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ABSTRACT
Previously, we proposeda histogram-basedquick signal
searchmethodcalledTime-SeriesActiveSearch(TAS).TAS
is amethodof searchingthroughlongaudioorvideorecord-
ingsfor aspecifiedsegment,basedonsignalsimilarity. TAS
is fast;it cansearchthrougha24-hourrecordingin 1 second
afteraquery-independentpreprocessing.However, aneven
fastermethodis requiredwhenweconsiderhugeamountof
audioarchives,for examplea month’s worth of recordings.
Thus,weproposea preprocessingmethodthatsignificantly
acceleratesTAS. Thecorepartof this methodcomprisesa
global histogramclusteringof long signalsanda pruning
schemeusingthoseclusters.Testsusingbroadcastrecord-
ing indicatethattheproposedalgorithmachievesthesearch
speedapproximately3 to 30 timesfasterthanTAS. In these
tests,thesearchresultsareexactly thesameaswith TAS.

1. INTRODUCTION

Thispaperproposesamethodfor quicksearchingthrougha
longaudiostream(wecall thisa stored signal) to detectand
locatea known audiosignal(a reference signal or a query)
basedon signalsimilarity. Theprospective applicationsin-
cludesearchingbroadcastrecordingsfor theuseof specific
musictitleswith audiokeys.

Previously, weproposedahistogram-basedsignalsearch
methodcalledTime-SeriesActive Search(TAS) [3]. TAS
takeslessthan1 secondto detecta15 secondreferencesig-
nal in a 24-hourstoredsignalon a standardPC, underthe
assumptionthatthesignalsegmentsto bedetectedpreserve
thesamespectralpatternasthereferencesignal,exceptfor
minor distortionsor noises. However, whenwe consider
much longerstoredsignals,for exampleTV broadcasting
recordedover a 1 monthperiod,we needa quickermethod
thanTAS.

Hereis proposedanalgorithmthatcansignificantlyac-
celeratesTAS, while guaranteeingthesearchaccuracy with
respectto acertainsimilarity standard.

Thispaperis organizedasfollows: Section2 overviews
theTAS algorithm. Section3 explainsthecorepartof our
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Fig. 1. Overview of TAS algorithm

new algorithm. Section4 evaluatesthe speedof the algo-
rithm usinga recordingof real TV broadcasting.Finally,
Section5 givesconclusions.

2. TIME-SERIES ACTIVE SEARCH (TAS)

Fig.1showsanoverview of theTASalgorithm.In theprepa-
rationstage,thefeaturevectorsarecalculatedfrom boththe
referencesignalandthe storedsignal. The featurevector�	��
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The featurevectorsare thenquantizedusinga certain
vectorquantization(VQ) algorithm.In thesearchstage,the
windows areappliedboth to the referencefeaturevectors
andto the storedones. Next, histograms,onefor the ref-
erencesignalandonefor the storedsignal,arecreatedby
countingthenumberof thefeaturevectorsover thewindow
for eachVQ codeword. The similarity betweenthesehis-
togramsis thencalculated.Whenthe similarity exceedsa
givenvalue(a search threshold), thereferencesignalis de-
tected. In the last step,the window on the storedsignal is
shiftedforwardin time andthesearchproceeds.

Themainfeatureof TAS is thatit modelsa signalusing
featurehistograms. The similarity betweenthe reference
andstoredfeaturevectorhistogramsover thewindows can
be determinedin severalways. Thesimilarity measurewe
specificallyuseis histogramintersection[4]. Histogramin-
tersectionR � is definedas

R � � R � ��SUT	��S!V
�,W#X�Y� AZ [/ D 1 � J8\=]^��_)T D ��_`V D ��� (1)

where
SUT

and
S!V

arethehistogramsfor thereferenceand
the storedsignal,

_ T D and
_ V D are the numberof feature

vectorscontainedin the a -th bin of
S T

and
S V

, b is the
numberof histogrambins,and

Z
is thetotalnumberof fea-

turevectorsvotedin thehistogram.
Whenthesimilarity valueis calculatedfor onesegment,

theupperboundof thesimilarity R � canbedeterminedby

R � ��cd��� R � ��c � �de cgfhci�Z �
where R ����cd� is theupperboundof thesimilarity whenthe
storedsignal window is at the

c
-th frame, and R ����ci�#� is

thesimilarity whenthewindow storedsignalis at the
ci�

-th
frame [3]. Thus, the histogrammatchingfor the sections
thatgive theupperboundof thesimilarity not greaterthan
the searchthresholdcanbe omittedwhile guaranteeingno
segmentto bedetectedis missed.Theskipwidth j is given
by:

j ��k floor
� Z ��l � f R � �N�iemA �

if R �	n l � �A Q �
otherwise

�
wherefloor

��o^�
meansthe greatestinteger lessthan

o
, andl �

is thesearchthreshold.

