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ABSTRACT

Previously, we proposeda histogram-baseduick signal
searchmethodcalledTime-Serieg\ctive Searci{TAS). TAS
is amethodof searchinghroughlongaudioor videorecord-
ingsfor aspecifiedsggment,basednsignalsimilarity. TAS

is fast;it cansearctthrougha24-hourrecordingin 1 second
afteraquery-independergreprocessing-However, aneven

fastermethodis requiredwhenwe considethugeamountof

audioarchves,for examplea month’s worth of recordings.
Thus,we proposea preprocessingnethodthat significantly
accelerateJAS. The corepart of this methodcomprisesa

global histogramclusteringof long signalsand a pruning
schemeusingthoseclusters. Testsusingbroadcastecord-
ing indicatethattheproposedlgorithmachie/esthesearch
speedapproximately3 to 30 timesfasterthanTAS. In these
tests the searchresultsareexactly the sameaswith TAS.

1. INTRODUCTION

This papemproposes methodfor quick searchinghrougha
longaudiostream(we call thisa stored signal) to detectand
locatea known audiosignal(a reference signal or a query)
basedon signalsimilarity. The prospectre applicationsn-
cludesearchingroadcastecordinggor the useof specific
musictitles with audiokeys.

Previously, we proposed histogram-basesignalsearch
methodcalled Time-SeriesActive Search(TAS) [3]. TAS
takeslessthanl secondo detecta 15 secondeferencesig-
nal in a 24-hourstoredsignalon a standard”C, underthe
assumptionthatthe signalsggmentsto be detectegresere
the samespectralpatternasthe referencesignal,exceptfor
minor distortionsor noises. However, whenwe consider
much longer storedsignals,for example TV broadcasting
recordedover a1 monthperiod,we needa quickermethod
thanTAS.

Hereis proposedanalgorithmthatcansignificantlyac-
celerate§FAS, while guaranteeinghe searchaccurag with
respecto acertainsimilarity standard.

This papeiis organizedasfollows: Section2 overviens
the TAS algorithm. Section3 explainsthe core part of our
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Fig. 1. Overview of TAS algorithm

new algorithm. Section4 evaluatesthe speedof the algo-
rithm using a recordingof real TV broadcasting.Finally,
Section5 givesconclusions.

2. TIME-SERIESACTIVE SEARCH (TAS)

Fig.1shavsanoverview of the TAS algorithm. In theprepa-
rationstagethefeaturevectorsarecalculatedrom boththe
referencesignal and the storedsignal. The featurevector
£ (k) is writtenas

f(k) = (fi(k), f2(k), fs(k), -, [n(K)),

where N is the numberof frequeng channelsand is the
sampletime. Eachelementof f(k) is a normalizedshort-
time power spectrumwhichis givenas

fi(k) = a(k)Yj(k),
Yitk) = >y,
t=k—(M+1)
k= IM (I=1,2,--1,

wherey; () is the outputwaveformof asecondorderband-
passlIR filter j attimet, M is thetime supportof thefea-
turevector anda(k) is anormalizationconstantefinedas

(k) = {max(¥;(K))}".



The featurevectorsare then quantizedusing a certain
vectorquantizationVQ) algorithm.In thesearctstagethe
windows are appliedboth to the referencefeaturevectors
andto the storedones. Next, histogramsonefor the ref-
erencesignalandonefor the storedsignal, are createdby
countingthenumberof the featurevectorsover thewindow
for eachVQ codevord. The similarity betweenthesehis-
togramsis then calculated. Whenthe similarity exceedsa
givenvalue(a search threshold), the referencesignalis de-
tected. In the last step,the window on the storedsignalis
shiftedforwardin time andthe searchproceeds.

Themainfeatureof TAS is thatit modelsa signalusing
featurehistograms. The similarity betweenthe reference
andstoredfeaturevectorhistogramsver the windows can
be determinedn severalways. The similarity measureve
specificallyuseis histogramintersectior{4]. Histogramin-
tersections; is definedas

L
ef 1 :
Sy = Sy (Hp, He) & 5 2_min(hni hsi), (1)

i=1

whereHpg and H s arethe histogramdor thereferenceand
the storedsignal, Ar; and hg; arethe numberof feature
vectorscontainedin the :-th bin of Hz and Hg, L is the
numberof histogrambins,and D is thetotal numberof fea-
turevectorsvotedin the histogram.

