
AN FPGA IMPLEMENTATION OF WALSH-HADAMARD
TRANSFORMS FOR SIGNAL PROCESSING

*A.Amira, A.Bouridane, P.Milligan and M.Roula

School of Computer Science
The Queen’s University of Belfast

Belfast BT7 1NN, United Kingdom
*A.Abbes@qub.ac.uk

ABSTRACT

This paper describes two approaches suitable for an FPGA
implementation of Walsh-Hadamard transforms. These
transforms are important in many signal-processing
applications including speech compression, filtering and
coding. Two novel architectures for the Fast Hadamard
Transforms using both systolic architecture and distributed
arithmetic techniques are presented. The first approach uses the
Baugh-Wooley multiplication algorithm for a systolic
architecture implementation. The second approach is based on
both distributed arithmetic ROM and accumulator structure,
and a sparse matrix factorisation technique. Implementations of
the algorithms on a Xilinx FPGA board are described.
Distributed arithmetic approach exhibits better performances
when compared with the systolic architecture approach.

1. INTRODUCTION

Transform methods are useful in many types of applications,
particularly if the features of interest can be characterised in
the transform domain. A useful transform in speech and image
processing is the Walsh-Hadamard transform (WHT)[10]. It is
an orthogonal transform, with only additions and subtractions
required, and is faster than sinusoidal-like transforms [3]. It
can also be formulated as a matrix-vector multiplication
similar to the Discrete Fourier transform DFT, and it has a fast
algorithm which has Nlog2N additions and subtractions for N-
point input samples [3], [7]. The Fast Walsh Hadamard
Transform (FHT) is similar to the DFT and is globally
recursive requiring global communication for the shuffling
between different stages of the process.
As Field Programmable Gate Arrays (FPGAs) have grown in
capacity, improved in performance, and decreased in cost, they
have become a viable solution for performing computationally
intensive tasks, with the ability to tackle applications for
custom chips and programmable digital signal processing
(DSP) devices [8].
It is the aim of this paper to develop efficient architectures,
ideally suited for a fast computation of the FHT. Distributed
Arithmetic (DA) and Systolic Architecture (SA) techniques
have been described for the implementation of the FHT.
Matrix factorisation methods and the symmetry of the
Hadamard matrices have been exploited to develop the
mathematical model in order to reduce the ROM size, the area

consumed by the design, and to speed up the computation
procedure by minimising the number of addition and
subtraction operations required in the case of DA technique
[5]. The Baugh-Wooley algorithm has been used for the
implementation of the systolic architecture, this type of
multipliers is characterised by the simplicity, regularity and
modularity of the structure [1], [2].
The architectures proposed in this paper have been designed
and targeted to the Xilinx XCV1000E of the Virtex-E family
which has the following important features [8]:
• Fast, and high-density Field-Programmable Gate Array;
• Flexible architecture that balances speed and density; and
• Built-in clock- management circuitry.
The composition of the rest of the paper is as follows. The
mathematical model for the 1-D FHT algorithm is given in
section 2. Section 3 is concerned with the proposed
architectures using both (SA) and (DA) techniques. The
analysis of the implementation results obtained is given in
section 4. Concluding remarks are given in section 5.

2. MATHEMATICAL MODEL

Typically, a Hadamard matrix is defined iteratively as:









−

=
11

11
2H and 








−

=
NN

NN
N HH

HH
H 2

.

where HN is a Hadamard matrix of size NxN. Furthermore, if

the transform length N is a power of two (i.e., pN 2=), then
a (FHT) algorithm (similar to Fast Fourier Transform (FFT))
can be used for its fast computation.

2.1. 1-D FHT based Systolic Architecture (SA)

Let the input data and the transformed data be represented by
the two vectors X and Y of size N, respectively. Then Y can be
written as follows:

 HXY = (1)

Such that

 ∑
−

=

=
1

0

N

k

kiki XHY (2)

If the elements of the matrix transform and the input vector are
represented using the 2’s complement number representation,
then:

∑

∑
−

=

−
−

−

=

−
−

+−=

+−=

2

0

,
1

1,

2

0
,

1
1,

22

 22

n

m

m
mk

n
nkk

n

l

l
lik

n
nikik

xxXand

hhH

 (3)

where likh , and mkx , are the lth bit of ikH and mth bit of kX ,

respectively, (which are zero or one) and 1, −nikh and 1, −nkx are

the sign bits, where n is the word length .
By substituting (3) into (2), the transform coefficientiY can

be computed as follows:

∑ ∑∑
−

=

−

=

−
−

−

=

−
−












+−












+−=

1

0

2

0

,
1

1,

2

0

,
1

1, 22 22
N

k

n

m

m
mk

n
nk

n

l

l
lik

n
niki xxhhY (4)