3. INTRODUCING GLOBAL PRUNING

3.1. Framework

TAS canbeviewedasamethodthatacceleratestheexhaus-
tive searchby usinglocal redundanciesin thehistogramse-
quence. In our new method,the basicidea is to remove
globalredundanciesby addinganotherpreprocessingstage.

Fig. 2. Outlineof theclusteringmethod

3.2. Clustering of Histograms

Fig. 2 outlines the histogramclusteringmethod. In this
methodthe window length(i.e. the referencesignaldura-
tion) is fixed (ex. createdfrom a 15-secondaudiosignal),
while in TAS the lengthis variablefrom onesearchto an-
other. In the TAS case,histogramsarecreatedduring the
search.In ournew method,histogramsfor thestoredsignal
arecreatedprior to thesearch.Thus,thetime-seriesof his-
togramswith fixedsizearecreatedfrom thestoredsignalby
sliding thewindow frameby frame. Thosehistogramsare
thenclassifiedbasedon acertaindistancemeasurebetween
histogramsandusinga certainVQ algorithm.Here,we useb � -distance (Euclidean distance) asthedistancemeasureof
VQ, which is definedas

p � ��S � ��S � ��� qrrs [/ D 1 � ��_ � D ft_ � D �
� Q

(2)

We call the resultingclustershistogram clusters. Finally, a
cluster table is generated,which is a tablethatlistssections
whereeachhistogramclustercovers.

The processingmentionedabove is query-independent
andis doneprior to thesearch.

3.3. Global Pruning Using the Histogram Clusters

Thenext stepis findingrelevantsectionsonthestoredsignal
that must be searched.The following processingis done
aftera referencesignalis provided.

When the referencesignal is provided, a histogramof
thatsignal(a reference histogram) is created.Thereference
histogrambelongstoacertainhistogramcluster(areference
cluster) whosecentroidhasthe minimum distanceto the
referencehistogramin thesenseof b � -distance[5]. Then,
clusterscloseto thereferenceclusterarechosenin casethe
segmentsto be detectedare in different clustersfrom the
referencecluster. Finally, sectionsthat must be searched
aredeterminedby usingtheclustertable.



Fig. 3. Theconditionfor selectingclustersto besearched

Here,we shouldnotethat thelocalpruningby thewin-
dow skippingis basedon b � -distance,while theglobalprun-
ing usesb � -distance.This strategy is basedon our prelim-
inary investigationthat b � -distanceis suitablefor distin-
guishingdifferent signals,while b � -distancegives a tight
conditionfor globalpruning.

Also, it shouldbenotedthatthis pruningmethodintro-
ducesno approximationwhena properconditionis usedin
theclusterselectionstage.In whatfollows, we furtherdis-
cussthispoint.

Fig. 3 illustratesthe situationthat the referencesignal
is givenin thesearchstage.Here, b -dimensionalhistogram
spaceis slicedby aplaneonwhichthethreespecificpoints,u

, v � and v � , simultaneouslyreside,where
u

is therefer-
encehistogram,v � is the centroidof the referencecluster,
and v � is acentroidof anothercluster. Whentheminimum
distanceof thereferencehistogramandtheclusterwith cen-
troid v � , p-w , exceedsagivenvalue(selection threshold)

l �
,

we definethat histogramsin the clusterwith centroid v �
mustbematched.First,we would like to determine

p w
. We

considerthefollowing distancerelationship:

_ � � p �T � fyx AC p �N� fzp,w#{ �
� p �T � fyx AC p �N� e|p,w#{ � �

where
p�T �

is thedistancebetweenthereferencehistogram
and the centroidof the referencecluster,

p�T �
is the dis-

tancebetweenthe referencehistogramandthe centroidof
the clusterto be checked,and

p �N�
is the distancebetween

thecentroidsof thoseclusters.Thedistances
pBT �

,
p�T �

and

p �N�
arein the b � -distancemeasure.Then,p,w	� p �T � fhp �T �CBp)�N� Q

(3)

Here,weexaminetherelationshipbetweentheaccuracy and
two thresholdvalues(

l}�
and

l��
). First, we convert thehis-

togramintersectionmeasureinto its equivalent b � -distance
form:

R � � R � ��S � ��S � �~� AZ [/ D 1 � J�\�]^��_ � D ��_ � D �� A(f AC Z [/ D 1 ��� _ � D fh_ � D �� A(f AC Z p � ��S � ��S � �#� (4)

where
p �

is the b � -distance

p � �mp � ��S � ��S � �,W#X�Y� [/ D 1 � � _ � D ft_ � D �
Q

Consideringtherelationshipsbetweenthe b � - andb � -distance
measures,we find thatp,�	��p,����S�����S!���(��p)�(��� b p-� (5)

holds.From(4) and(5),C Z� b �NA(f R � �G��p � �mC Z �NA(f R � � Q (6)

Here,if l�����C Z �NA	fzl��#�#�
all thesegmentssatisfying R � ��l �

satisfy
p � � l �

, which
meansthatno segmentto bedetectedis missedin termsofb � -distance(or histogramintersection).On theotherhand,
if l � � C Z� b �"A(fhl � �#�
all thesegmentssatisfying

p � � l �
satisfy R � ��l �

, which
meansthatno segmentto bedetectedis missedin termsofb � -distance.In thisarticle,we chosel � � C Z� b �"A(fhl � �#� (7)

which guaranteestheaccuracy in termsof b � -distanceand
alsoenablesefficientpruning.

4. EXPERIMENTS

We testedthe proposedsearchalgorithm in termsof the
searchspeedandthe searchaccuracy. In the searchspeed
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Fig. 4. Numberof matches

test,two measureswereused: the numberof matchesand
theCPUtimein thesearch.TheCPUtimeincludesonly the
time for thematchingstage,andthetime for thefeatureex-
traction,thefeaturevectorquantization,thehistogramclus-
tering andthe global pruningarenot included. We useda
recordingof a real24-hourTV broadcastasa storedsignal.
Thetestswerecarriedout on a PC(PentiumIII 966MHz).
In the featureextraction, eachsignalwasfirst digitizedat
11.025kHz samplingfrequency and8bit quantizationac-
curacy, and then analyzedby a seven-channel

� $ �»º��
secondorder IIR band-passfilter (the filter ¼ �½A�¾

) to
extract featurevectors. The filter centerfrequencieswere
equallyspacedin a log frequency scale.Thefeaturevectors
werecalculatedevery110inputsamples(M=110).TheVQ
codebooksizefor featurevectorswas512,andthenumber
of histogramclusterswas512.Thoseparametervalueswere
empiricallychosen.For simplicity, partsof thestoredsignal
wereusedasreferencesignals: 12 segmentsof 15 seconds
wererandomlychosenevery2 hoursfrom thestoredsignal.

Fig. 4 shows thenumberof matchesaveragedover the
12 referencesignals. In this graph, the horizontalaxis is
the searchthresholdand the vertical axes are the number
of matches(left) andmatchingreductionrate(MRR; right).
MRR is the ratio of thenumberof matches.Theproposed
methodreducesthe numberof matches,for example, toA�¿)A�¾

whenthesearchthresholdis
¾ QÁÀBÂ

.
Fig. 5 showsthesearchtimemeasuredin theCPUtime.

Thehorizontalaxis is thesearchthresholdandthevertical
axesaretheCPUtimein thesearch(left) andtimereduction
rate(TRR; right). TRR is the ratio of theCPUtime in the
search.We canseethat theproposedalgorithmdetectsthe
segments,for example,approximately13 timesfasterthan
TAS whenthesearchthresholdis

¾ Q À�Â
.

In thesearchaccuracy test,ontheotherhand,thesearch
resultsgiven by the proposedmethodand by TAS were
comparedin all the searchconditionsusedin the above-
mentionedsearchspeedtest. In this experiment,thosere-
sultswerecompletelyidentical,andalsocorrect.Thismeans
that the b � -distance-basedpruningstandardgivenby (7) is
reasonable.
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5. CONCLUSIONS

Wehaveproposedaglobalpruningmethodthatsignificantly
acceleratestheTASmethod,whichisaquicksearchmethod
for audiosignals. Theproposedmethodreducesthe num-
berof matchesto

A�¿)A�¾
(the searchthreshold

�y¾ QÁÀBÂ
). We

expectthatthismethodcouldbeappliedto a searchsystem
thatretrievesasegmentfrom amonthrecordingwithin sev-
eral seconds.Thoughwe focusedon audiosearchin this
paper, we will extendit alsoto videosearch.
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