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ABSTRACT

This paperdiscussesseveral issuesrelatedto blind sourcesepa-
ration in nonlinearmodels.Specifically, separabilityresultsshow
thatseparationin thegeneralcaseis impossible,however, for spe-
cific nonlinearmodelstheproblemdoeshaveasolution.A specific
setof parametricnonlinearmixturesis considered,this sethasthe
Lie groupstructure.In theparameterset,a groupoperationis de-
fined and a relative gradientis defined. The latter is appliedto
designstochasticalgorithmsfor which the equivarianceproperty
is shown.

1. INTR ODUCTION AND PROBLEM STATEMENT

Blind sourceseparationin instantaneousand convolutive linear
mixtureshasbeenintensively studiedover the lastdecade.How-
ever, in a generalrealworld situationtheobservedsignalsdo not
fit this model. Nonlinearmodels,becauseof their betterapproxi-
mationcapabilities,appearto bepowerful toolsfor modelingsuch
practicalsituations.Unfortunately, little work hasbeendedicated
to theproblemof blind sourceseparationin nonlinearmixtures.

Severalcontributionshave beenmadeto theproblem[3, 9, 10,
13, 11] however theselackedtheoreticaljustification,relyingmore
on analogieswith linearmodels,ratherthanproviding new theory
for thenonlinearblind sourceseparationproblem. In [12], Taleb
andJuttenproposetheseparationof a particularclassof nonlinear
mixtures,known asthepostnonlinearmixtures.Theobservations
area component-wisenonlinearfunctionof a linearinstantaneous
mixture.

Theproblemof sourceseparationin generalnonlinearinstanta-
neousmixturesconsistsof retrieving unobserved sources����������
	��
��������	�������������������	
����������� , by only observinga nonlinearmixture�����������! "�
�������� #�$���������������� %�#������� � whichwritesas:�&�����'�)(*�
�%������� (1)

where ( is an unknown nonlinearone-to-onemapping. This is
doneby constructinga nonlineartransform + (separationstruc-
ture) in order to isolatein eachcomponentof the output vector,-�����'� + �/.0������� theimageof onesource:132 �����'�54 2 �
	
687 2:9 ���������';��=<���>?�
��������@ (2)

where A is a permutationon B <���>?�������
��@DC , and 4?2 is a function
which representsa probableresidualdistortion.

The problemin this form is ill-posed, without additionalas-
sumptionson the sourcessignalsthere is an infinite numberof

solutions. By assumingstatisticalindependenceof the sources,
theproblembecomesquasiwell-posedin thecaseof linearsource
separation.

In our case,given this assumption,the role of the separation
structureis to transformthe observationsvector .������ to a vector,&����� with independentcomponents.Is thestatisticalindependence
assumptionsufficient to obtaina separationin the senseof equa-
tion (2)? Thenext sectionis concernedwith this question.

2. SEPARABILITY AND INDETERMIN ACIES

Provided the independenceassumptionholds, separabilitythen
consistsof determiningthe form of the transformationsE which
leave thecomponentsof � independent.

2.1. Tri vial transformations

Trivial transformationsarethosewhichmapa randomvectorwith
independentcomponentsinto a randomvectorwith independent
componentsthus conservingthe independenceproperty. It is
shown thata one-to-onemappingE is trivial if andonly if it can
bewritten:E 2��!F � ��F � �����
����F � �-�5G�2��!F�687 2:9 ���H;D�=<���>I�����
����@ (3)

where G�2 are arbitrary functionsand A is any permutationoverB <���>I�
��������@"C . Fromthisresult,it appearsclearlythattheobjective
of sourceseparationis to force E � +KJ ( to betrivial.

2.2. Darmois Results

In thegeneralcase,if theglobaltransformationE is not restricted
to belongto a certainset,it hasbeenestablishedby Darmois[8]
thatany randomvectorcan,usingasimpleconstructive approach,
be mappedto a randomvectorwith independentcomponentsby
aninfinite numberof ways,.

As a corollary of this result, there exist an infinite number
of transformationsE , without particular structure,which alge-
braicallymix thevariableswhile conservingtheir statisticalinde-
pendence.Sourceseparationis thenimpossibleby only usingthe
statisticalindependence.

