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ABSTRACT

This paperdiscusseseveral issuesrelatedto blind sourcesepa-
rationin nonlinearmodels. Specifically separabilityresultsshav

thatseparationn thegenerakaseis impossible however, for spe-
cific nonlineamodelstheproblemdoeshave asolution.A specific
setof parametrimonlineamixturesis consideredthis sethasthe
Lie groupstructure.In the parameteset,a groupoperationis de-
fined and a relative gradientis defined. The latter is appliedto

designstochasticalgorithmsfor which the equivarianceproperty
is shawn.

1. INTRODUCTION AND PROBLEM STATEMENT

Blind sourceseparationin instantaneousnd convolutive linear
mixtureshasbeenintensiely studiedover the lastdecade.How-
ever, in ageneralreal world situationthe obsered signalsdo not
fit this model. Nonlinearmodels,becausef their betterapproxi-
mationcapabilities appeato be poverful toolsfor modelingsuch
practicalsituations.Unfortunately little work hasbeendedicated
to the problemof blind sourceseparationn nonlineamixtures.

Several contritutionshave beenmadeto the problem([3, 9, 10,
13, 11] howeverthesdackedtheoreticajustification,relyingmore
on analogiewith linearmodels ratherthanproviding new theory
for the nonlinearblind sourceseparatiorproblem. In [12], Taleb
andJuttenproposethe separatiorof a particularclassof nonlinear
mixtures,known asthe postnonlinearmixtures.The obserations
areacomponent-wis@onlinearfunctionof alinearinstantaneous
mixture.

The problemof sourceseparatiorin generahonlinearinstanta-
neousmixturesconsistsof retrieving unobsered sourcess(t) =

(s1(t), 52(t), . .., sn(t))T, by only observinga nonlineamixture
x(t) = (z1(t), z2(t), ...,z (t))T whichwritesas:
x(t) = F(s(t)) @

where F is an unknavn nonlinearone-to-onemapping. This is
doneby constructinga nonlineartransformgG (separatiorstruc-
ture) in orderto isolatein eachcomponentof the output vector
y(t) = G(e(t)) theimageof onesource:

yi(t) = ki(sa(i)(t)); 1= 1, 2, ey (2)

whereo is a permutationon {1,2,...,n}, andk; is a function
which represents probableresidualdistortion.

The problemin this form is ill-posed, without additional as-
sumptionson the sourcessignalsthereis an infinite numberof

solutions. By assumingstatisticalindependencef the sources,
the problembecomeguasiwell-posedn thecaseof linearsource
separation.

In our case,given this assumptionthe role of the separation
structureis to transformthe obserationsvectore(t) to a vector
y(t) with independentomponentsls thestatisticalindependence
assumptiorsufiicient to obtaina separatiorin the senseof equa-
tion (2)? Thenext sectionis concernedvith this question.

2. SEPARABILITY AND INDETERMIN ACIES

Provided the independencessumptionholds, separabilitythen
consistsof determiningthe form of the transformationg{ which
leave thecomponent®f s independent.

2.1. Trivial transformations

Trivial transformationsrethosewhich maparandomvectorwith
independentomponentsnto a randomvector with independent
componentsthus conservingthe independenceroperty It is
shawvn thata one-to-onemapping? is trivial if andonly if it can
bewritten:

Hi(ut,u2,. .., un) = hi(ue()), 1=1,2,...,n 3)
whereh; are arbitrary functionsand o is ary permutationover
{1,2,...,n}. Fromthisresult,it appearslearlythattheobjectve
of sourceseparations to force’H = G o F to betrivial.

2.2. Darmois Results

In thegenerakasejf theglobaltransformatior?{ is notrestricted
to belongto a certainset, it hasbeenestablishedy Darmois|[8]
thatary randomvectorcan,usinga simpleconstructie approach,
be mappedto a randomvectorwith independentomponentdy
aninfinite numberof ways,.

As a corollary of this result, there exist an infinite humber
of transformationsH, without particular structure,which alge-
braically mix the variableswhile conservingheir statisticalinde-
pendence Sourceseparatioris thenimpossibleby only usingthe
statisticalindependence.

2.3. Specificmodel

The constructve methodusedby Darmoiswas mainly basedon
thefree-of-constraintspecificatiorof the transformationn fact,



if onerestrictsthe transformatiorto belongto a specificset, this
supplementaryconstraintassociatedvith the independences-
sumptionreducesdramaticallythe indeterminacies.The charac-
terizationof the indeterminaciedor a specificmodel Q follows
from solvinganindependenceonseration functionalequation:

VE € M, / dF,,dF,, - dF,, =
E

[ ardp,ar,., @

The setof distributionsfor which the solutionsof this equations
arenot trivial containsthosedistributionsfor which separations
impossible By determiningthis set,oneidentifiesthe sourcegor
which separatioris possible.For thesesourcesthey arerestored
upto atrivial transformatiorof themodel Q.

