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ABSTRACT

In this paper, we propose two methods for reducing the
computational complexity of Volterra filters. First, a method
reducing the computational complexity of Volterra filters is
proposed. This method can be realized by incorporating
multirate signal processing into the Volterra filters. Hence,
it is possible to operate the band-limited Volterra filter
at a low sampling rate and with a short system length.
Second, we also propose a method to replace the conven-
tional Volterra filter with one including many zero coeffi-
cients by using multirate signal processing. The conven-
tional Volterra filter is band-limited in order to avoid alias-
ing so that waste arithmetic is done. In contrast, the Volterra
filter including many zero coefficients derived by the pro-
posed method can eliminate such waste arithmetic.We demon-
strate the effectiveness in their application to loudspeaker
systems whose nonlinear distortions generally concentrate
in the lower frequency band. Even though the processed
frequency band is limited, the proposed method has about
0.03 times as many computational complexities as the con-
ventional method.

1. INTRODUCTION

Loudspeaker systems have very complex structure. Hence,
the radiated sound has various distortions, that is, lin-
ear and nonlinear distortions. These distortions make the
sound quality of loudspeaker systems poor. To solve this
problem, we have already proposed a nonlinear inverse sys-
tem [1] for removing the distortions. This system requires
a nonlinear model because loudspeaker systems have non-
linearity. The Volterra series expansion [2][3] satisfies this
requirement, that is, if we identify the Volterra kernels of
the series by using adaptive Volterra filters [4], we could
obtain an exact nonlinear model. The computational com-
plexity of Volterra filters, however, becomes huge as the
order of the series or the system order of Volterra filters
becomes high. Hence, we have to reduce the computa-
tional complexity. To achieve this purpose, we have di-
rected our attention to a characteristic of the nonlinear dis-
tortion in loudspeaker systems. The nonlinear distortion
occurs mainly in the lower frequency band. Hence, if we
remove only the nonlinear distortion in the lower frequency
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band, we could reduce the computational complexity. The
realization could be achieved by applying multirate signal
processing to Volterra filters. However, we cannot simply
apply the principles of multirate signal processing for linear
filters to nonlinear filters because it is generally impossi-
ble to change the arrangement of Volterra filters and the
front or the back system. Volterra filters may also cause
aliasing even if the maximum frequency of the input sig-
nals is limited to half the sampling rate. Considering these
issues, we need to derive a new theory on multirate signal
processing for Volterra filters. Hence, this paper proposes
a method applying multirate signal processing to Volterra
filters. The proposed method limits the input signals to
the band as not causing aliasing distortion. The limitation
makes application of multirate signal processing to Volterra
filters possible and then the computational complexity of
the Volterra filters is reduced because the proposed method
can operate at a low sampling rate and with a low system
order. This paper also introduces a system form realizing
the above method. Simulation results on reducing the non-
linear distortion of a loudspeaker system demonstrate that
the proposed method can reduce the nonlinear distortion to
the same level as the conventional method while the pro-
posed method has about 0.03 times as many computational
complexities as the conventional one.

2. VOLTERRA SERIES EXPANSION

2.1. Discrete Volterra Series

Loudspeaker systems can be modeled by using the Volterra
series expansion [2]. We assume that Volterra kernels have a
finite memory length N and do not treat the third or more
terms in order to make the discussion easy. The input-
output relation of the systems is represented by

y(n) =

N−1∑
k1=0

h1(k1)x(n − k1)

+

N−1∑
k1=0

N−1∑
k2=0

h2(k1, k2)x(n − k1)x(n − k2), (1)

where x(n) and y(n) are the sampled input and output
signals, respectively; h1(k1) and h2(k1, k2) are the first- and
second-order discrete Volterra kernels, respectively.



2.2. Discrete Fourier Transform of Volterra Series

The Discrete Fourier transform (DFT) of equation (1) is
given by

Y (m) = H1(m)X(m) +A1[H2(m1, m2)X(m1)X(m2)], (2)

where X(m) and Y (m) are the N-point DFTs of x(n) and
y(n), respectively; H1(m) and H2(m1, m2), which are called
the fist- and second-order Volterra Frequency Response (VFR)
are the N-point DFTs of h1(k1) and h2(k1, k2), respectively.
A1 is called the first-order reduction operator and has the
role of mapping a function with multi-dimensional depen-
dent variables to one with one-dimensional variables. The
first-order reduction operator is given by

Y2(m) = A1[Y
′
2 (m1, m2)]

=
1

N

∑
m1+m2=(m+rN)

Y ′
2(m1, m2) r = 0, 1. (3)

3. VOLTERRA FILTER USING MULTIRATE
SIGNAL PROCESSNING

3.1. Volterra Filter Operating at Low Sampling Rate
and with Short System Length

First, let us derive the relation between the Volterra filter
operating at a low sampling rate and with a short system
length H2A and the conventional Volterra filter H2. That
is, the relation between H2 and H2A is derived so that the
output signal of the upper system in Fig.1, y1(n), equals
that of the lower system in Fig.1, y2(n). The DFT of y1(n)
is represented as
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where
X ′

1(m1, m2) = H2(m1, m2)X(m1)X(m2).
Next, the DFT of y2(n) is also represented as
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Fig. 1. The relation of H2 and H2A.
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where
X ′

2(m) = 1
2
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We assume the following equation as Eq.(4) equals Eq.(5).

