis of cross-correlation blind identification methods.
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Fig. 2. Blind identification result using the regularized least-squares (LS) method. Left: the time domain impulse
response hy(n) (n is the x-axis). Right: the frequency domain axis |H(w)| (w is the x-axis). The solid curve is the
true channel; the dashed curve is the estimate. The regularization parameters: 202, = 300, 202 u; = 1500.

In matrix form, that’s equivalent to

[ewn-cu] | 3 ] =o @

where C(y,) is the operator of convolving with y.. We
use the shorthand notation

Yh=0, (3)

where Y = [C(g2)| - C’(gl)] is computed from the ob-

servations y. It has been shown in [1, 2] that under
the identifiability conditions discussed in Section 1, Y’
is rank-deficient by only 1. Therefore, the channel h
satisfying (3) is the eigenvector (up to a scaling) corre-
sponding to the zero eigenvalue of Y'Y. This analysis
can also be generalized to more than two channels. For
details, see for example [4].

In the presence of noise, cross correlation meth-
ods can be unreliable, because the eigenvectors of Y'Y
are very sensitive to perturbations in y. This calls
for regularization using prior knowledge about h. We
design a training process to acquire such knowledge.
The sound source is placed in K random positions in
the microphone array lab. In each position, we mea-
sure the channels and obtain h,,,,. It is often rea-
sonable to assume that h can be well approximated by
the linear interpolation of these training vectors. Let
H = (heyprs Begpas - -+ » heypic ). Hence, h € Range(H).

We design the regularization penalty to be the dis-
tance from the estimate h to the range space: ®5(h) =
||(I — Pg)h||?, where Py = H(H'H)~'H' is the pro-
jection operator. This is illustrated in Fig. 3.

The cost function to be minimized is

€ = IYRIP* + unl|(I - Pr)hl*. (4)

h

Fig. 3. Projection onto Range(H).

The solution h is then the eigenvector corresponding to
the smallest eigenvalue of (Y'Y + up (I — Prr)' (I — Prr)).
Efficient algorithms can be used to find such a solution,
for example [9)].

Note that Y is of size P(P—1)(N—-L+1)/2x PL,
where NNV is the number of observed samples. Comput-
ing Y'Y directly is not feasible when N is large. There-
fore, we compute Y'Y for the first 2L + 1 samples, then
update Y'Y for every new incoming M samples, where
M can be as small as one. Such an incremental updat-
ing strategy can use a forgetting factor to ensure that
Y'Y adapts to varying acoustic conditions.

3.1. Experimental Results

We have used the same setting as described in Sec-
tion 2.2. Fig. 4 plots the identified channel correspond-
ing to the first microphone, after processing 40,000
samples.

As Fig. 4 (a) shows, the estimate (the dashed curve)
tracks its true value (the solid curve) very closely, es-
pecially in the beginning, where most of the energy
resides. The spectral domain plot in Fig. 4 (b) also
shows a good fit. The SNR in estimating |H (w)]| is
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Fig. 4. Blind identification result using the regularized cross correlation (CR) method. Left: the time domain
impulse response hy(n) (n is the x-axis). Right: the frequency domain axis |H(w)| (w is the x-axis). The solid
curve is the true channel; the dashed curve is the estimate. The regularization parameter is 202y, = 1. This plot

is drawn after 40,000 samples are processed.

10.9 dB. The restored Z is much closer (than any of
the microphone signals) to the clean signal z in sound
quality, and the SNR gain over the delay-and-sum es-
timate is 10.1 dB. Those SNR numbers are better than
those for the LS method, which is expected since the
CR method uses the room response measurements.

4. DISCUSSION

The two regularization approaches, presented in Sec-
tions 2 and 3, should be used for different applications,
based on the available prior knowledge. The regular-
ized LS method uses weak assumptions about both the
signal and the channels to help estimation, and the two
regularization terms balances each other. It does not
require any specific training of the channel impulse re-
sponses. The optimization algorithm gradually learns
the underlying channels. The method is recommended
when the sound signal is mostly speech, and the room
environment is likely to vary (e.g., in a conference room
with many people, or for a handheld device).

The regularized CR method in Section 3, needs
training to get H = (B.pp1> Respas - - - » Pewprc), and thus
it is sensitive to large variations in the acoustics of the
room. On the other hand, it does not rely on signal
statistics, and is applicable to nonspeech signals such
as music. This method is recommended in situations
where training is meaningful, e.g. in many office envi-
ronments.
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