3. STRUCTURED NONLINEAR MODELS

3.1. The setof separatingtransformations

Let us considerthe generic nonlinear mixture of independent
sourcesvhichwritesas(1). As mentionedchbove, theglobaltrans-
formation{ = G o F mustnot model ary nonlineartransfor
mation, in fact this will generatestrong indeterminaciesvhich
provide solutionswithout interest. We then supposethat G has
aparticularform, formally G is constrainedo belongto a specific
set%. Eachelementg of the setof separatingransformations
is uniquely determinecby a vectorof parameter® belongingto
© C R%. Wethenhave:

Tz{gﬂi

More over, this setis assumedo be structured:The couple(%, o)
formsagroup. This groupstructurémposedon ¥ inducesagroup
structureon the parameteset® with acertainlaw x satisfying

V61,0, € 0O,: 991 o g02 = 991*02 (6)

Theneutralelementf (©,«) is denoted;, andcorrespondso the
neutralelemeniof (¥, o): G = Z. Theinverseof 6, denoted, is
definedby therelationsd x 8 = 6 x 6 = ¢.

It is interestingto noticethat since,at leastin theory G is de-
signedto invert the mixing transformationZ, the latter also be-
longsto ¥, hencethereexists r € O suchthat 7 = G,. The
global transformationwritesthenasH = Gy o G, = Gg., and
obviously belongsto ¥.

6 €O cRr'} (5)

3.2. Arelative gradient in (©, x)

Thepreviousalgebraigropertiesarethe basisfor thedefinitionof
arelative gradienton ¥. Therelative gradientfor linear mixtures
wasintroducedby Cardoscetal. [6], independentlydentifiedby
Cichoki et al. [7] asbeingefficient andfinally knowvn asnatural
gradientby Amari [1]. The definition of the relative gradienthas
beenextendedto location-scalamodelsby Cardoso[5]. A com-
parisonof thenaturalandrelative gradienthasbeenstudiedin [4].

The ideabehindthe relative gradientis to objectivelycompare
thevariationsof a functionat differentpoints. The objectvity de-
pendsonthe structureof thefunction’s parameteset.In our case,
we wantto have a measureof variation with respectto relative
deviationsfrom theidentity transformation.

To putthis ideainto execution,let y = Gy(x), andlet asmall
variationd@ of 8, we thenhave:

Y+0y =Gor50 0G5 ' (¥) = Gigy50):5(Y) ©)

Thetransformationi the neighborhooaf theidentity canbepa-
rameterizedy ¢ + pe, wheree is ary normedvector andy is a
smallscalar Hence,theright translationRy mapsary neighbor
hoodof theidentity ¢ to aneighborhoof 8, which canbewritten
as:

0+ 86 =Ro(¢+ pe) (8)

andwhich meanghatwe have arelative deviation of e from 6.

Fromthe previousdiscussionpnecandefinetherelative gradi-
entwith respecto 6 of afunction@(8) with scalarvaluesby the
d-dimensionalvector function, VQ, by the following first order
expansion:

QUC + pe) x0) = Q(8) + pe" VQO) +o(p)  (9)

whereo is afunctionsuchthat lin% olw) =0.
n—

Equation(9) meansthat we compareat the point 8, the value
of @ atthe point§ + 46, obtainedby a relative modificationue
of 8, andthevalueof @ atthepointd. Fromthefirst orderTaylor
expansion:

Ro(C+ pe) = (C+pe) x0 = 0 + pJr, (e +o(p)  (10)

andgiventhattheclassicalgradientof @), VQ is definedby:

QO+ pe) = Q(6) + pe’ VQ + o(n) 11

A simple expansionof (9) using (10) and identifying with (11)
leadsto a relationbetweenthe relative gradientandthe classical
gradient:

VQ(8) = J=, ()" VQ(H) (12)

Therelative gradientasdefinedoy (9) naturallyprovides® with

a Riemanniarstructure. The metrictensoris given by the matrix
x(8) = Jr, (¢)"TJIr,(¢)~* whichis positive definitesincethe
right translationis one-to-one.This metricis the only onewhich
leavesvectorlengthsinvariantunderthe grouptranslationopera-
tioni.e. Rg. Forinstancelet ¢:(0) = (¢ + te) x 6, whent varies
the point ¢, (6) definesacurve Cy in themanifold®. Thetangent
vectoruvg to thecurve Cy atthepointé, is definedby:

_ d¢:(8)
vy =

=R (13)

t=0

now considerthe translationof this curve by R;, hencef is
mappedo ¢, andthe curve Cy to the curve C¢. Thetangentvec-
tor of the curve C, at the point ¢ is now simply v¢ = e. Con-
sidernow the inner productin the Riemanniarmanifold (©, x):
< U,V >¢= UTx(9)V. It is straightforvard to check that
< we,v¢ >¢=< vg, vg >¢ andhencethatthenormof thetangent
vectorattimet = 0 is conseredundertranslation.