2.3. Specificmodel

The constructive methodusedby Darmoiswasmainly basedon
thefree-of-constraintsspecificationof thetransformation.In fact,



if onerestrictsthe transformationto belongto a specificset,this
supplementaryconstraintassociatedwith the independenceas-
sumptionreducesdramaticallythe indeterminacies.The charac-
terizationof the indeterminaciesfor a specificmodel L follows
from solvinganindependenceconservationfunctionalequation:

M#N�OKP �RQTSVUIW"X�Y
UIW"X�Z-[�[�[�UIWDX�\*�
QI] 7 S 9 UIWD^�Y�UIW"^�Z'[�[
[�UIWD^ \ � (4)

The setof distributionsfor which the solutionsof this equations
arenot trivial containsthosedistributionsfor which separationis
impossible.By determiningthis set,oneidentifiesthesourcesfor
which separationis possible.For thesesources,they arerestored
up to a trivial transformationof themodel L .

3. STRUCTURED NONLINEAR MODELS

3.1. The setof separatingtransformations

Let us consider the generic nonlinear mixture of independent
sourceswhichwritesas(1). As mentionedabove,theglobaltrans-
formation E � +_J ( must not model any nonlineartransfor-
mation, in fact this will generatestrong indeterminacieswhich
provide solutionswithout interest. We then supposethat + has
a particularform, formally + is constrainedto belongto a specific
set ` . Eachelement+ of thesetof separatingtransformations̀
is uniquelydeterminedby a vectorof parametersa belongingtob=ced-f

. Wethenhave:` � B$+%g � a O bhced f C (5)

More over, this setis assumedto bestructured:Thecouple � ` � J �
formsagroup.Thisgroupstructureimposedon ` inducesagroup
structureon theparameterset

b
with acertainlaw i satisfyingM a � � a � O b ��j +%g Y J&+#g Z � +%g Y�k g Z (6)

Theneutralelementof � b � i � is denotedl , andcorrespondsto the
neutralelementof � ` � J � : +0m �on . Theinverseof a , denotedpa , is
definedby therelationsa-i pa � pa-iqa � l .

It is interestingto noticethat since,at leastin theory, + is de-
signedto invert the mixing transformation( , the latter alsobe-
longs to ` , hencethereexists r O b suchthat (s� +#t . The
global transformationwrites thenas E � +#gqJu+#t � +%g k t and
obviously belongsto ` .

3.2. A relative gradient in � b � i �
Thepreviousalgebraicpropertiesarethebasisfor thedefinitionof
a relative gradienton ` . Therelative gradientfor linearmixtures
wasintroducedby Cardosoet al. [6], independentlyidentifiedby
Cichoki et al. [7] asbeingefficient andfinally known asnatural
gradientby Amari [1]. Thedefinitionof therelative gradienthas
beenextendedto location-scalemodelsby Cardoso[5]. A com-
parisonof thenaturalandrelativegradienthasbeenstudiedin [4].

The ideabehindthe relative gradientis to objectivelycompare
thevariationsof a functionat differentpoints.Theobjectivity de-
pendson thestructureof thefunction’s parameterset.In ourcase,
we want to have a measureof variation with respectto relative
deviationsfrom theidentity transformation.

To put this ideainto execution,let ,v� + g �/�H� , andlet a small
variation w�a of a , we thenhave:,*x w ,y� + g�z%{�g J�+}| �g �!,'�'� + 7 g�z#{�g 9 k?~g �!,D� (7)

Thetransformationsin theneighborhoodof theidentitycanbepa-
rameterizedby l xR�0� , where � is any normedvector, and � is a
small scalar. Hence,theright translation��g mapsany neighbor-
hoodof theidentity l to aneighborhoodof a , whichcanbewritten
as: a x w�a � � g � l x_����� (8)

andwhichmeansthatwehave arelative deviation of �0� from a .
Fromthepreviousdiscussion,onecandefinetherelativegradi-

entwith respectto a of a function � � a � with scalarvaluesby theU -dimensionalvector function, ��� , by the following first order
expansion:

� ��� l x_�0��� i�a �H� � � a �0x_��� � ��� � a �0xe�8���"� (9)

where� is a functionsuchthat ���������� �8���"�� �5� .
Equation(9) meansthat we compare,at the point a , the value

of � at the point a x w�a , obtainedby a relative modification �0�
of a , andthevalueof � at thepoint a . Fromthefirst orderTaylor
expansion:

��g � l xe�0���'��� l x_�0��� i�a � a x����3���8� l ���&xe�8���D� (10)

andgiventhattheclassicalgradientof � , ��� is definedby:

� � a xe�0���'� � � a �0x_�0� � ��� xo�8���"� (11)

A simple expansionof (9) using (10) and identifying with (11)
leadsto a relationbetweenthe relative gradientandthe classical
gradient: �V� � a �'��� � �I� l � � �V� � a � (12)

Therelativegradientasdefinedby (9) naturallyprovides
b

with
a Riemannianstructure.Themetric tensoris givenby thematrix� � a �q���?�&�8� l � | ���3���8� l � | � which is positive definitesincethe
right translationis one-to-one.This metric is theonly onewhich
leavesvectorlengthsinvariantunderthegrouptranslationopera-
tion i.e. ��g . For instance,let �0� � a �H�h� l x_����� iua , when � varies
thepoint � � � a � definesa curve ��g in themanifold

b
. Thetangent

vector �8g to thecurve �8g at thepoint a , is definedby:

��g � U �#� � a �U3������ �!  �
��� � �8� l ��� (13)

now considerthe translationof this curve by � ~g , hence a is
mappedto l , andthecurve �8g to thecurve � m . The tangentvec-
tor of the curve � m at the point l is now simply � m �¡� . Con-
sidernow the inner productin the Riemannianmanifold � b � � � :¢¤£ ��¥§¦ g � £ ��� � a ��¥ . It is straightforward to check that¢ � m � � m ¦ m � ¢ ��g � �8g ¦ g andhencethatthenormof thetangent
vectorat time �H�5� is conservedundertranslation.

The natural gradient in the Riemannianmanifold � b � � � is
givenby therelation:

p��� � � � a � | � ��� (14)

We shallseein thesubsequentsectionsthattheuseof therelative
gradientis equivalentto theuseof thenaturalgradient.



4. ESTIMA TING EQUATIONS

Statisticalindependencecan be measuredby different manners.
Mutual informationis oneindependencemeasure.It is definedby:

¨ �!,��'� �© 2   �#ª � 1�2 ��« ª �!,���� (15)

where ª denote the differential entropy, ª � 132 � �«­¬�® ^�¯ �!F#� ��°�± ® ^�¯ �!F#��U?F . Mutual information is always
positive,andvanishesif andonly if thecomponentsof therandom
vector , arestatisticallyindependent.Theseparationstructurecan
then be estimatedby minimizing the output mutual information¨ �!,D� : ²+ � argmin³T´?µ ¨ �!,D�·¶¹¸ ²a � argming ´?º ¨ �!,"� (16)

It is clearthat,in practice,theoptimizationof (16)cannotbedone
directly sinceonedoesnothave accessto theoutputdistributions,
theseareeitherreplacedby a guessor by ‘plugging’ at theoutput,-����� a densityestimationprocedure.

Therelativegradientof mutualinformationcanbecomputedby
usingthefirst orderexpansionof

¨ �!,D� when a variesas a x w�a �� l x_����� i�a , andit is foundthat» ¨ �!,��'�=«�� N�¼ ½ �!,D� ��¾ �!,��0xR¥��!,�� �#¿ �&xo�8���"��� (17)

where
½ �!,�� is thevector � ½ ^�Y � 1 � ����������� ½ ^�\ � 1 � ��� � of scorefunc-

tions, definedby
½ ^�¯�� 132 �K�ÁÀ
ÂÃ ¯ 7 ^�¯ 9À Ã ¯ 7 ^ ¯
9 . ¾ �!,'� and ¥��!,�� depend

only on theparametricmodel,formally:¾ �!,��'� �Vg�+%g �!,���Ä g  �m (18)

¥��!,��'�ÆÅ trace�Ç�ÉÈ
Ê �È � Y'ËËË ��Ì�Í ����������� trace�Ç�ÉÈ
Ê �È �ÇÎ ËËË ��Ì�Í ��Ï
�

(19)

From (17), the relative gradient is equal to
NÐ¼ ½ �!,�� � ¾ �!,'��x¥��!,���� ¿ .