From equation (4), it can be seen that the computation of the
matrix product depends on the type of multiplier used. As
mentioned in the introduction a Baugh-Wooley multiplier
algorithm [1] has been chosen and using this algorithm
equation (4) becomes:

∑
∑ ∑

∑∑−

= −
−

=

−

=
−−

−

=

−

=
−−

−+



























−+−

++

=
1

0 1
2

0

2

0

1,,1,,

2

0

2

0

1,1,
22

,,

222

22
N

k n
n

l

n

m

nikmk
m

nklik
l

n

l

n

m

nknik
n

mklik
ml

i

hxxh

xhxh

Y (5)

which can be re-arranged as follows, for)2(ri = :






−+





+

++





=

−−
−

=

−

=
−−

−−
−

−

=

−

=

−

=

+

∑ ∑

∑ ∑∑
121

2

0

2

0

1,2,1,,2

1,1,2
22

1

0

2

0

2

0
,,22

22222

22

nnn
n

l

n

m

nkrmk
m

nklkr
l

nknkr
n

N

k

n

l

n

m

mklkr
ml

r

hxxh

xhxhY

 (6)

and for)12(+= ri :






−+





+

++





=

−−
−

=

−

=
−+−+

−−+
−

−

=

−

=

−

=
+

+
+

∑ ∑

∑ ∑∑
121

2

0

2

0

1,12,1,,12

1,1,12
22

1

0

2

0

2

0
,,1212

22222

22

nnn
n

l

n

m

nkrmk
m

nklkr
l

nknkr
n

N

k

n

l

n

m

mklkr
ml

r

hxxh

xhxhY

 (7)

From equation (6) and (7) it can be seen that the multiplication
of ikH and kX expressed in two’s complement representation

can be written in a form which involves only positive bit
products and the matrix-vector product can be computed using
the systolic architecture described below.
The two's complement multiplication using the Baugh-Wooley
algorithm can be performed using the proposed serial-parallel
multiplier as shown in Fig.1 in the case of (n=4). Basically, the
(BWM) comprises a logic unit and an adder unit. The logic
unit is used to obtain the partial products and adding the extra
one in the fifth and the eighth cycle through the OR and the
AND gates respectively using the two control signal S1 and S2
as the BWM requires. The adder unit is used for the addition of
the partial products and the carry propagation [2].

3i
k

X 0i
k

X1i
k

X2i
k

X

S1
00010000

0,1,2,3,0000 ikikikik hhhh

S2
1000 1111

2.2. 1-D FHT based Distributed Arithmetic (DA)

Let the input data and the transformed data be represented by
the two vectors X and Y of size N, respectively. Then Y can be
written as follows:

 Y=H X (8)

such that

 ∑
−

=

=
1

0

N

k

kiki XHY (9)

where { } sX k ’ are written in the fractional format as shown

in equation (10)

 ∑
−

=

−
−−− +−=

1

1

1,1, 2
n

m

m
mnknkk xxX (10)

where mkx , is mth bit of kx (which are zero or one), 1, −nkx

are the sign bits, where n is the wordlength , respectively.

Substituting (10) in (9):

∑ ∑ ∑

∑ ∑
−

=

−
−

=

−

=
−−−

−

=

−

=

−
−−−







+−=







+−=

1

0

1

1

1

0

1,1,

1

0

1

1

1,1,

2

2

N

k

m
n

m

N

k

mnkiknkik

N

k

n

m

m
mnknkiki

xHxH

xxHY

 (11)

Define ∑
−

=
−−−− =

1

0
1,1

N

k

mnkikmn xHZ ()0≠m

and 1,

1

0
1 −

−

=
− ∑−= nk

N

k

ikn xHZ ()0=m (12)

The output result is given by:

 ∑
−

=

−
−−=

1

0
1 2

n

m

m
mni ZY (13)

Since the term mZ depends on the mkx , values it has only

N2 possible values, it is possible to precompute and store
these values in a ROM. An input set of N bits

),......,(,,2,1 mNmm xxx is used as an address to retrieve the

corresponding mZ values.

A direct implementation of equation (8) would require (in the
case of N=8 and n=8) 56 additions and subtractions. However,

Fig. 1. Baugh-Wooley multiplication (BWM)

with the use of the FHT the number of the addition and
subtraction operations is reduced to 24 [5]. To reduce the
number of arithmetic operations and to speed up the process,
the symmetry in the FHT matrix coefficients and a sparse
matrix factorisation are exploited as shown in equations
(14),(15) and (16).