H2A(m1, m2) = H2(m
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It can be seen from Eq.(6) that Eq.(4) would equal Eq.(5) if
H2 and the input signal are limited to fs/4 (fs: sampling
frequency). Hence, we can implement the Volterra filters at
a low rate and with a short system length. Note that the
system forms shown in Fig.1 cause aliasing because the fre-
quency band of those output signals equals twice frequency
band of the input signal in the case of the second-order
Volterra filter. Hence, we need to limit the input signals
and H2 to fs/8.

3.2. Application to Nonlinear Inverse System

In this section, we apply the principle derived in the pre-
vious section to the nonlinear inverse system, which can
reduce the nonlinear distortion of loudspeaker systems. As
a result, we could obtain a system form with a computa-
tional advantage. Let us explain the conventional nonlin-
ear inverse system. Fig.2 shows the system form, which
can reduce the second-order nonlinear distortion of a loud-
speaker system. In Fig.2, D1 and D2 are the linear and
the second-order nonlinear elements of the loudspeaker sys-
tem, respectively. If H2 = D2 and D1H1 = z−∆ (H1 is
the linear inverse filter of D1), then the second-order non-
linear distortion of the loudspeaker system can be reduced
because two second-order nonlinear signals output through
two different signal paths cancel each other. However, the
computational complexity of H2 is so huge. We therefore
apply the principle derived in the previous section to H2.
First, inserting the low pass filter LPF8 at the front of H2

and the decimator and interpolator between H1 and H2,
then the system form shown in Fig.3 is obtained. In Fig.3,
LPF4 and LPF8 are low pass filters whose cutoff frequen-
cies are fs/4 and fs/8, respectively. Next, changing the
arrangement of H1 and the interpolator in Fig.3 and apply-
ing the relation shown in Fig.1 (the arrangement of H2 and
the decimator is changed), we can obtain the final system
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Fig. 2. Conventional nonlinear inverse system.
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Fig. 3. Band-limited nonlinear inverse system.

form shown in Fig.4. In Fig.4, H1A and H2A are the down-
sampled version of H1 and H2, respectively. Hence, the
system form shown in Fig.4 can operate at the lower sam-
pling rate. The system form has some advantages. First,
we can reduce the computational complexity per a sample
time because the sampling rate is decreased to 1/2. Sec-
ond, the computational complexity of the Volterra filter is
reduced by down-sampling because of realizing the same
frequency resolution with half system length. We can also
identify H1A and H2A by adaptive Volterra filters at a low
sampling rate.

4. VOLTERRA FILTER WITH MANY ZERO
COEFFICIENTS

4.1. Principles of Volterra Filter with Many Zero
Coefficients

In this section, we show that the computational complex-
ity of the second-order Volterra filter could be reduced if
the filter or the input signal is limited to fs/4 (fs : sam-
pling frequency). The second-order Volterra filter must be
generally limited to fs/4 in order to avoid the aliasing in-
volved in the output signal. In this case, the second-order
Volterra filter can be represented by another second-order
Volterra filter down-sampled to 1/2. The coefficients of the
down-sampled Volterra filter equal the original filter coef-
ficients where both of k1 and k2 are even numbers. How-
ever, the down-sampled Volterra filter causes aliasing dis-
tortion because the frequency band of the output signal
equals twice frequency band of the input signal in the case
of the second-order Volterra filter. Hence, we need to up-
sample the down-sampled Volterra filter twice, that is, we
need to make the coefficients, whose numbers k1 and/or k2

are odd numbers, zero. The Volterra filter obtained by this
procedure is defined as

h′
2(k1, k2) =

{
h2(k1, k2) k1, k2 = 0, 2, 4 · · ·

0 Otherwise.
(7)

It can be seen from Eq.(7) that the coefficients of h′
2(k1, k2)

are nonzero only if both of k1 and k2 are even numbers. This

LPF4LPF8 2 H1A

Z-∆ 

D1 

D2 

2 H2A 

Fig. 4. Equivalent block diagram of Fig.3.
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Fig. 5. The form of the Volterra filter including zero value.

fact is very essential to reduce the computational complex-
ity. Next, the DFT of Eq.(7) is represented in the form

H ′
2(m1, m2) =

H2(m1, m2)

4
+

H2(m1,−m2)