In the neighborhoodof the optimal solution

²a of (16), small
relative deviationsfrom

²a mustleadto a null variationof
¨ �!,"� at

thefirst order, i.e. null relative gradient:NÐ¼ ½ �!,�� ��¾ �!,��0xR¥��!,�� �#¿ �5� (20)

One may notice that this equationdependsindirectly on a by
meansof , . Onereadily verifiesthat if , hasindependentcom-
ponentsthen (20) is verified. We will denotein the followingª �!,D�H� ½ �!,���� ¾ �!,'�0xo¥Ð�!,D��� .

In a practicalsituation, the expectationoperatorin the equa-
tion (20) is replacedby an empirical expectationover a sampleÑ � B ����<��������
>��������
��������Òq��C . Theempiricalexpectationwill be
denoted

²N � , andleadsfinally to theestimatingequation:²N � ¼ ª �!,�� ¿ � <Ò �© �!  � ª �!,D�H�5� (21)

wherefor all �Ó�Ô<���>I���
������Ò , ,}�����É� +%g �/�&������� . This equation,
whensolved,provide a batchestimateof a .

5. GENERIC ADAPTIVE EQUIVARIANT ALGORITHMS

Most stochasticadaptive algorithmsusean additive updaterule,
for instancetheestimationof a parametera writesas[2]:

a � z � � a � x_Õ � � �/�&������� a � ��x_Õ ��$Ö �/�&������� a � ��� (22)

where�×����� representtheon-lineobservationsof thesystem,anda �
is thesequenceof vectorsto berecursively updated.Thefunction� �/�&� a � defineshow the parametera is updatedasa function of
the new observations,while Ö �/�}� a � definesa small perturbation
on thealgorithm.

The mostcommonform of adaptive algorithmscorrespondtoÖ �Ø� . Convergenceof the adaptive algorithm(22) is governed
by theassociatedOrdinaryDifferentialEquation(ODE) which is
definedas: Ùa �ÛÚ8� a ��� a �/�3�H� a � (23)

where,for stationaryon-line observations ������� , the meanvector
field Ú�� a � is givenby Ú8� a �'� N�¼ � � a ���H� ¿ .

Roughlyspeaking,the behavior of the algorithm(22) will be
approximatedby thatof theODE(23),thereaderis invitedto con-
sult [2] andthetechnicaldetailstherein.

In our context, dueto the useof the relative gradient,thepro-
posedadaptive algorithmwill usetheserialupdaterule whichhas
beenusedby CardosoandLaheld [6] for adaptive linear source
separationcase.Theserialupdatingrule reliesheavily on thefact
thatwe usea transformationmodelbelongingto a groupof trans-
formations,for instancethegroup ÜuÝ �!@�� in linearsourcesepara-
tion. It consistsof plugginga transformationcloseto the identity+ m z#Þ�ß�à 7âá87 � 9ã9 at the outputof the currentestimate+ g ß to get the
new estimate+ g ßãä Y (Fig. 1). This suggeststhe following non-
additive updaterule:

a � z � �h� l x_Õ � ª �!,}��������� i�a � � (24)

where,}����� is theoutputat time � of thesystem:,}�����'� + g ß �/� � � .
� + g ß�ä Y , ¶¹¸ � + g ß + m z#Þ�ßÇà 7�á87 � 9�9 ,

Fig. 1. Serialupdaterule

Clearly, theproposedalgorithm(24)doesnotfollow, in thegen-
eralcase,thegeneralform of anadaptive algorithm(22). Thisoc-
cursbecausethebinaryoperationi is, in general,non-distributive
with respectto vectoraddition.Linearsourceseparationis anex-
ceptionsincematrix multiplication is distributive with respectto
addition.