TH

XHH

XHY

4

24

=

=

=
 (14)

where 4H and 2H are uniformly sparse with 4 and 2 non -

zero coefficients respectively.

































































−

−

−

−

































−−
−−

−−
−−

=

































8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

11000000

11000000

00110000

00110000

00001100

00001100

00000011

00000011

10101010

01010101

10101010

01010101

1-0101-010

01-0101-01

10101010

01010101

X

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Y

 (15)

































































−−
−−

−−
−−

=

































8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

10101010

01010101

10101010

01010101

1-0101-010

01-0101-01

10101010

01010101

T

T

T

T

T

T

T

T

Y

Y

Y

Y

Y

Y

Y

Y

 (16)

































−
+
−
+
−
+
−
+

=

































87

87

65

65

43

43

21

21

8

7

6

5

4

3

2

1

XX

XX

XX

XX

XX

XX

XX

XX

T

T

T

T

T

T

T

T

 (17)

The ROM’s contents together with the new input set of N bits
used as an address to retrieve the corresponding mZ values are

shown in Fig. 2. Where 4
,8 ijH are the matrix coefficients,

characterised by the matrix size=8, 4 non-zero coefficients and
the indexes ij for the rows and the columns respectively.

0
4

7,8 iH

4
5,8 iH

4
7,8

4
5,8 ii HH +

4
3,8

4
1,8 ii HH +

4
7,8

4
3,8

4
1,8 iii HHH ++

4
5,8

4
3,8

4
1,8 iii HHH ++

4
7,8

4
5,8

4
3,8

4
1,8 iiii HHHH +++

0
4

8,8 iH

4
6,8 iH

4
8,8

4
6,8 ii HH +

4
4,8

4
2,8 ii HH +

4
8,8

4
4,8

4
2,8 iii HHH ++

4
6,8

4
4,8

4
2,8 iii HHH ++

4
8,8

4
6,8

4
4,8

4
2,8 iiii HHHH +++

mXX)(21 ±

4x
16

 D
ec

od
er

mXX)(87 ±

mXX)(65 ±

mXX)(43 ±

ROM’s content for
i = 1,3,5,7

ROM’s content for
i = 2,4,6,8

≡

F
F

SR

CI

RESULT

SHIFTACC

INVERTERINVERT

3. 1-D FHT ARCHITECTURE

In this section the 1-D FHT architectures based on (SA) and
(DA) principles are described.

3.1. 1-D FHT based (SA)

Equation (6) and (7) can be mapped into the proposed
architecture. Figure 3 shows the architecture obtained for N=4
and n=4. It consists of eight identical processing elements
(PEs). Each PE comprises a serial-parallel Baugh-Wooley
Multiplier (BWM) as described in Fig. 1, a Flip Flop (FF) for
saving the carry bit and a full adder that adds the result of the
partial product and the result generated from the previous PE.
The matrix elements ijH are fed from the north in a

parallel/serial fashion bit by bit Least Significant Bit First
(LSBF) while the vector elements jX are fed in a parallel

fashion and remain fixed in their corresponding PE cell during
the entire computation of the operation. Each bit of the final
product of the PE is fed to the full adder of the preceding PE so
that the corresponding output bit of each PE is added to
complete the result bit using LSBF method.
The architecture is symmetric so the odd and the even results
can be obtained separately through the two processing stages
and by selecting the input samples using the selector which
depends on the index i values for the input coefficients. In
addition, this architecture is regular, modular and can be
generalised for any transform length and input word length.

PE1O PE2O PE3O PE4O

PE1E PE2E PE3E PE4E

13 YY

24 YY

1X 4X3X2X

Selector (i Odd/ i Even)

m

m

h

h

11

31

m

m

h

h

14

34

m

m

h

h

13

33

m

m

h

h

12

32
m

m

h

h

21

41

m

m

h

h

23

43

m

m

h

h

22

42

m

m

h

h

24

44

i
j

Odd results

Even results

BWM

m
ijh

Clock

jX

inyouty

FF

1S
2S

The time complexity and the area of the structure are n (N+1)T
and 2N, respectively. (where T is the clock cycle fixed by the
total gate delay of the BMW multiplier).

Features Proposed
Structure

Structure
of [2]

Structure
of [4]

Computation time (n(N+1))T (2n)T (2nN)T

Area Complexity O(2N) O(N2) O(N)

Table 1. Comparison of proposed structure with the
existing structures ([2],[4]) for computation of the

1-D FHTFig. 2. Distributed Arithmetic ROM and Accumulator
(RAC) structure

Fig. 3. Proposed systolic architecture for 1-D FHT (N=4)

3.2. 1-D FHT based (DA)

The architecture for the 1-D FHT is shown in Fig. 4. The n=8
bit inputs to the circuit are fed in a bit-serial fashion from a
converter. The 4 separate RAC blocks calculate the 8
transforms as follows: a butterfly structure of bit-serial adders
and subtracters is used to generate the elements of the input
matrix in equation (16).