Whenthesimilarity valueis calculatedor onesegment,
the upperboundof thesimilarity S; canbedeterminedy

n—ny
D bl

§1(TL) = Sl(nl) +

whereS, (n) is the upperboundof the similarity whenthe
storedsignalwindow is at the n-th frame, and Sy (n;) is
the similarity whenthewindow storedsignalis atthe n;-th
frame[3]. Thus, the histogrammatchingfor the sections
thatgive the upperboundof the similarity not greaterthan
the searchthresholdcanbe omittedwhile guaranteeingno
segmentto bedetecteds missed.Theskip width w is given

by:

w— { flOOf(D(Hl — Sl)) +1 (lf S < 61)
-1 1L

(otherwisg

wherefloor(z) meansthe greatesinteger lessthanz, and
6 is thesearctthreshold.

3. INTRODUCING GLOBAL PRUNING

3.1. Framework

TAS canbeviewedasamethodthatacceleratetheexhaus-
tive searchby usinglocalredundancies thehistogramse-
guence. In our nev method,the basicideais to remove
globalredundancieby addinganothempreprocessingtage.
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Fig. 2. Outline of theclusteringmethod

3.2. Clustering of Histograms

Fig. 2 outlinesthe histogramclusteringmethod. In this

methodthe window length(i.e. the referencesignaldura-
tion) is fixed (ex. createdfrom a 15-secondaudiosignal),
while in TAS the lengthis variablefrom one searchto an-

other In the TAS case,histogramsare createdduring the

searchln our new method histogramdor the storedsignal
arecreatedprior to thesearch.Thus,thetime-serief his-

togramswith fixedsizearecreatedrom thestoredsignalby

sliding thewindow frameby frame. Thosehistogramsare
thenclassifiedbasen a certaindistancemeasuréetween
histogramsndusinga certainVQ algorithm.Here,we use
L-distance (Euclidean distance) asthedistanceneasuref

VQ, whichis definedas

dz(Hl,Hg): (2)

We call the resultingclustershistogram clusters. Finally, a
cluster table is generatedwhichis atablethatlists sections
whereeachhistogranclustercovers.

The processingnentionedabore is query-independent
andis doneprior to the search.

3.3. Global Pruning Using the Histogram Clusters

Thenext stepis finding relevantsectionnthestoredsignal
that must be searched.The following processings done
afterareferencesignalis provided.

Whenthe referencesignalis provided, a histogramof
thatsignal(a reference histogram) is created Thereference
histogranbelongdo a certainhistograncluster(areference
cluster) whosecentroid hasthe minimum distanceto the
referencehistogramin the senseof L,-distance[5]. Then,
clusterscloseto thereferenceclusterarechoserin casethe
segmentsto be detectedare in different clustersfrom the
referencecluster Finally, sectionsthat mustbe searched
aredeterminedy usingthe clustertable.
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Here,we shouldnotethatthelocal pruningby the win-
dow skippingis basedn L;-distancewhile theglobalprun-
ing usesL,-distance.This stratgy is basedon our prelim-
inary investigationthat L, -distanceis suitablefor distin-
guishingdifferent signals,while L,-distancegives a tight
conditionfor globalpruning.

Also, it shouldbe notedthatthis pruningmethodintro-
ducesno approximationwhena properconditionis usedin
the clusterselectionstage.ln whatfollows, we further dis-
cussthis point.

Fig. 3 illustratesthe situationthat the referencesignal
is givenin thesearctstage Here, .-dimensionahistogram
spacss slicedby a planeonwhichthethreespecificpoints,
R, Cy and(Cs, simultaneouslyeside whereR is therefer
encehistogram,C is the centroidof the referencecluster
andCs is acentroidof anothercluster Whentheminimum
distanceof thereferencénistogramandtheclusterwith cen-
troid C+, dy, exceedsagivenvalue(selection threshold) 6,
we definethat histogramsin the clusterwith centroid Cs
mustbe matched First, we would like to determined,. We
considerthefollowing distancerelationship:

1 2
d%, — <§d12 — dg)

1 2
— dzRQ - <§d12+d€) 3

h? =

wheredpg; is the distancebetweenthe referencehistogram
and the centroid of the referencecluster dg- is the dis-
tancebetweenthe referencehistogramand the centroid of
the clusterto be checkedandd; is the distancebetween
the centroidsof thoseclusters.The distancesig;, dgs and

dy2 arein the Ly-distancemeasureThen,

2 2
_ dR2 — de

dy =
o= ®)

Here we examinetherelationshiphetweertheaccuray and

two thresholdvalues(#; andf,). First, we corvertthe his-

togramintersectiormeasurento its equivalent ., -distance
form:

L
1 .
S1=S51(H1,Hy) = 52 min(hy;, ha;)
=1

1 L
= 1= == |hi; — h
21)2,:1|1 2|
- - Laum. H 4
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whered; is the L -distance

L
def
d1 = dl(Hl,Hz) = Z |h12 - h22| .

i=1

Consideringherelationshipbetweerthe ., - andL,-distance
measuresye find that

dy = do(Hy, Ho) < dy < VLds (5)

holds.From(4) and(5),

2D
—(1=51)<dy <2D(1—-51). 6
\/E( 1)_ 2> ( 1) ()
Here,if B

6y > 2D(1 — 61),

all the sgmentssatisfyingS; > 6, satisfyd, < 6, which
meanghatno sggmentto be detecteds missedin termsof
L, -distancgor histogramintersection).Onthe otherhand,
if

— 2D

6y < \/_f(l —0),
all the sgmentssatisfyingd, < 6, satisfyS; > 6, which
meanghatno sggmentto be detecteds missedin termsof
Ly-distanceln thisarticle,we chose

— 2D

92:\/—3(1—91)7 (7)
which guaranteethe accurayg in termsof L,-distanceand
alsoenablesfficient pruning.

4. EXPERIMENTS

We testedthe proposedsearchalgorithmin termsof the
searchspeedandthe searchaccurag. In the searchspeed
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Fig. 4. Numberof matches

test,two measuresvere used: the numberof matchesand
theCPUtimein thesearchTheCPUtimeincludesonly the
time for thematchingstage andthetime for thefeatureex-
traction,thefeaturevectorquantizationthehistogranmclus-
tering andthe global pruningare not included. We useda
recordingof areal24-hourTV broadcastsa storedsignal.
Thetestswerecarriedouton a PC (Pentiumlll 966 MHz).
In the featureextraction, eachsignalwasfirst digitized at
11.025kHz samplingfrequeny and 8bit quantizationac-
curag, andthenanalyzedby a seven-channelN = 7)
secondorder IIR band-pasdilter (the filter @ = 10) to
extract featurevectors. The filter centerfrequenciesvere
equallyspacedn alog frequeng scale.Thefeaturevectors
werecalculatedavery 110inputsamplegM=110). TheVQ
codebooksizefor featurevectorswas512,andthe number
of histogranclustersvas512. Thoseparametevalueswere
empiricallychosen For simplicity, partsof the storedsignal
wereusedasreferencesignals: 12 sggmentsof 15 seconds
wererandomlychoserevery 2 hoursfrom the storedsignal.

Fig. 4 shovs the numberof matchesaveragedover the
12 referencesignals. In this graph, the horizontalaxis is
the searchthresholdand the vertical axes are the number
of matchegleft) andmatchingreductionrate(MRR; right).
MRR is the ratio of the numberof matches.The proposed
methodreducesthe numberof matches,for example, to
1/10 whenthe searctthresholds 0.85.

Fig. 5 shovsthesearchtime measuredh the CPUtime.
The horizontalaxisis the searchthresholdandthe vertical
axesaretheCPUtimein thesearch(left) andtimereduction
rate (TRR; right). TRR is theratio of the CPUtime in the
search.We canseethatthe proposedalgorithmdetectshe
segments for example,approximatelyl3 timesfasterthan
TAS whenthe searctthresholds 0.85.

In thesearchaccuray test,onthe otherhand thesearch
resultsgiven by the proposedmethodand by TAS were
comparedin all the searchconditionsusedin the above-
mentionedsearchspeedtest. In this experiment,thosere-
sultswerecompletelyidentical,andalsocorrect. Thismeans
thatthe I,-distance-basepruningstandardyivenby (7) is
reasonable.

80.5
0.9r Emtinme reduction rate s 80
0.8+ —s—search time (proposed) | 70 o
20-7’ 583 -1-search time (TAS) g =

1 0.9 0.8 0.7 0.6 0.5
search threshold

Fig. 5. SearchCPUtime
5. CONCLUSIONS

We have proposedglobalpruningmethodhatsignificantly
acceleratethe TAS method whichis aquicksearchmethod
for audiosignals. The proposednethodreduceghe num-
berof matchego 1/10 (the searchthreshold= 0.85). We

expectthatthis methodcouldbe appliedto a searchsystem
thatretrievesa sggmentfrom amonthrecordingwithin sev-

eral seconds.Thoughwe focusedon audio searchin this

paperwe will extendit alsoto videosearch.
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