4

+
H2(−m1, m2)

4
+

H2(−m1,−m2)

4
. (8)

It can be seen from Eq.(8) that the system form shown
in Fig.5 equals the original second-order Volterra filter H2.
That is, if the input signal of the modified Volterra filter
h′

2(k1, k2) is limited to fs/4 and the output signal is multi-
plied by 4, h2(k1, k2) = h′

2(k1, k2). The system form shown
in Fig.5 can reduce the computational complexity because
3N/4 coefficients of h′

2(k1, k2) are zero. Hence, we can de-
rive a new system form not to calculate these coefficients.
Fig.6 shows the system form. In Fig.6, H2A denotes the
second-order Volterra filter that operates at a low sampling
rate and has a short system length. In the arithmetic of
H ′

2, only the coefficients whose value is nonzero are mul-
tiplied by the corresponding input signals. In this case,
the multiplied input signals are classified into two groups
according to whether sample time is odd or even number.
Hence, multirate signal processing is applied to the Volterra
filter H ′

2 in order to realize the above arithmetic. That is,
the down-sampler and delay unit in Fig.6 can classify input
signals into two groups, and the up-sampler and delay unit
in Fig.6 can synthesize these two signal paths. Hence, the
system form shown in Fig.6 can reduce the computational
complexity of the second-order Volterra filter to 1/4.

4.2. Application to Nonlinear Inverse System

In this section, the Volterra filter with many zero coeffi-
cients is applied to the nonlinear inverse system shown in
Fig.4 in order to reduce the computational complexity. H2A

in Fig.4 can be replaced with the system form shown in
Fig.6. Hence, the system form shown in Fig.7 is obtained.
In Fig.7, H ′

2A denotes the Volterra filter that operates at a
low sampling rate and has a short system length. The sys-
tem form shown in Fig.7 can reduce the nonlinear distortion
for the input signal limited to fs/8.
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Fig. 6. The form of the Volterra filter using multirate signal
processing.
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Fig. 7. Block diagram of the proposed nonlinear inverse
system.

5. EXPERIMENTAL RESULTS

We input two sinusoidal signals to a loudspeaker system,
and compare the output spectra before and after reducing
the nonlinear distortion in order to demonstrate the effec-
tiveness of the system form shown in Fig.7. Table 1 shows
the simulation condition. Table 2 show the reduction re-
sults. In Table 2, the reduction effect means the differ-
ence between before and after reduction. HM and IM also
mean the harmonic and the intermodulation distortions, re-
spectively. It can be seen from Table 2 that the proposed
system form has the same reduction ability as the conven-
tional nonlinear inverse system for any frequency. Next, we
compare the computational complexity of the proposed sys-
tem form with that of the conventional one. The number of
multipliers in the conventional system form is represented
as

2× (Nv2)
2 + Nv1. (9)

The number of adders in the conventional one is represented
as

N2
v2 − 1 +Nv1 − 1. (10)

The number of multipliers in the proposed one is repre-
sented as

1

2
×

{
2×

(
Nv2

4

)2

+
Nv1

2

}
+ 2× NL. (11)

The number of adders in the proposed one is represented as

1

2
×

{(
Nv2

4

)2

− 1 +
Nv1

2
− 1

}
+ 2× (NL − 1) , (12)

where Nv1 and Nv2 are the system lengths of the linear
inverse filter H1 and the second-order Volterra filter H2,
respectively. NL also denotes the system length of the low
pass filter LPF4. If the system length of the second-order
Volterra filter H2 is long, then the computational complex-
ity would be determined only by Nv2. Thus the proposed
system form has about 0.03 times as many computational
complexities as the conventional one while having the same
reduction performance.

Table 1. Simulation condition
Tap length of unknown system 256
Input voltage 6.0[V]
Tap length of unknown nonlinear system 256× 256
Tap length of LPF4,LPF8 256
Tap length of H1A 512
Tap length of H2A 128× 128
Sampling frequency 44.1[kHz]

Table 2. Effectiveness of reducing the second order
distortion.(f1=861.33 [Hz], f2=344.53 [Hz])

Reduction Effect
Frequency Conventional Proposed

[dB] [dB]
HM 2f1 10.74 11.02

2f2 29.83 16.80
IM f1 − f2 41.72 52.89

f1 + f2 33.03 27.84

6. CONCLUSION

In this paper, we have proposed Volterra filters using multi-
rate signal processing, and reduced the computational com-
plexity of the nonlinear inverse system by applying them.
By assuming that the second-order Volterra filter and the
input signal are limited to fs/4 to avoid aliasing in the
output signal, we have derived the method for reducing
the computational complexity of the second-order Volterra
filter. Experimental results have demonstrated the effec-
tiveness of the proposed method. We will investigate the
effectiveness in real loudspeaker systems and extend the
proposed method to the third-order Volterra filters.
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