The natural gradientin the Riemannianmanifold (0, x) is
givenby therelation:

vQ =x(8)"'VQ (14)

We shallseein the subsequergectionghatthe useof therelative
gradientis equivalentto theuseof the naturalgradient.



4. ESTIMATING EQUATIONS

Statisticalindependencean be measuredy different manners.
Mutualinformationis oneindependenceeasurelt is definedby:

I(y) = H(y) - H(y), (15)

where H denote the differential entropy, H(y;:) =
— [ py; (w) log py; (u)du. Mutual information is always
positive, andvanishesf andonly if thecomponentsf therandom
vectory arestatisticallyindependentTheseparatiorstructurecan
then be estimatedby minimizing the output mutual information
I(y):
G = agminI(y) < 6 = amgminI(y) (16)
gex 6co

It is clearthat,in practice the optimizationof (16) cannotbedone
directly sinceonedoesnot have accesgo the outputdistributions,
theseareeitherreplacedby a guessor by ‘plugging’ atthe output
y(t) adensityestimationprocedure.

Therelative gradientof mutualinformationcanbecomputedy
usingthefirst orderexpansionof I(y) when# variesasé + 66 =
(¢ + pe) x 6, andit is foundthat

AI(y) = —pER(y) M(y) + V(@) le+o(w), (A7)

s Wy (yn )T of scorefunc-
M(y) and V(y) depend

wherey(y) isthevector(ey, (y1), - - -
Py, (¥4)

tions, definedby v, (y;) = P enE
only onthe parametrianodel,fofmally:

M(y) = VoGo(y)ls=¢ (18)

T
V(y) = (trace(J% ),-..,trac€J ag, )) (29)
861 |e=< 96g ‘s:g

From (17), the relative gradientis equalto E[¢(y)” M(y) +
V(y)'l.

In the neighborhoodof the optimal solution§ of (16), small
relative deviationsfrom § mustleadto a null variationof I(y) at
thefirst order i.e. null relative gradient:

El(y)" My) +V(y) ' ]=0 (20)

One may notice that this equationdependsindirectly on 6 by
meansof y. Onereadily verifiesthatif y hasindependentom-
ponentsthen (20) is verified. We will denotein the following
H(y) =¢(y)" M(y)+V(y)".

In a practicalsituation, the expectationoperatorin the equa-
tion (20) is replacedby an empirical expectationover a sample
X ={x(1),z(2),...,z(T)}. Theempiricalexpectationwill be
denotedEr, andleadsfinally to the estimatingequation:

BrlH(y) = 5 Y H(y) =0 (21)

wherefor allt = 1,2,...,T, y(t) = Go(x(t)). Thisequation,
whensolved, provide a batchestimateof 6.

5. GENERIC ADAPTIVE EQUIVARIANT ALGORITHMS

Most stochasticadaptve algorithmsusean additive updaterule,
for instancethe estimationof a paramete#f writesas|[2]:

0 =6 + % Q(z(t),0°) + vip(x(t),0),  (22)

wherez (t) representheon-lineobsenrationsof thesystemandg?
is the sequencef vectorsto berecursvely updated.The function
Q(z, 6) defineshow the paramete# is updatedasa function of
the new obsenations,while p(z, 8) definesa small perturbation
onthealgorithm.

The mostcommonform of adaptve algorithmscorrespondo
p = 0. Corvergenceof the adaptve algorithm (22) is governed
by the associated®rdinary Differential Equation(ODE) which is
definedas: )

6=4q(6), 6(0)=06° (23)

where, for stationaryon-line obserationsx(t), the meanvector
field g(8) is givenby q(6) = E[Q(6, x)].

Roughly speaking the behaior of the algorithm (22) will be
approximatedy thatof the ODE (23), thereadeiis invited to con-
sult[2] andthetechnicaldetailstherein.

In our context, dueto the useof the relative gradient,the pro-
posedadaptve algorithmwill usetheserialupdaterule which has
beenusedby Cardosoand Laheld [6] for adaptve linear source
separatiortase.The serialupdatingrule reliesheaily onthefact
thatwe usea transformatiormodelbelongingto a groupof trans-
formations for instancethe groupG L(n) in linear sourcesepara-
tion. It consistsof plugginga transformatiorcloseto the identity
Getv H(y(t)) attheoutputof the currentestimategG,: to getthe
new estimateGy:+1 (Fig. 1). This suggestghe following non-
additive updaterule:

0" = (¢ + e H(y(1))) x 6°, (24)

wherey(t) is theoutputattime ¢ of thesystem:y(t) = Gg: (x¢).