For sufficiently small Õ � , the convergenceof (24) will only be
affectedby first order termsin Õ � . In fact, assumingthat ��g is
twicecontinuouslydifferentiable,asecondorderexpansionof (24)
canbewrittenas:

a � z � � a � x_Õ � �3� � ß � l � ª �!,H�������#x_Õ �� Ö ��Õ � � a � ��,}������� (25)

with Ö ��Õ � � a � ��,-������� boundedfor a and , . The meanvectorfield
associatedwith thealgorithmis thenG�� a �H��� � �I� l � N�¼ ª � + g �/�'��� ¿�å� � �I� l ��� � �8� l � � N�¼ � � �I� l � | � ª �!,D� ¿ (26)



the term inside the expectationoperatoris the classicalgradient
of thecostfunction. Here,we seethat theuseof therelative gra-
dient is equivalent to a simplestochasticgradientdescentin the
Riemannianmanifold

b
possessingthemetrictensor� � a � .

Let a ����� bea solutionof theODE with an initial point a �/�3�æ�a � , andlet � �����'� a ����� iqr , then:Ù� �å�3�&ç#� a ��G"� a �H�å�3�&ç#� a ���3���?� l � N�¼ ª � +#g �/�-��� ¿���3��è#� l � N�¼ ª � +0é � + ~t �/�-����� ¿ (27)

whereweusedthat ��g k t � �Ðt×J-��g . If r is theparameterof the
mixing system,then � ����� , theglobalparameterof +%g&J ( , will be
solutionof:Ù� �å�3��è�� l � NÐ¼ ª � +#é �
�?��� ¿ � � �/�3�H� a � i�r (28)

It is obvious that the trajectory B$� �������V�*êë�?C dependsonly ona � iær , hencechangingtheparameterof themixing systemwould
havethesameeffectonthealgorithmglobaltrajectoryaschanging
thealgorithminitial condition.Thekey point is that,aspointedout
by Cardosoet al. [6] in the linearcase,sincetheobjective is the
recovery of theinitial sourcesignals������� , theperformancesof the
adaptive algorithmareessentiallydeterminedby theclosenessof
theglobalsystemparameter� to theneutralelementl , anddoes
notdependontheindividualvaluesof a or r . Hence,by theuseof
therelativegradient,theadaptivealgorithminheritstheequivariant
propertyfrom batchalgorithms.

Thecuriousreadermayaskwhy usetheupdaterule (24),when
we canusethefollowing:a � z � � a � x_Õ � �3� � ß � l � ª �!,H������� (29)

which correspondsto thestandardstochasticdiscretizationof the
ODE?

In fact, in the designof a stochasticadaptive algorithm, one
starts by specifying the algorithm’s ODE and then derives a
stochasticEuler-likediscretizationof thelatter. For infinitelysmall
stepsizes Õ � , the two rulesareequivalent,however, the first up-
daterule (24) respectsthe uniform performancepropertyin dis-
cretetime while thelatterdoesnot. In fact,applying r to thetwo
membersof (24),anddenoting� � � a � i�r leadsto:� � z � �h� l x_Õ � ª � + é ß �
����������� i�� � � (30)

which presentsthe sameequivarianceproperty as (28) but in
discrete-time.Thecompletestudyof thealgorithmglobalperfor-
mancefollows theclassicalof theLyapunov equation[2], solution
of whichprovidesthecovariancematrixof � � : NÐ¼ � � « l ��� � « l ��� ¿ .
This issueis problemdependentandwill not beaddressedin this
paper.

To summarize,theuseof therelativegradient,whosedefinition
is consistentwith theparametergroupoperation,allowsthedesign
of non-additive adaptive equivariantalgorithms.This fact,already
known for the linearsourceseparationproblem,is hereextended
to morecomplex andgeneralsourceseparationmodels.

6. CONCLUSION

Theblind sourceseparationproblemin its full generalityis a very
challengingstatisticalproblem.Nonlinearinstantaneousmixtures
provideonelevel of thisgenerality. It is shown thatthegeneraliza-
tion is not straightforward, the underlyingindeterminacieswhen

dealingwith generalnonlinearmodelsareverystrong.Thismakes
theproblemill-posedandsuggestsits recastingfor specificmod-
els.

Structurednonlinearmodelsareonespecificmodelof nonlinear
mixtures.Takinginto accounttheLie groupstructurethey posses,
onecandefinea relative gradientwhoseusein an adaptive con-
text leadsto adaptive equivariant algorithms. This constitutesa
generalizationof equivariantlinearsourceseparationalgorithms.
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