8X
7X

6X
5X

4X
3X

Input D
ata

8D

Select

2X
1X

8D

8D

8D

O
dd + / Even- C

oefficients

4

ROM12

ROM34

ROM56

ROM78 SHIFTACC

SHIFTACC

SHIFTACC

SHIFTACC

7Y

5Y

3Y

1Y

Invert

6Y

4Y

2Y

8Y

Odd
 results

Even
 results

During the first 8 cycles eight bit-parallel outputs for each odd
result are produced, and during the second 8 cycles eight bit-
parallel outputs for each even results are produced. This is
verified when the word length of the bit-serial adders
and subtracters results is less or equal (n). Otherwise, an
other delay must be added to the 8 delays to complete
the operation. This implies a bit-parallel data organization
with the maximum value in the ROM represented by 5 bits
including the sign extension. Every n clock cycles the signal
INVERT is used to compute the two’s complement of the
ROM’s content by inverting the value and inserting a Cin (carry
in of the adder) of value one while signal SELECT is used to
select the odd and even input samples. The selector is basically
a multiplexer (8→4), and the computation process runs from
m=0 to)1(2 −×= nm .

Feature Proposed
Structure

Structure
of [3]

Structure
of [6]

Computation time 2n (2N-1) (n+log2N) 2N-1
Table 2. Comparison of proposed structure with the

existing structures ([3],[6]) for computation of 1-D FHT

4. FPGA IMPLEMENTATION

The proposed architectures described above have been
implemented for (N=8, n=8) using a Xilinx Virtex XCV1000E
FPGA series board with Target Package: fg680. The designs
were carried out using the same Relative LoCations (RLOC)
attributes to obtain efficient placement.
The designs are modular, regular and can be implemented for
larger transform and input data word lengths. Table.3
illustrates the performance obtained for the proposed
architectures and the architecture proposed in [4] for the case
of N= 8 and n=8. (DA) technique shows significant
improvements and better performances when is compared with
(SA) technique and [4] concerning the speed and the area

consumed by the design. In addition, the proposed systolic
architecture provides a high throughput rate when compared
with the proposed structure in [4].

Architectures Slices I/O Flip-
Flops

4-input
LUT

Speed
(MHz)

SA 188 134 320 280 31
DA 124 116 169 112 90
[4] 136 132 192 168 45

Table 3. Implementation report for
DA technique, SA technique and [4] (N=8, n=8)

5. CONCLUSION

Due to the importance of the 1-D FHT transform in image and
signal processing, two novel architectures have been presented
in this paper. The first architecture is based on SA technique
while the second one is based on DA principles together with
the exploitation of the transform symmetry and sparse matrix
factorisation. The effectiveness of the two approaches has been
discussed and shown that DA approach provides better
performances concerning the speed and the area when is
compared with the SA approach.

6. REFRENCES

[1] K. Parhi, "VLSI Digital Signal Processing Systems Design
and Implementation." Wiley, 1999.
[2] SS. Nayak., PK. Meher, "High throughput VLSI
implementation of discrete orthogonal transforms using bit-
level vector-matrix multiplier." IEEE Trans.on Circ.& Syst. II,
Analog and Digital Sig. Proc., 1999, Vol.46, No.5, pp.655-
658.
[3] L.Wen Chang and M.Chang Wu, "A bit level systolic array
for Walsh-Hadamard transforms." Signal Processing Vol 31,
pp 341-347, 1993
[4] A. Amira, A. Bouridane, P. Milligan and P. Sage "A High
Throughput FPGA Implementation of A Bit-Level Matrix
Product." Proceedings of the IEEE Workshop on Signal
Processing Systems Design and Implementation (SIPS), pp
356-364, October 2000, Lousiana, USA.
[5] A. Amira, A. Bouridane and P. Milligan "A Novel
Architecture for Walsh Hadamard Transforms Using
Distributed Arithmetic Principles." Proceedings of the 7th
IEEE International Conference on Electronics, Circuits &
Systems (ICECS’2K), Vol1, pp182-185,December 2000, Beirut,
Lebanon.
[6] S.Y. Kung, "VLSI Array Processors." Prentice Hall, 1988.
[7] D. Coppersmith and al "Hadamard transforms on
multiply/add architecture," IEEE Trans. Signal Processing, Vol
42, No 4, pp. 969-970, April 1994
[8] URL: www.xilinx.com.
[9] S.Rahardja and B.J. Falkowski "Family of Unified
Complex Hadamard Transforms." IEEE Trans. Circuits and
Systems -II: Analog and Digital Signal Processing. Vol.46.
No.8. August 1999.
[10] D. Coppersmith and al "Hadamard transforms on
multiply/add architecture," IEEE Trans. Signal Processing, Vol
42, No 4,, pp. 969-970, April 1994

Fig. 4. Proposed architecture for 1-D FHT (N=8) based
on DA principles