& —Ggr+1— Y= & — Got [~YctnH@e)— Y

Fig. 1. Serialupdaterule

Clearly, theproposedlgorithm(24) doesnotfollow, in thegen-
eralcasethegeneraform of anadaptve algorithm(22). This oc-
cursbecausehebinaryoperationx is, in generalnon-distritutive
with respecto vectoraddition. Linear sourceseparations anex-
ceptionsincematrix multiplication is distributive with respecto
addition.

For sufiiciently smallv;, the convergenceof (24) will only be
affectedby first ordertermsin ~;. In fact, assumingthat Ry is
twice continuouslydifferentiableasecondrderexpansiorof (24)
canbewritten as:

0 = 6" +yuJr,. (OH(Y()) +1ip(v, 6", y(t)  (25)

with p(~y, 8%, y(t)) boundedfor § andy. The meanvectorfield
associatedvith thealgorithmis then

h(6) = Jr, (C)E[H (Go())]
= Jr,o () IRy (C) E[Jre(¢)”"H(y)] (26)



the term inside the expectationoperatoris the classicalgradient
of the costfunction. Here,we seethatthe useof the relative gra-
dientis equialentto a simple stochastiggradientdescentn the
Riemanniammanifold© possessinthe metrictensory(4).

Let 6(t) bea solutionof the ODE with aninitial point6(0) =
6°, andlet ¢(t) = (t) x T, then:

¢ = Jr. (0)h(8) = Jr, (6)Jr, (O)E[H (Go(x))]
= Jr,(Q)E[H(Gy(Gz(x)))] (27)

wherewe usedthatRg.. = R, o Ry. If 7 istheparameteof the
mixing systemtheng(t), theglobal parameteof Gy o F, will be
solutionof:

¢ = Jr,(Q)E[H(Gs(s)], ¢(0)=6"xT  (28)

It is obvious thatthe trajectory{¢(t), t > 0} dependsonly on
6° %, hencechangingthe parametenf the mixing systemwould
havethesameeffectonthealgorithmglobaltrajectoryaschanging
thealgorithminitial condition. Thekey pointis that,aspointedout
by Cardoscetal. [6] in thelinear case sincethe objective is the
recovery of theinitial sourcesignalss(t), theperformancesf the
adaptve algorithmare essentiallydeterminedy the closenes®f
the global systemparametes to the neutralelement¢, anddoes
notdependntheindividual valuesof 6 or . Hence by theuseof
therelative gradienttheadaptve algorithminheritstheequiariant
propertyfrom batchalgorithms.

Thecuriousreademay askwhy usethe updaterule (24), when
we canusethefollowing:

6! = 6 + i, (O H(y(t) (29)

which correspondso the standardstochastiaiscretizationof the
ODE?

In fact, in the designof a stochasticadaptve algorithm, one
starts by specifying the algorithms ODE and then derives a
stochasti&ulerlik ediscretizatiorof thelatter Forinfinitely small
stepsizes~:, the two rulesare equvalent, however, the first up-
daterule (24) respectshe uniform performancepropertyin dis-
cretetime while thelatter doesnot. In fact,applying to thetwo
membersf (24),anddenotingg’ = 6* x  leadsto:

¢ = (CH 7 H (G (5(t) %4 (30)

which presentsthe sameequiariance property as (28) but in
discrete-time The completestudyof the algorithmglobal perfor
mancefollows the classicalbf the Lyapune equation2], solution
of which providesthecovariancematrixof ¢t: E[(¢—¢)(¢—¢)T].
This issueis problemdependenandwill not be addresseth this
paper

To summarizetheuseof therelative gradientwhosedefinition
is consistentvith the parametegroupoperationallows thedesign
of non-additve adaptve equivariantalgorithms.This fact,already
known for the linear sourceseparatiorproblem,is hereextended
to morecomplex andgenerakourceseparatioomodels.

6. CONCLUSION

Theblind sourceseparatiorproblemin its full generalityis avery
challengingstatisticalproblem.Nonlinearinstantaneoumixtures
provide onelevel of thisgenerality It is shown thatthegeneraliza-
tion is not straightforvard, the underlyingindeterminaciesvhen

dealingwith generahonlineamodelsarevery strong.This makes
the problemill-posedandsuggestdts recastingor specificmod-
els.

Structurechonlineamodelsareonespecificmodelof nonlinear
mixtures.Takinginto accountheLie groupstructurethey posses,
one candefinea relative gradientwhoseusein an adaptve con-
text leadsto adaptve equivariant algorithms. This constitutesa
generalizatiorof equivariantlinear sourceseparatioralgorithms.
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